79
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Quantitative structure-property relationship modelling for predicting retention indices of essential oils based on an improved horse herd optimization algorithm

ORCID Icon, , ORCID Icon, ORCID Icon, &
Pages 831-846 | Received 12 Aug 2023, Accepted 17 Sep 2023, Published online: 27 Oct 2023

References

  • D.B. Resende, H.H.D.A. Martins, T.B.D. Souza, D.T. Carvalho, R.H. Piccoli, R.F. Schwan, and D.R. Dias, Synthesis and in vitro evaluation of peracetyl and deacetyl glycosides of eugenol, isoeugenol and dihydroeugenol acting against food-contaminating bacteria, Food Chem. 237 (2017), pp. 1025–1029. doi:10.1016/j.foodchem.2017.06.056.
  • B. Tohidi, M. Rahimmalek, and A. Arzani, Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of thymus species collected from different regions of Iran, Food Chem. 220 (2017), pp. 153–161. doi:10.1016/j.foodchem.2016.09.203.
  • A. Al-Fakih, Z. Algamal, M. Lee, and M. Aziz, A sparse QSRR model for predicting retention indices of essential oils based on robust screening approach, SAR QSAR Environ. Res. 28 (2017), pp. 691–703. doi:10.1080/1062936X.2017.1375010.
  • P.R. Duchowicz, D.O. Bennardi, E.V. Ortiz, and N.C. Comelli, QSAR models for the fumigant activity prediction of essential oils, J. Mol. Graph. Model. 101 (2020), pp. 107751. doi:10.1016/j.jmgm.2020.107751.
  • L.-T. Qin, S.-S. Liu, F. Chen, Q.-F. Xiao, and Q.-S. Wu, Chemometric model for predicting retention indices of constituents of essential oils, Chemosphere 90 (2013), pp. 300–305. doi:10.1016/j.chemosphere.2012.07.010.
  • O.O. Okoh, A.P. Sadimenko, and A.J. Afolayan, Comparative evaluation of the antibacterial activities of the essential oils of Rosmarinus officinalis L. obtained by hydrodistillation and solvent free microwave extraction methods, Food Chem. 120 (2010), pp. 308–312. doi:10.1016/j.foodchem.2009.09.084.
  • S. Riahi, M.R. Ganjali, E. Pourbasheer, and P. Norouzi, QSRR study of GC retention indices of essential-oil compounds by multiple linear regression with a genetic algorithm, Chromatographia 67 (2008), pp. 917–922. doi:10.1365/s10337-008-0608-4.
  • T.A. Ibrahim, A.A. El-Hela, H.M. El-Hefnawy, A.M. Al-Taweel, and S. Perveen, Chemical composition and antimicrobial activities of essential oils of some coniferous plants cultivated in Egypt, Iran. J. Pharm. Res. 16 (2017), pp. 328–337.
  • S. Riahi, E. Pourbasheer, M.R. Ganjali, and P. Norouzi, Investigation of different linear and nonlinear chemometric methods for modeling of retention index of essential oil components: Concerns to support vector machine, J. Hazard. Mater. 166 (2009), pp. 853–859. doi:10.1016/j.jhazmat.2008.11.097.
  • J. Deng, B. He, D. He, and Z. Chen, A potential biopreservative: Chemical composition, antibacterial and hemolytic activities of leaves essential oil from Alpinia guinanensis, Ind. Crop. Prod. 94 (2016), pp. 281–287. doi:10.1016/j.indcrop.2016.09.004.
  • K. Fisher and C. Phillips, Potential antimicrobial uses of essential oils in food: Is citrus the answer? Trends. Food Sci. Technol. 19 (2008), pp. 156–164. doi:10.1016/j.tifs.2007.11.006.
  • A.M. Al-Fakih, Z.Y. Algamal, M.H. Lee, H.H. Abdallah, H. Maarof, and M. Aziz, Quantitative structure–activity relationship model for prediction study of corrosion inhibition efficiency using two-stage sparse multiple linear regression, J. Chemometr. 30 (2016), pp. 361–368. doi:10.1002/cem.2800.
  • A.G. Fragkaki, M.A. Koupparis, and C.G. Georgakopoulos, Quantitative structure–retention relationship study of α-, β1-, and β2-agonists using multiple linear regression and partial least-squares procedures, Anal. Chim. Acta 512 (2004), pp. 165–171. doi:10.1016/j.aca.2004.02.019.
  • C. Lu, W. Guo, and C. Yin, Quantitative structure-retention relationship study of the gas chromatographic retention indices of saturated esters on different stationary phases using novel topological indices, Anal. Chim. Acta 561 (2006), pp. 96–102. doi:10.1016/j.aca.2005.12.058.
  • M. Goodarzi, R. Jensen, and Y. Vander Heyden, QSRR modeling for diverse drugs using different feature selection methods coupled with linear and nonlinear regressions, J. Chromatogr. B 910 (2012), pp. 84–94. doi:10.1016/j.jchromb.2012.01.012.
  • T. Durcekova, K. Boronova, J. Mocak, J. Lehotay, and J. Cizmarik, QSRR models for potential local anaesthetic drugs using high performance liquid chromatography, J. Pharm. Biomed. Anal. 59 (2012), pp. 209–216. doi:10.1016/j.jpba.2011.09.035.
  • N. Kritikos, A. Tsantili-Kakoulidou, Y.L. Loukas, and Y. Dotsikas, Liquid chromatography coupled to quadrupole-time of flight tandem mass spectrometry based quantitative structure–retention relationships of amino acid analogues derivatized via n-propyl chloroformate mediated reaction, J. Chromatogr. A 1403 (2015), pp. 70–80. doi:10.1016/j.chroma.2015.05.028.
  • R. Gieleciak, D. Hager, and N.E. Heshka, Application of a quantitative structure retention relationship approach for the prediction of the two-dimensional gas chromatography retention times of polycyclic aromatic sulfur heterocycle compounds, J. Chromatogr. A 1437 (2016), pp. 191–202. doi:10.1016/j.chroma.2016.02.006.
  • S. Filipic, D. Ruzic, J. Vucicevic, K. Nikolic, and D. Agbaba, Quantitative structure-retention relationship of selected imidazoline derivatives on α1-acid glycoprotein column, J. Pharm. Biomed. Anal. 127 (2016), pp. 101–111. doi:10.1016/j.jpba.2016.02.053.
  • A. Hosseinalipour and R. Ghanbarzadeh, A novel approach for spam detection using horse herd optimization algorithm, Neural. Comput. Appl. 34 (2022), pp. 13091–13105. doi:10.1007/s00521-022-07148-x.
  • M.A. Awadallah, A.I. Hammouri, M.A. Al-Betar, M.S. Braik, and M.A. Elaziz, Binary horse herd optimization algorithm with crossover operators for feature selection, Comput. Biol. Med. 141 (2022), pp. 105152. doi:10.1016/j.compbiomed.2021.105152.
  • F. Conforti, F. Menichini, C. Formisano, D. Rigano, F. Senatore, N.A. Arnold, and F. Piozzi, Comparative chemical composition, free radical-scavenging and cytotoxic properties of essential oils of six Stachys species from different regions of the Mediterranean area, Food Chem. 116 (2009), pp. 898–905. doi:10.1016/j.foodchem.2009.03.044.
  • J. Luo, H. Chen, A.A. Heidari, Y. Xu, Q. Zhang, and C. Li, Multi-strategy boosted mutative whale-inspired optimization approaches, Appl. Math. Model. 73 (2019), pp. 109–123. doi:10.1016/j.apm.2019.03.046.
  • Y. Zhang, J. Wang, and H. Lu, Research and application of a novel combined model based on multiobjective optimization for multistep-ahead electric load forecasting, Energies 12 (2019), pp. 1931. doi:10.3390/en12101931.
  • D. Moldovan, Binary horse optimization algorithm for feature selection, Algorithms 15 (2022), pp. 156. doi:10.3390/a15050156.
  • F. MiarNaeimi, G. Azizyan, and M. Rashki, Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems, Knowledge-Based Syst. 213 (2021), pp. 106711. doi:10.1016/j.knosys.2020.106711.
  • S. Sarwar, M.A. Hafeez, M.Y. Javed, A.B. Asghar, and K. Ejsmont, A horse herd optimization algorithm (HOA)-based MPPT technique under partial and complex partial shading conditions, Energies 15 (2022), pp. 1880. doi:10.3390/en15051880.
  • E.A. Zaimoğlu, N. Yurtay, H. Demirci, and Y. Yurtay, A binary chaotic horse herd optimization algorithm for feature selection, Eng. Sci. Technol. 44 (2023), pp. 101453. doi:10.1016/j.jestch.2023.101453.
  • R. Anjali and G. Venkatesan, Optimization of mechanical properties and composition of M-sand and pet particle added concrete using hybrid deep neural network-horse herd optimization algorithm, Constr. Build. Mater. 347 (2022), pp. 128334. doi:10.1016/j.conbuildmat.2022.128334.
  • Y. He, F. Zhang, S. Mirjalili, and T. Zhang, Novel binary differential evolution algorithm based on taper-shaped transfer functions for binary optimization problems, Swarm Evol. Comput. 69 (2022), pp. 101022. doi:10.1016/j.swevo.2021.101022.
  • M.J. Islam, X. Li, and Y. Mei, A time-varying transfer function for balancing the exploration and exploitation ability of a binary PSO, Appl. Soft Comput. 59 (2017), pp. 182–196. doi:10.1016/j.asoc.2017.04.050.
  • S. Mirjalili and A. Lewis, S-shaped versus V-shaped transfer functions for binary particle swarm optimization, Swarm Evol. Comput. 9 (2013), pp. 1–14. doi:10.1016/j.swevo.2012.09.002.
  • S.-S. Guo, J.-S. Wang, and M.-W. Guo, Z-shaped transfer functions for binary particle swarm optimization algorithm, Comput. Intell. Neurosci. 2020 (2020), pp. 6502807. doi:10.1155/2020/6502807.
  • Z.Y. Algamal and M.H. Lee, A new adaptive L1-norm for optimal descriptor selection of high-dimensional QSAR classification model for anti-hepatitis C virus activity of thiourea derivatives, SAR QSAR Environ. Res. 28 (2017), pp. 75–90. doi:10.1080/1062936X.2017.1278618.
  • Y. Kim, H. Choi, and H.-S. Oh, Smoothly clipped absolute deviation on high dimensions, J. Am. Stat. Assoc. 103 (2008), pp. 1665–1673. doi:10.1198/016214508000001066.
  • Z.Y. Algamal, M.K. Qasim, M.H. Lee, and H.T. Mohammad Ali, High-dimensional QSAR/QSPR classification modeling based on improving pigeon optimization algorithm, Chemom. Intell. Lab. Syst. 206 (2020), pp. 104170. doi:10.1016/j.chemolab.2020.104170.
  • O.S. Qasim, N.A. Al-Thanoon, and Z.Y. Algamal, Feature selection based on chaotic binary black hole algorithm for data classification, Chemom. Intell. Lab. Syst. 204 (2020), pp. 104104. doi:10.1016/j.chemolab.2020.104104.
  • O.M. Ismael, O.S. Qasim, and Z.Y. Algamal, Improving Harris hawks optimization algorithm for hyperparameters estimation and feature selection in v-support vector regression based on opposition-based learning, J. Chemom. 34 (2020), pp. e3311. doi:10.1002/cem.3311.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.