84
Views
0
CrossRef citations to date
0
Altmetric
Review Article

QSPR models to predict the physical hazards of mixtures: a state of art

&
Pages 745-764 | Received 22 Jun 2023, Accepted 24 Aug 2023, Published online: 14 Sep 2023

References

  • A. Krutof and K. Hawboldt, Blends of pyrolysis oil, petroleum, and other bio-based fuels: A review, Renew. Sustain. Energy. Rev. 59 (2016), pp. 406–419. doi:10.1016/j.rser.2015.12.304.
  • O.I. Awad, R. Mamat, T.K. Ibrahim, A.T. Hammid, I.M. Yusri, M.A. Hamidi, A.M. Humada, and A.F. Yusop, Overview of the oxygenated fuels in spark ignition engine: Environmental and performance, Renew. Sustain. Energy. Rev. 91 (2018), pp. 394–408. doi:10.1016/j.rser.2018.03.107.
  • L. Centrella, M. Portarapillo, G. Luciani, R. Sanchirico, and A. Di Benedetto, Synergistic behavior of flammable dust mixtures: A novel classification, J. Hazard. Mater. 397 (2020), pp. 122784. doi:10.1016/j.jhazmat.2020.122784.
  • M.G. Zabetakis, Flammability Characteristics of Combustible Gases and Vapors - Bulletin 627, Bureau of Mines, United States, 1964.
  • O. Dufaud, L. Perrin, D. Bideau, and A. Laurent, When solids meet solids: A glimpse into dust mixture explosions, J. Loss Prevent. Proc. Ind. 25 (2012), pp. 853–861. doi:10.1016/j.jlp.2012.04.011.
  • H.J. Liaw, T.P. Lee, J.S. Tsai, W.H. Hsiao, M.H. Chen, and T.T. Hsu, Binary liquid solutions exhibiting minimum flash-point behavior, J. Loss Prevent. Proc. Ind. 16 (2003), pp. 173–186. doi:10.1016/S0950-4230(03)00004-4.
  • H.-J. Liaw and H.-Y. Chen, Study of two different types of minimum flash-point behavior for ternary mixtures, Ind. Eng. Chem. Res. 52 (2013), pp. 7579–7585. doi:10.1021/ie400585k.
  • T. Pénelon, V. Debuy, B. Truchot, C. Wagner, L. Donnat, and J.-F. Lechaudel, Pool evaporation: experimental tests at medium-scale with gasoline, J. Loss Prevent. Proc. Ind. 65 (2020), pp. 104072. doi:10.1016/j.jlp.2020.104072.
  • H. Le Chatelier, Estimation of firedamp by flammability limits, Ann. Mines 19 (1891), pp. 388–395.
  • J. Gmehling and P. Rasmussen, Flash points of flammable liquid mixtures using UNIFAC, Ind. Eng. Chem. Fund. 21 (1982), pp. 186–188. doi:10.1021/i100006a016.
  • H.-J. Liaw and Y.-Y. Chiu, A general model for predicting the flash point of miscible mixtures, J. Hazard. Mater. 137 (2006), pp. 38–46. doi:10.1016/j.jhazmat.2006.01.078.
  • Manual of Tests and Criteria, ST/SG/AC.10/11/Rev.7, ed., United Nations, New York and Geneva, 2019.
  • Globally harmonized system of classification and labelling of chemicals (GHS), ST/SG/AC.10/30/Rev.8, United Nations, New York and Geneva, 2019.
  • Regulation (EC) N° 1907/2006 of the European parliament and of the council of 18 December 2006 concerning the registration, evaluation, authorisation and restriction of chemicals (REACH), European Commission, 2006.
  • OECD principles for the validation, for regulatory purpose, of (Q)SAR models, Organisation for Economic Co-operation and Development (OECD), 2004.
  • E.N. Muratov, E.V. Varlamova, A.G. Artemenko, P.G. Polishchuk, and V.E. Kuz’min, Existing and developing approaches for QSAR analysis of mixtures, Mol. Inform. 31 (2012), pp. 202–221. doi:10.1002/minf.201100129.
  • E. Mombelli, État de l’art sur la modélisation QSAR de la toxicité des mélanges chimiques, Ineris (2022). https://www.ineris.fr/fr/etat-art-modelisation-qsar-toxicite-melanges-chimiques
  • S.J. Belfield, J.W. Firman, S.J. Enoch, J.C. Madden, K. Erik Tollefsen, and M.T.D. Cronin, A review of quantitative structure-activity relationship modelling approaches to predict the toxicity of mixtures, Comput. Tox. 25 (2023), pp. 100251. doi:10.1016/j.comtox.2022.100251.
  • Z. Jiao, H.U. Escobar-Hernandez, T. Parker, and Q. Wang, Review of recent developments of quantitative structure-property relationship models on fire and explosion-related properties, Process Saf. Environ. Protect. 129 (2019), pp. 280–290. doi:10.1016/j.psep.2019.06.027.
  • C. Nieto-Draghi, G. Fayet, B. Creton, X. Rozanska, P. Rotureau, J.-C. De Hemptinne, P. Ungerer, B. Rousseau, and C. Adamo, A general guidebook for the theoretical prediction of physico-chemical properties of chemicals for regulatory purposes, Chem. Rev. 115 (2015), pp. 13093–13164. doi:10.1021/acs.chemrev.5b00215.
  • G. Fayet and P. Rotureau, Chemoinformatics for the safety of energetic and reactive materials at Ineris, Mol. Inform. 41 (2022), pp. 2000190. doi:10.1002/minf.202000190.
  • F.A. Quintero, S.J. Patel, F. Munoz, and M.S. Mannan, Review of existing QSAR/QSPR models developed for properties used in hazardous chemicals classification system, Ind. Eng. Chem. Res. 51 (2012), pp. 16101–16115. doi:10.1021/ie301079r.
  • T. Gaudin, P. Rotureau, and G. Fayet, Combining mixing rules with QSPR models for pure chemicals to predict the flash points of binary organic liquid mixtures, Fire Saf. J. 74 (2014), pp. 61–70. doi:10.1016/j.firesaf.2015.04.006.
  • D.A. Saldana, L. Starck, P. Mougin, B. Rousseau, and B. Creton, Prediction of flash points for fuel mixtures using machine learning and a novel equation, Energy Fuels 27 (2013), pp. 3811–3820. doi:10.1021/ef4005362.
  • T. Gaudin, P. Rotureau, and G. Fayet, Mixture descriptors toward the development of quantitative structure–property relationship models for the flash points of organic mixtures, Ind. Eng. Chem. Res. 54 (2015), pp. 6596–6604. doi:10.1021/acs.iecr.5b01457.
  • Web of Science, Clarivate, https://www.webofscience.com.
  • G. Cai, Z. Liu, L. Zhang, Q. Shi, S. Zhao, and C. Xu, Systematic performance evaluation of gasoline molecules based on quantitative structure-property relationship models, Chem. Eng. Sci. 229 (2021), pp. 116077. doi:10.1016/j.ces.2020.116077.
  • S.A. Mirkhani, F. Gharagheizi, and M. Sattari, A QSPR model for prediction of diffusion coefficient of non-electrolyte organic compounds in air at ambient condition, Chemosphere 86 (2012), pp. 959–966. doi:10.1016/j.chemosphere.2011.11.021.
  • L.-T. Ye, Y. Pan, and J.-C. Jiang, Experimental determination and calculation of auto-ignition temperature of binary flammable liquid mixtures, Acta Petro. Sin. (Petroleum Proc. Section) 31 (2015), pp. 753–759. doi:10.3969/j.issn.1001-8719.2015.03.021.
  • L. Jiao, X. Zhang, Y. Qin, X. Wang, and H. Li, QSPR study on the flash point of organic binary mixtures by using electrotopological state index, Chemom. Intell. Lab. 156 (2016), pp. 211–216. doi:10.1016/j.chemolab.2016.05.023.
  • B. Wang, H. Park, K. Xu, and Q. Wang, Prediction of lower flammability limits of blended gases based on quantitative structure–property relationship, J. Therm. Anal. Calori. 132 (2018), pp. 1125–1130. doi:10.1007/s10973-017-6941-9.
  • Y. Wang, F. Yan, Q. Jia, and Q. Wang, Distributive structure-properties relationship for flash point of multiple components mixture, Fluid Phase Equil. 474 (2018), pp. 1–5. doi:10.1016/j.fluid.2018.07.005.
  • G. Fayet and P. Rotureau, New QSPR models to predict the flammability of binary liquid mixtures, Mol. Inform. 38 (2019), pp. 1800122. doi:10.1002/minf.201800122.
  • Y. Pan, X. Ji, L. Ding, and J. Jiang, Prediction of lower flammability limits for binary hydrocarbon gases by quantitative structure—property relationship approach, Molecules 24 (2019), pp. 748. doi:10.3390/molecules24040748.
  • S. Shen, Y. Pan, X. Ji, Y. Ni, and J. Jiang, Prediction of the auto-ignition temperatures of binary miscible liquid mixtures from molecular structures, Int. J. Mol. Sci. 20 (2019), pp. 2084. doi:10.3390/ijms20092084.
  • E. Torabian and M. Amin Sobati, New structure-based models for the prediction of flash point of multi-component organic mixtures, Thermochim. Acta 672 (2019), pp. 162–172. doi:10.1016/j.tca.2018.11.012.
  • B. Wang, K. Xu, and Q. Wang, Prediction of upper flammability limits for fuel mixtures using quantitative structure–property relationship models, Chem. Eng. Comm. 206 (2019), pp. 247–253. doi:10.1080/00986445.2018.1483350.
  • W. Cao, Y. Pan, Y. Liu, and J. Jiang, A novel method for predicting the flash points of binary mixtures from molecular structures, Saf. Sci. 126 (2020), pp. 104680. doi:10.1016/j.ssci.2020.104680.
  • Z. Jiao, C. Ji, S. Yuan, Z. Zhang, and Q. Wang, Development of machine learning based prediction models for hazardous properties of chemical mixtures, J. Loss Prevent. Proc. Ind. 67 (2020), pp. 104226. doi:10.1016/j.jlp.2020.104226.
  • Z. Jiao, S. Yuan, Z. Zhang, and Q. Wang, Machine learning prediction of hydrocarbon mixture lower flammability limits using quantitative structure-property relationship models, Process Saf. Prog. 39 (2020), pp. e12103. doi:10.1002/prs.12103.
  • Y. Jin, J. Jiang, Y. Pan, and L. Ni, Prediction of the auto-ignition temperature of binary liquid mixtures based on the quantitative structure–property relationship approach, J. Therm. Anal. Calori. 140 (2020), pp. 397–409. doi:10.1007/s10973-019-08774-9.
  • S. Shen, X. Ji, Y. Pan, R. Qi, and J. Jiang, A new method for predicting the upper flammability limits of fuel mixtures, J. Loss Prevent. Proc. Ind. 64 (2020), pp. 104074. doi:10.1016/j.jlp.2020.104074.
  • A.P. Toropova, A.A. Toropov, E. Carnesecchi, E. Benfenati, and J.L. Dorne, The index of ideality of correlation: Models for flammability of binary liquid mixtures, Chem. Pap. 74 (2020), pp. 601–609. doi:10.1007/s11696-019-00903-w.
  • A.P. Toropova, A.A. Toropov, D. Leszczynska, and J. Leszczynski, The index of ideality of correlation: Models of the flash points of ternary mixtures, New J. Chem. 44 (2020), pp. 4858–4868. doi:10.1039/D0NJ00121J.
  • J. Yao, R. Qi, Y. Pan, H. He, Y. Fan, J. Jiang, and J. Jiang, Prediction of the flash points of binary biodiesel mixtures from molecular structures, J. Loss Prevent. Proc. Ind. 65 (2020), pp. 104137. doi:10.1016/j.jlp.2020.104137.
  • L. Zhou, B. Wang, J. Jiang, G. Reniers, and L. Liu, A mathematical method for predicting flammability limits of gas mixtures, Process Saf. Environ. Protect. 136 (2020), pp. 280–287. doi:10.1016/j.psep.2020.02.002.
  • H. He, Y. Pan, J. Meng, Y. Li, J. Zhong, W. Duan, and J. Jiang, Predicting thermal decomposition temperature of binary imidazolium ionic liquid mixtures from molecular structures, ACS Omega 6 (2021), pp. 13116–13123. doi:10.1021/acsomega.1c00846.
  • Y. Ni, Y. Pan, J. Jiang, Y. Liu, and C.-M. Shu, Predicting both lower and upper flammability limits for fuel mixtures from molecular structures with same descriptors, Process Saf. Environ. Protect. 155 (2021), pp. 177–183. doi:10.1016/j.psep.2021.09.023.
  • B. Aljaman, U. Ahmed, U. Zahid, V.M. Reddy, S.M. Sarathy, and A.G. Abdul Jameel, A comprehensive neural network model for predicting flash point of oxygenated fuels using a functional group approach, Fuel 317 (2022), pp. 123428. doi:10.1016/j.fuel.2022.123428.
  • EChemPortal, OECD, https://www.echemportal.org/echemportal/.
  • Chemsafe - Database for Safety Characteristics in Explosion Protection, BAM, Dechema, PTB, https://www.chemsafe.ptb.de/
  • V. Kuz’min, A. Artemenko, L. Ognichenko, A. Hromov, A. Kosinskaya, S. Stelmakh, Z.L. Sessions, and E.N. Muratov, Simplex representation of molecular structure as universal QSAR/QSPR tool, Struct. Chem. 32 (2021), pp. 1365–1392. doi:10.1007/s11224-021-01793-z.
  • D. Weininger, SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules, J. Chem. Inf. Comput. Sci. 28 (1988), pp. 31–36. doi:10.1021/ci00057a005.
  • M. Chatterjee and K. Roy, Application of cross-validation strategies to avoid overestimation of performance of 2D-QSAR models for the prediction of aquatic toxicity of chemical mixtures, SAR QSAR Environ Res. 33 (2022), pp. 463–484. doi:10.1080/1062936X.2022.2081255.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models: how to evaluate It? Comparison of different validation criteria and proposal of using the concordance correlation coefficient, J. Chem. Inf. Model. 51 (2011), pp. 2320–2335. doi:10.1021/ci200211n.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection, J. Chem. Inf. Model. 52 (2012), pp. 2044–2058. doi:10.1021/ci300084j.
  • J.R. Rowley, R.L. Rowley, and W.V. Wilding, Estimation of the flash point of pure organic chemicals from structural contributions, Proc. Saf. Prog. 29 (2010), pp. 353–358. doi:10.1002/prs.10401.
  • A.C. Atkinson, Plots, Transformations and Regression - an Introduction to Graphical Methods of Diagnostic Regression Analysis, Clarendon Press, Oxford, 1985.
  • A.P. Toropova, A.A. Toropov, M. Marzo, S.E. Escher, J.L. Dorne, N. Georgiadis, and E. Benfenati, The application of new HARD-descriptor available from the CORAL software to building up NOAEL models, Food Chem. Toxicol. 112 (2018), pp. 544–550. doi:10.1016/j.fct.2017.03.060.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.