187
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessing structural insights into in-house arylsulfonyl L-(+) glutamine MMP-2 inhibitors as promising anticancer agents through structure-based computational modelling approaches

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 805-830 | Received 03 Jul 2023, Accepted 17 Sep 2023, Published online: 18 Oct 2023

References

  • E.B. de Melo, A QSAR study of matrix metalloproteinases type 2 (MMP-2) inhibitors with cinnamoyl pyrrolidine derivatives, Sci. Pharm. 80 (2012), pp. 265–281. doi:10.3797/scipharm.1112-21.
  • X. Fan, S. Wang, H. Liu, Z. Li, Q. Sun, Y. Wang, and X. Fan, A sensitive electrochemiluminescence biosensor for assay of cancer biomarker (MMP-2) based on NGQDs-Ru@SiO2 luminophore, Talanta 236 (2022), pp. 122830. doi:10.1016/j.talanta.2021.122830.
  • E. Jafari, S. Safinejad, S. Dabiri, and A. Naghibzadeh-Tahami, Study of the relationship between MMP-2 and MMP-9 and Her2/neu overexpression in gastric cancer: Clinico-pathological correlations, Asian Pac. J. Cancer Prev. 22 (2021), pp. 811–817. doi:10.31557/APJCP.2021.22.3.811.
  • Z. Yao, T. Yuan, H. Wang, S. Yao, Y. Zhao, Y. Liu, S. Jin, J. Chu, Y. Xu, W. Zhou, S. Yang, and Y. Liu, MMP-2 together with MMP-9 overexpression correlated with lymph node metastasis and poor prognosis in early gastric carcinoma, Tumour Biol. 39 (2017), pp. 1010428317700411. doi:10.1177/1010428317700411.
  • W. Shen, H. Xi, B. Wei, and L. Chen, The prognostic role of matrix metalloproteinase 2 in gastric cancer: A systematic review with meta-analysis, J. Cancer Res. Clin. Oncol. 140 (2014), pp. 1003–1009. doi:10.1007/s00432-014-1630-6.
  • S. Noh, J.J. Jung, M. Jung, T.S. Kim, C.H. Park, S.J. Lim, H.C. Jeung, H. Cheol, H.C. Chung, and S.Y. Rha, MMP-2 as a putative biomarker for carcinomatosis in gastric cancer, Hepato-gastroenterol 58 (2011), pp. 2015–2019. doi:10.5754/hge11209.
  • H. Jiang and H. Li, Prognostic values of tumoral MMP2 and MMP9 overexpression in breast cancer: A systematic review and meta-analysis, BMC Cancer 21 (2021), pp. 149. doi:10.1186/s12885-021-07860-2.
  • A. Jezierska and T. Motyl, Matrix metalloproteinase-2 involvement in breast cancer progression: A mini-review, Med. Sci. Monit. 15 (2009), pp. RA32–R40.
  • Y. Li, J. Ma, Q. Guo, F. Duan, F. Tang, P. Zheng, Z. Zhao, and G. Lu, Overexpression of MMP-2 and MMP-9 in esophageal squamous cell carcinoma, Dis. Esophagus 22 (2009), pp. 664–667. doi:10.1111/j.1442-2050.2008.00928.x.
  • C. Liu, Y. Li, S. Hu, Y. Chen, L. Gao, D. Liu, H. Guo, and Y. Yang, Clinical significance of matrix metalloproteinase-2 in endometrial cancer: A systematic review and meta-analysis, Medicine (Baltimore) 97 (2018), pp. e10994. doi:10.1097/MD.0000000000010994.
  • H. Jia, Q. Zhang, F. Liu, and D. Zhou, Prognostic value of MMP-2 for patients with ovarian epithelial carcinoma: A systematic review and meta-analysis, Arch. Gynecol. Obstet. 295 (2017), pp. 689–696. doi:10.1007/s00404-016-4257-9.
  • M. Périgny, I. Bairati, I. Harvey, M. Beauchemin, F. Harel, M. Plante, and B. Têtu, Role of immunohistochemical overexpression of matrix metalloproteinases MMP-2 and MMP-11 in the prognosis of death by ovarian cancer, Am. J. Clin. Pathol. 129 (2008), pp. 226–231. doi:10.1309/49LA9XCBGWJ8F2KM.
  • M. Shi, B. Yu, H. Gao, J. Mu, and C. Ji, Matrix metalloproteinase 2 overexpression and prognosis in colorectal cancer: A meta-analysis, Mol. Biol. Rep. 40 (2013), pp. 617–623. doi:10.1007/s11033-012-2100-3.
  • M. Langenskiöld, L. Holmdahl, P. Falk, and M.L. Ivarsson, Increased plasma MMP-2 protein expression in lymph node-positive patients with colorectal cancer, Int. J. Colorectal Dis. 20 (2005), pp. 245–252. doi:10.1007/s00384-004-0667-4.
  • W.W. Liu, Z.Y. Zeng, Q.L. Wu, J.H. Hou, and Y.Y. Chen, Overexpression of MMP-2 in laryngeal squamous cell carcinoma: A potential indicator for poor prognosis, Otolaryngol. Head Neck Surg. 132 (2005), pp. 395–400. doi:10.1016/j.otohns.2004.09.050.
  • K. Ratajczak-Wielgomas, A. Kmiecik, and P. Dziegiel, Role of periostin expression in non-small cell lung cancer: Periostin silencing inhibits the migration and invasion of lung cancer cells via regulation of MMP-2 expression, Int. J. Mol. Sci. 23 (2022), pp. 1240. doi:10.3390/ijms23031240.
  • Z. Song, J. Wang, Q. Su, M. Luan, X. Chen, and X. Xu, The role of MMP-2 and MMP-9 in the metastasis and development of hypopharyngeal carcinoma, Braz. J. Otorhinolaryngol. 87 (2021), pp. 521–528. doi:10.1016/j.bjorl.2019.10.009.
  • M.H. Chien, C.W. Lin, C.W. Cheng, Y.C. Wen, and S.F. Yang, Matrix metalloproteinase-2 as a target for head and neck cancer therapy, Expert Opin. Ther. Targets 17 (2013), pp. 203–216. doi:10.1517/14728222.2013.740012.
  • G. Klein, E. Vellenga, M.W. Fraaije, W.A. Kamps, and E.S. de Bont, The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia, Crit. Rev. Oncol. Hematol. 50 (2004), pp. 87–100. doi:10.1016/j.critrevonc.2003.09.001.
  • A. Amin Asnafi, M. Bagheri, K. Zibara, M. Maleki Behzad, and S. Shahrabi, Expression and activity of matrix metalloproteinases in leukemia, J. Pediatr. Hematol. Oncol. 41 (2019), pp. 87–95. doi:10.1097/MPH.0000000000001386.
  • J.A. Kwan, C.J. Schulze, W. Wang, H. Leon, M. Sariahmetoglu, M. Sung, J. Sawicka, D.E. Sims, G. Sawicki, and R. Schulz, Matrix metalloproteinase-2 (MMP-2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (ADP-ribose) polymerase (PARP) in vitro, FASEB J. 18 (2004), pp. 690–692. doi:10.1096/fj.02-1202fje.
  • N. Adhikari, S.A. Amin, A. Saha, and T. Jha, Structural exploration for the refinement of anticancer matrix metalloproteinase-2 inhibitor designing approaches through robust validated multi-QSARs, J. Mol. Struct. 1156 (2018), pp. 501–515. doi:10.1016/j.molstruc.2017.12.005.
  • S.A. Amin, N. Adhikari, and T. Jha, Is dual inhibition of metalloenzymes HDAC-8 and MMP-2 a potential pharmacological target to combat hematological malignancies? Pharmacol. Res. 122 (2017), pp. 8–19. doi:10.1016/j.phrs.2017.05.002.
  • H. Zheng, H. Takahashi, Y. Murai, Z. Cui, K. Nomoto, H. Niwa, K. Tsuneyama, and Y. Takano, Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma, Anticancer Res. 26 (2006), pp. 3579–3583.
  • L. Devel, S. Garcia, B. Czarny, F. Beau, E. LaJeunesse, L. Vera, D. Georgiadis, E. Stura, and V. Dive, Insights from selective non-phosphinic inhibitors of MMP-12 tailored to fit with an S1’ loop canonical conformation, J. Biol. Chem. 285 (2010), pp. 35900–35909. doi:10.1074/jbc.M110.139634.
  • S.K. Baidya, S. Banerjee, N. Adhikari, and T. Jha, Selective inhibitors of medium-size S1’ pocket matrix metalloproteinases: A stepping stone of future drug discovery, J. Med. Chem. 65 (2022), pp. 10709–10754. doi:10.1021/acs.jmedchem.1c01855.
  • N. Adhikari, A.K. Halder, S. Mallick, A. Saha, K.D. Saha, and T. Jha, Robust design of some selective matrix metalloproteinase-2 inhibitors over matrix metalloproteinase-9 through in silico/fragment-based lead identification and de novo lead modification: Syntheses and biological assays, Bioorg. Med. Chem. 24 (2016), pp. 4291–4309. doi:10.1016/j.bmc.2016.07.023.
  • A. Mukherjee, N. Adhikari, and T. Jha, A pentanoic acid derivative targeting matrix metalloproteinase-2 (MMP-2) induces apoptosis in a chronic myeloid leukemia cell line, Eur. J. Med. Chem. 141 (2017), pp. 37–50. doi:10.1016/j.ejmech.2017.09.052.
  • N. Adhikari, S.A. Amin, A. Saha, and T. Jha, Exploring in house glutamate inhibitors of matrix metalloproteinase-2 through validated robust chemico-biological quantitative approaches, Struct. Chem. 29 (2018), pp. 285–297. doi:10.1007/s11224-017-1028-6.
  • T. Jha, N. Adhikari, A. Saha, and S.A. Amin, Multiple molecular modelling studies on some derivatives and analogues of glutamic acid as matrix metalloproteinase-2 inhibitors, SAR QSAR Env. Res. 29 (2018), pp. 43–68. doi:10.1080/1062936X.2017.1406986.
  • N. Adhikari, S.A. Amin, A. Saha, and T. Jha, Understanding chemico‐biological interactions of glutamate MMP‐2 inhibitors through rigorous alignment‐dependent 3D‐QSAR analyses, ChemistrySelect 2 (2017), pp. 7888–7898. doi:10.1002/slct.201701330.
  • X.C. Cheng, Q. Wang, H. Fang, W. Tang, and W.F. Xu, Synthesis of new sulfonyl pyrrolidine derivatives as matrix metalloproteinase inhibitors, Bioorg. Med. Chem. 16 (2008), pp. 7932–7938. doi:10.1016/j.bmc.2008.07.073.
  • F. Augé, W. Hornebeck, M. Decarme, and J.Y. Laronze, Improved gelatinase a selectivity by novel zinc binding groups containing galardin derivatives, Bioorg. Med. Chem. Lett. 13 (2003), pp. 1783–1786. doi:10.1016/s0960-894x(03)00214-2.
  • J.F. Fisher and S. Mobashery, Recent advances in MMP inhibitor design, Cancer Metastasis Rev. 25 (2006), pp. 115–136. doi:10.1007/s10555-006-7894-9.
  • D. Kumar and S.P. Gupta, A quantitative structure-activity relationship study on some matrix metalloproteinase and collagenase inhibitors, Bioorg. Med. Chem. 11 (2003), pp. 421–426. doi:10.1016/s0968-0896(02)00438-8.
  • S.P. Gupta, V. Maheswaran, V. Pande, and D. Kumar, A comparative QSAR study on carbonic anhydrase and matrix metalloproteinase inhibition by sulfonylated amino acid hydroxamates, J. Enz. Inhib. Med. Chem. 18 (2003), pp. 7–13. doi:10.1080/1475636021000049735.
  • S.P. Gupta, D. Kumar, and S. Kumaran, A quantitative structure-activity relationship study of hydroxamate matrix metalloproteinase inhibitors derived from functionalized 4-aminoprolines, Bioorg. Med. Chem. 11 (2003), pp. 1975–1981. doi:10.1016/s0968-0896(03)00069-5.
  • C.A. Kontogiorgis, P. Papaioannou, and D.J. Hadjipavlou-Litina, Matrix metalloproteinase inhibitors: A review on pharmacophore mapping and (Q)sars results, Curr. Med. Chem. 12 (2005), pp. 339–355. doi:10.2174/0929867053363243.
  • R.P. Verma and C. Hansch, Matrix metalloproteinases (MMPs): Chemical-biological functions and (Q)SARs, Bioorg. Med. Chem. 15 (2007), pp. 2223–2268. doi:10.1016/j.bmc.2007.01.011.
  • ChemDraw ultra 5.0. Cambridge Soft Corporation, USA, 2010; software available at http://www.cambridgesoft.com.
  • Discovery studio 3.0 (DS 3.0). Accelrys Inc, CA, USA, 2015; software available at http://www.accelrys.com.
  • https://www.rcsb.org/as accessed in May 2023.
  • Schrodinger Suite. Schrodinger LLC, New York, USA, 2019.
  • P.K. Ojha and K. Roy, Comparative QSARs for antimalarial endochins: Importance of descriptor-thinning and noise reduction prior to feature selection, Chemomet. Intell. Lab. Sys. 109 (2011), pp. 146–161. doi:10.1016/j.chemolab.2011.08.007.
  • A. Golbraikh and A. Tropsha, Beware of q2! J. Mol. Graph. Model. 20 (2002), pp. 269–276. doi:10.1016/S1093-3263(01)00123-1.
  • SYBYL-X 2.0 software. Tripos Inc, St. Louis. MO, USA, 2012; software available at http://www.certara.com.
  • S. Banerjee, S. Dumawat, T. Jha, G. Lanka, N. Adhikari, and B. Ghosh, Fragment-based structural exploration and chemico-biological interaction study of HDAC3 inhibitors through non-linear pattern recognition, chemical space, and binding mode of interaction analysis, J. Biomol. Struct. Dyn. (2023), pp. 1–23. doi:10.1080/07391102.2023.2248509.
  • N. Grønbech-Jensen and O. Farago, Constant pressure and temperature discrete-time Langevin molecular dynamics, J. Chem. Phys. 141 (2014), pp. 194108. PMID: 25416875. doi:10.1063/1.4901303.
  • V. Guttikonda, D. Raavi, S.K. Maadwar, and D.R. Gade, Molecular insights of benzodipyrazole as CDK2 inhibitors: Combined molecular docking, molecular dynamics, and 3D QSAR studies, J. Recept. Signal Transduct. Res. 35 (2015), pp. 439–449. doi:10.3109/10799893.2015.1018433.
  • S. Genheden and U. Ryde, The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities, Expert Opin. Drug Discov. 10 (2015), pp. 449–461. doi:10.1517/17460441.2015.1032936.
  • R.C. Rizzo, S. Toba, and I.D. Kuntz, A molecular basis for the selectivity of thiadiazole urea inhibitors with stromelysin-1 and gelatinase-A from generalized born molecular dynamics simulations, J. Med. Chem. 47 (2004), pp. 3065–3074. doi:10.1021/jm030570k.
  • E. Papaleo, P. Mereghetti, P. Fantucci, R. Grandori, and L. De Gioia, Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: The myoglobin case, J. Mol. Graph. Model. 27 (2009), pp. 889–899. doi:10.1016/j.jmgm.2009.01.006.
  • Groningen machine for chemical simulations. software available at https://www.gromacs.org.
  • H.J.C. Berendsen, D. van der Spoel, and R. van Drunen, GROMACS: A message-passing parallel molecular dynamics implementation, Comput. Phys. Commun. 1-2 (1995), pp. 43–56. doi:10.1016/0010-4655(95)00042-E.
  • I. Aier, P.K. Varadwaj, and U. Raj, Structural insights into conformational stability of both wild-type and mutant EZH2 receptor, Sci. Rep. 6 (2016), pp. 34984. doi:10.1038/srep34984.
  • https://github.com/rstudio/rstudio.
  • B.J. Grant, A.P. Rodrigues, K.M. ElSawy, J.A. McCammon, and L.S. Caves, Bio3d: An R package for the comparative analysis of protein structures, Bioinformatics 22 (2006), pp. 2695–2696. doi:10.1093/bioinformatics/btl461.
  • L.P. Kagami, G.M. Das Neves, L.F.S.M. Timmers, R.A. Caceres, and V.L. Eifler-Lima, Geo-measures: A PyMOL plugin for protein structure ensembles analysis, Comput. Biol. Chem. 87 (2020), pp. 107322. doi:10.1016/j.compbiolchem.2020.107322.
  • https://github.com/schrodinger/pymol-open-source.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.