118
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Priority list of potential endocrine-disrupting chemicals in food chemical contaminants: a docking study and in vitro/epidemiological evidence integration

, , , , , , , ORCID Icon & ORCID Icon show all
Pages 847-866 | Received 05 Aug 2023, Accepted 05 Oct 2023, Published online: 03 Nov 2023

References

  • L. Connolly, E. Ropstad, and S. Verhaegen, In vitro bioassays for the study of endocrine-disrupting food additives and contaminants, Trends Anal. Chem. 30 (2011), pp. 227–238. doi:10.1016/j.trac.2010.10.009.
  • M. Di Criscio, J.E. Lodahl, A. Stamatakis, E. Kitraki, I. Bakoyiannis, A. Repouskou, C.-G. Bornehag, C. Gennings, D. Lupu, and J. Rüegg, A human-relevant mixture of endocrine disrupting chemicals induces changes in hippocampal DNA methylation correlating with hyperactive behavior in male mice, Chemosphere 313 (2023), pp. 137633. doi:10.1016/j.chemosphere.2022.137633.
  • E.C. Plunk and S.M. Richards, Endocrine-disrupting air pollutants and their effects on the hypothalamus-pituitary-gonadal axis, Int. J. Mol. Sci. 21 (2020), pp. 9191. doi:10.3390/ijms21239191.
  • A.D. Benninghoff, W.H. Bisson, D.C. Koch, D.J. Ehresman, S.K. Kolluri, and D.E. Williams, Estrogen-like activity of perfluoroalkyl acids in vivo and interaction with human and rainbow trout estrogen receptors in vitro, Toxicol. Sci. 120 (2011), pp. 42–58. doi:10.1093/toxsci/kfq379.
  • B. Lal, M.K. Sarang, and P. Kumar, Malathion exposure induces the endocrine disruption and growth retardation in the catfish, Clarias batrachus (Linn.), Gen. Comp. Endocrinol. 181 (2013), pp. 139–145. doi:10.1016/j.ygcen.2012.11.004.
  • S. Lecomte, F. Demay, T.H. Pham, S. Moulis, T. Efstathiou, F. Chalmel, and F. Pakdel, Deciphering the molecular mechanisms sustaining the estrogenic activity of the two major dietary compounds zearalenone and apigenin in ER-positive breast cancer cell lines, Nutrients 11 (2019), pp. 237. doi:10.3390/nu11020237.
  • J.W. Lee, K. Choi, K. Park, C. Seong, S.D. Yu, and P. Kim, Adverse effects of perfluoroalkyl acids on fish and other aquatic organisms: A review, Sci. Tot. Environ. 707 (2020), pp. 135334. doi:10.1016/j.scitotenv.2019.135334.
  • J.R. Rochester, Bisphenol A and human health: A review of the literature, Reprod. Toxicol. 42 (2013), pp. 132–155. doi:10.1016/j.reprotox.2013.08.008.
  • P. Tomkins, M. Saaristo, M. Allinson, and B.B.M. Wong, Exposure to an agricultural contaminant, 17β-trenbolone, impairs female mate choice in a freshwater fish, Aquatic Toxicol. 170 (2016), pp. 365–370. doi:10.1016/j.aquatox.2015.09.019.
  • M.I. Ahmad, A. Usman, and M. Ahmad, Computational study involving identification of endocrine disrupting potential of herbicides: Its implication in TDS and cancer progression in CRPC patients, Chemosphere 173 (2017), pp. 395–403. doi:10.1016/j.chemosphere.2017.01.054.
  • J. Devillers, E. Bro, and F. Millot, Prediction of the endocrine disruption profile of pesticides, SAR QSAR Environ. Res. 26 (2015), pp. 831–852. doi:10.1080/1062936x.2015.1104809.
  • C. Song, Q. Wu, J. Sun, R. Zhang, J. Chen, X. Wang, L. Fang, Z. Liu, X. Shan, and Y. Yin, In silico evaluation of interactions between antibiotics in aquaculture and nuclear hormone receptors, Aquacult. Env. Interac. 13 (2021), pp. 389–397. doi:10.3354/aei00414.
  • S. Yu, J. Ren, Z. Lv, R. Li, Y. Zhong, W. Yao, and J. Yuan, Prediction of the endocrine-disrupting ability of 49 per- and polyfluoroalkyl substances: In silico and epidemiological evidence, Chemosphere 290 (2022), pp. 133366. doi:10.1016/j.chemosphere.2021.133366.
  • OECD, Revised Guidance Document 150 on Standardised test Guidelines for Evaluating Chemicals for Endocrine Disruption, No. 150, OECD Series on Testing and Assessment, OECD Publishing, Paris, 2018.
  • D. Trisciuzzi, D. Alberga, K. Mansouri, R. Judson, S. Cellamare, M. Catto, A. Carotti, E. Benfenati, E. Novellino, G.F. Mangiatordi, and O. Nicolotti, Docking-based classification models for exploratory toxicology studies on high-quality estrogenic experimental data, Future Med. Chem. 7 (2015), pp. 1921–1936. doi:10.4155/fmc.15.103.
  • K. Mansouri, A. Abdelaziz, A. Rybacka, A. Roncaglioni, A. Tropsha, A. Varnek, A. Zakharov, A. Worth, M. Richard Ann, M. Grulke Christopher, D. Trisciuzzi, D. Fourches, D. Horvath, E. Benfenati, E. Muratov, B. Wedebye Eva, F. Grisoni, F. Mangiatordi Giuseppe, M. Incisivo Giuseppina, H. Hong, W. Ng Hui, V. Tetko Igor, I. Balabin, J. Kancherla, J. Shen, J. Burton, M. Nicklaus, M. Cassotti, G. Nikolov Nikolai, O. Nicolotti, L. Andersson Patrik, Q. Zang, R. Politi, D. Beger Richard, R. Todeschini, R. Huang, S. Farag, A. Rosenberg Sine, S. Slavov, X. Hu, and S. Judson Richard, CERAPP: Collaborative estrogen receptor activity prediction project, Environ. Health Perspect. 124 (2016), pp. 1023–1033. doi:10.1289/ehp.1510267.
  • K. Kolšek, J. Mavri, M. Sollner Dolenc, S. Gobec, and S. Turk, Endocrine Disruptome—An open source prediction tool for assessing endocrine disruption potential through nuclear receptor binding, J. Chem. Inf. Model. 54 (2014), pp. 1254–1267. doi:10.1021/ci400649p.
  • O. Trott and A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010), pp. 455–461. doi:10.1002/jcc.21334.
  • E. Diamanti-Kandarakis, J.P. Bourguignon, L.C. Giudice, R. Hauser, G.S. Prins, A.M. Soto, R.T. Zoeller, and A.C. Gore, Endocrine-disrupting chemicals: An endocrine society scientific statement, Endocr. Rev. 30 (2009), pp. 293–342. doi:10.1210/er.2009-0002.
  • F. Grün and B. Blumberg, Environmental obesogens: Organotins and endocrine disruption via nuclear receptor signaling, Endocrinology 147 (2006), pp. S50–S55. doi:10.1210/en.2005-1129.
  • L.K. Akinola, A. Uzairu, G.A. Shallangwa, and S.E. Abechi, Theoretical study on endocrine disrupting effects of polychlorinated dibenzo-p-dioxins using molecular docking simulation, J. Appl. Toxicol. 41 (2021), pp. 233–246. doi:10.1002/jat.4039.
  • A. Plošnik, M. Vračko, and J. Mavri, Computational study of binding affinity to nuclear receptors for some cosmetic ingredients, Chemosphere 135 (2015), pp. 325–334. doi:10.1016/j.chemosphere.2015.04.075.
  • A. Usman and M. Ahmad, Computational study suggesting reconsideration of BPA analogues based on their endocrine disrupting potential estimated by binding affinities to nuclear receptors, Ecotoxicol. Environ. Saf. 171 (2019), pp. 154–161. doi:10.1016/j.ecoenv.2018.12.071.
  • X. Wang, R. Zhang, C. Song, and D. Crump, Computational evaluation of interactions between organophosphate esters and nuclear hormone receptors, Environ. Res. 182 (2020), pp. 108982. doi:10.1016/j.envres.2019.108982.
  • Y. Zhong, J. Ren, R. Li, Y. Xuan, W. Yao, Q. Yang, Y. Gan, S. Yu, and J. Yuan, Prediction of the endocrine disruption profile of fluorinated biphenyls and analogues: An in silico study, Chemosphere 314 (2023), pp. 137701. doi:10.1016/j.chemosphere.2022.137701.
  • P. Pérez-Ortega, F.J. Lara-Ortega, B. Gilbert-López, D. Moreno-González, J.F. García-Reyes, and A. Molina-Díaz, Screening of over 600 pesticides, veterinary drugs, food-packaging contaminants, mycotoxins, and other chemicals in food by ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS), Food Anal. Method. 10 (2017), pp. 1216–1244. doi:10.1007/s12161-016-0678-0.
  • P. Ruiz, A. Sack, M. Wampole, S. Bobst, and M. Vracko, Integration of in silico methods and computational systems biology to explore endocrine-disrupting chemical binding with nuclear hormone receptors, Chemosphere 178 (2017), pp. 99–109. doi:10.1016/j.chemosphere.2017.03.026.
  • A.J. Williams, C.M. Grulke, J. Edwards, A.D. McEachran, K. Mansouri, N.C. Baker, G. Patlewicz, I. Shah, J.F. Wambaugh, R.S. Judson, and A.M. Richard, The CompTox chemistry dashboard: A community data resource for environmental chemistry, J. Cheminform. 9 (2017), pp. 61. doi:10.1186/s13321-017-0247-6.
  • A.P. Davis, T.C. Wiegers, R.J. Johnson, D. Sciaky, J. Wiegers, and C.J. Mattingly, Comparative toxicogenomics database (CTD): Update 2023, Nucleic Acids Res. 51 (2023), pp. D1257–D1262. doi:10.1093/nar/gkac833.
  • S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B.A. Shoemaker, P.A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, and E.E. Bolton, PubChem in 2019: New data content and improved web interfaces, Nucleic Acids Res. 49 (2021), pp. D1388–D1395. doi:10.1093/nar/gkaa971.
  • G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, and A.J. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem. 30 (2009), pp. 2785–2791. doi:10.1002/jcc.21256.
  • T.A. Blizzard, F. DiNinno, J.D. Morgan, H.Y. Chen, J.Y. Wu, S. Kim, W. Chan, E.T. Birzin, Y.T. Yang, L.-Y. Pai, P.M.D. Fitzgerald, N. Sharma, Y. Li, Z. Zhang, E.C. Hayes, C.A. DaSilva, W. Tang, S.P. Rohrer, J.M. Schaeffer, and M.L. Hammond, Estrogen receptor ligands. Part 9: Dihydrobenzoxathiin SERAMs with alkyl substituted pyrrolidine side chains and linkers, Bioorg. Med. Chem. Lett. 15 (2005), pp. 107–113. doi:10.1016/j.bmcl.2004.10.036.
  • C.B. Duke III, A. Jones, C.E. Bohl, J.T. Dalton, and D.D. Miller, Unexpected binding orientation of bulky-b-ring anti-androgens and implications for future drug targets, J. Med. Chem. 54 (2011), pp. 3973–3976. doi:10.1021/jm2000097.
  • T. Hasui, N. Matsunaga, T. Ora, N. Ohyabu, N. Nishigaki, Y. Imura, Y. Igata, H. Matsui, T. Motoyaji, T. Tanaka, N. Habuka, S. Sogabe, M. Ono, C.S. Siedem, T.P. Tang, C. Gauthier, L.A. De Meese, S.A. Boyd, and S. Fukumoto, Identification of benzoxazin-3-one derivatives as novel, potent, and selective nonsteroidal mineralocorticoid receptor antagonists, J. Med. Chem. 54 (2011), pp. 8616–8631. doi:10.1021/jm2011645.
  • A.K. Shiau, D. Barstad, J.T. Radek, M.J. Meyers, K.W. Nettles, B.S. Katzenellenbogen, J.A. Katzenellenbogen, D.A. Agard, and G.L. Greene, Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism, Nat. Struct. Biol. 9 (2002), pp. 359–364. doi:10.1038/nsb787.
  • A.C. Wallace, R.A. Laskowski, and J.M. Thornton, LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions, Protein Eng. Des. Sel. 8 (1995), pp. 127–134. doi:10.1093/protein/8.2.127.
  • S. Agarwal, A. Dixit, and S.K. Kashaw, Ligand and structure based virtual screening of chemical databases to explore potent small molecule inhibitors against breast invasive carcinoma using recent computational technologies, J. Mol. Graph. Model. 98 (2020), pp. 107591. doi:10.1016/j.jmgm.2020.107591.
  • G. Auzou, J. Fagart, A. Souque, C. Hellal-Lévy, J.-M. Wurtz, D. Moras, and M.-E. Rafestin-Oblin, A single amino acid mutation of Ala-773 in the mineralocorticoid receptor confers agonist properties to 11β-substituted spirolactones, Mol. Pharmacol. 58 (2000), pp. 684–691. doi:10.1124/mol.58.4.684.
  • J. Fagart, C. Seguin, G.M. Pinon, and M.-E. Rafestin-Oblin, The Met852 residue is a key organizer of the ligand-binding cavity of the human mineralocorticoid receptor, Mol. Pharmacol. 67 (2005), pp. 1714. doi:10.1124/mol.104.010710.
  • J. Fagart, J.M. Wurtz, A. Souque, C. Hellal-Levy, D. Moras, and M.E. Rafestin-Oblin, Antagonism in the human mineralocorticoid receptor, EMBO J. 17 (1998), pp. 3317–3325. 10.1093/emboj/17.12.3317.
  • S.R. Lee, Y.J. Park, Y.B. Han, J.C. Lee, S. Lee, H.-J. Park, H.-J. Lee, and K.H. Kim, Isoamericanoic acid B from Acer tegmentosum as a potential phytoestrogen, Nutrients 10 (2018), pp. 1915. doi:10.3390/nu10121915.
  • M. Rehan, E. Ahmad, and M.A. Beg, Structural binding perspectives of a major tobacco alkaloid, nicotine, and its metabolite cotinine with sex-steroid nuclear receptors, J. Appl. Toxicol. 40 (2020), pp. 1410–1420. doi:10.1002/jat.3993.
  • G. Shao, J. Bao, X. Pan, X. He, Y. Qi, and J.Z.H. Zhang, Computational analysis of residue-specific binding free energies of androgen receptor to ligands, Front. Mol. Biosci. 8 (2021), pp. 646524. 10.3389/fmolb.2021.646524.
  • L.C. Alonso and R.L. Rosenfield, Oestrogens and puberty, Best Pract. Res. Clin. Endocrinol. Metab. 16 (2002), pp. 13–30. doi:10.1053/beem.2002.0177.
  • R.A. Rey, The role of androgen signaling in male sexual development at puberty, Endocrinology 162 (2020), pp. 1–16. doi:10.1210/endocr/bqaa215.
  • S.L. Kristensen, C.H. Ramlau-Hansen, E. Ernst, S.F. Olsen, J.P. Bonde, A. Vested, T.I. Halldorsson, G. Becher, L.S. Haug, and G. Toft, Long-term effects of prenatal exposure to perfluoroalkyl substances on female reproduction, Hum. Reprod. 28 (2013), pp. 3337–3348. doi:10.1093/humrep/det382.
  • A. Ernst, N. Brix, L.L.B. Lauridsen, J. Olsen, E.T. Parner, Z. Liew, L.H. Olsen, and C.H. Ramlau-Hansen, Exposure to perfluoroalkyl substances during fetal life and pubertal development in boys and girls from the Danish national birth cohort, Environ. Health Perspect. 127 (2019), pp. 017004. doi:10.1289/EHP3567.
  • G.L. Bakris, R. Agarwal, S.D. Anker, B. Pitt, L.M. Ruilope, P. Rossing, P. Kolkhof, C. Nowack, P. Schloemer, A. Joseph, G. Filippatos, and F.-D. Investigators, Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes, N. Engl. J. Med. 383 (2020), pp. 2219–2229. doi:10.1056/NEJMoa2025845.
  • A.P. Davel, I.J. Anwar, and I.Z. Jaffe, The endothelial mineralocorticoid receptor: Mediator of the switch from vascular health to disease, Curr. Opin. Nephrol. Hypertens. 26 (2017), pp. 97–104. doi:10.1097/MNH.0000000000000306.
  • V. Patel, A. Joharapurkar, and M. Jain, Role of mineralocorticoid receptor antagonists in kidney diseases, Drug Dev. Res. 82 (2021), pp. 341–363. doi:10.1002/ddr.21760.
  • S.V. Shenoy, S.P. Nagaraju, M.V. Bhojaraja, R.A. Prabhu, D. Rangaswamy, and I.R. Rao, Sodium-glucose cotransporter-2 inhibitors and non-steroidal mineralocorticoid receptor antagonists: Ushering in a new era of nephroprotection beyond renin-angiotensin system blockade, Nephrology 26 (2021), pp. 858–871. doi:10.1111/nep.13917.
  • M. Thuzar and M. Stowasser, The mineralocorticoid receptor—An emerging player in metabolic syndrome?, J. Hum. Hypertens. 35 (2021), pp. 117–123. doi:10.1038/s41371-020-00467-3.
  • D.J. Watkins, J. Josson, B. Elston, S.M. Bartell, H.M. Shin, V.M. Vieira, D.A. Savitz, T. Fletcher, and G.A. Wellenius, Exposure to perfluoroalkyl acids and markers of kidney function among children and adolescents living near a chemical plant, Environ. Health Perspect. 121 (2013), pp. 625–630. doi:10.1289/ehp.1205838.
  • X.D. Qin, Z. Qian, M.G. Vaughn, J. Huang, P. Ward, X.W. Zeng, Y. Zhou, Y. Zhu, P. Yuan, M. Li, Z. Bai, G. Paul, Y.T. Hao, W. Chen, P.C. Chen, G.H. Dong, and Y.L. Lee, Positive associations of serum perfluoroalkyl substances with uric acid and hyperuricemia in children from Taiwan, Environ. Pollut. 212 (2016), pp. 519–524. doi:10.1016/j.envpol.2016.02.050.
  • M. Spatlen, F. Perera, S. Lederman, M. Robinson, K. Kannan, J. Herbstman, and L. Trasande, The association between perfluoroalkyl substances and lipids in cord blood, Environ. Epidemiol. 3 (2019), pp. 43–54. doi:10.1210/clinem/dgz024.
  • A.P. Starling, C. Liu, G. Shen, I.V. Yang, K. Kechris, S.J. Borengasser, K.E. Boyle, W. Zhang, H.A. Smith, A.M. Calafat, R.F. Hamman, J.L. Adgate, and D. Dabelea, Prenatal exposure to per- and polyfluoroalkyl substances, umbilical cord blood DNA methylation, and cardio-metabolic indicators in newborns: The healthy start study, Environ. Health Perspect. 128 (2020), pp. 127014. doi:10.1289/EHP6888.
  • R.B. Jain and A. Ducatman, Associations between lipid/lipoprotein levels and perfluoroalkyl substances among US children aged 6–11 years, Environ. Pollut. 243 (2018), pp. 1–8. doi:10.1016/j.envpol.2018.08.060.
  • M.S. Bloom, S. Commodore, P.L. Ferguson, B. Neelon, J.L. Pearce, A. Baumer, R.B. Newman, W. Grobman, A. Tita, J. Roberts, D. Skupski, K. Palomares, M. Nageotte, K. Kannan, C. Zhang, R. Wapner, J.E. Vena, and K.J. Hunt, Association between gestational PFAS exposure and children’s adiposity in a diverse population, Environ. Res. 203 (2022), pp. 111820. doi:10.1016/j.envres.2021.111820.
  • J.M. Braun, A. Chen, M.E. Romano, A.M. Calafat, G.M. Webster, K. Yolton, and B.P. Lanphear, Prenatal perfluoroalkyl substance exposure and child adiposity at 8 years of age: The HOME study, Obesity (Silver Spring) 24 (2016), pp. 231–237. doi:10.1002/oby.21258.
  • M. Maisonet, M.L. Terrell, M.A. McGeehin, K.Y. Christensen, A. Holmes, A.M. Calafat, and M. Marcus, Maternal concentrations of polyfluoroalkyl compounds during pregnancy and fetal and postnatal growth in British girls, Environ. Health Perspect. 120 (2012), pp. 1432–1437. doi:10.1289/ehp.1003096.
  • S. Itoh, K. Yamazaki, S. Suyama, A. Ikeda-Araki, C. Miyashita, Y. Ait Bamai, S. Kobayashi, H. Masuda, T. Yamaguchi, H. Goudarzi, E. Okada, I. Kashino, T. Saito, and R. Kishi, The association between prenatal perfluoroalkyl substance exposure and symptoms of attention-deficit/hyperactivity disorder in 8-year-old children and the mediating role of thyroid hormones in the Hokkaido study, Environ. Int. 159 (2022), pp. 107026. doi:10.1016/j.envint.2021.107026.
  • Q. Yao, A. Vinturache, X. Lei, Z. Wang, C. Pan, R. Shi, T. Yuan, Y. Gao, and Y. Tian, Prenatal exposure to per- and polyfluoroalkyl substances, fetal thyroid hormones, and infant neurodevelopment, Environ. Res. 206 (2022), pp. 112561. doi:10.1016/j.envres.2021.112561.
  • F. Coperchini, O. Awwad, M. Rotondi, F. Santini, M. Imbriani, and L. Chiovato, Thyroid disruption by perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), J. Endocrinol. Invest. 40 (2017), pp. 105–121. doi:10.1007/s40618-016-0572-z.
  • F. Coperchini, L. Croce, G. Ricci, F. Magri, M. Rotondi, M. Imbriani, and L. Chiovato, Thyroid disrupting effects of old and new generation PFAS, Front. Endocrinol. 11 (2020), pp. 612320. doi:10.3389/fendo.2020.612320.
  • V. Ballesteros, O. Costa, C. Iñiguez, T. Fletcher, F. Ballester, and M.-J. Lopez-Espinosa, Exposure to perfluoroalkyl substances and thyroid function in pregnant women and children: A systematic review of epidemiologic studies, Environ. Int. 99 (2017), pp. 15–28. doi:10.1016/j.envint.2016.10.015.
  • E.V. Preston, T.F. Webster, E. Oken, B. Claus Henn, M.D. McClean, S.L. Rifas-Shiman, E.N. Pearce, L.E. Braverman, A.M. Calafat, X. Ye, and S.K. Sagiv, Maternal plasma per- and polyfluoroalkyl substance concentrations in early pregnancy and maternal and neonatal thyroid function in a prospective birth cohort: Project Viva (USA), Environ. Health Perspect. 126 (2018), pp. 027013. doi:10.1289/ehp2534.
  • E.V. Preston, T.F. Webster, B. Claus Henn, M.D. McClean, C. Gennings, E. Oken, S.L. Rifas-Shiman, E.N. Pearce, A.M. Calafat, A.F. Fleisch, and S.K. Sagiv, Prenatal exposure to per- and polyfluoroalkyl substances and maternal and neonatal thyroid function in the Project Viva cohort: A mixtures approach, Environ. Int. 139 (2020), pp. 105728. doi:10.1016/j.envint.2020.105728.
  • S. Kim, K. Choi, K. Ji, J. Seo, Y. Kho, J. Park, S. Kim, S. Park, I. Hwang, J. Jeon, H. Yang, and J.P. Giesy, Trans-placental transfer of thirteen perfluorinated compounds and relations with fetal thyroid hormones, Environ. Sci. Technol. 45 (2011), pp. 7465–7472. doi:10.1021/es202408a.
  • M.-J. Lopez-Espinosa, D. Mondal, B. Armstrong, M.S. Bloom, and T. Fletcher, Thyroid function and perfluoroalkyl acids in children living near a chemical plant, Environ. Health Perspect. 120 (2012), pp. 1036–1041. doi:10.1289/ehp.1104370.
  • A.M. Vuong, G.M. Webster, K. Yolton, A.M. Calafat, G. Muckle, B.P. Lanphear, and A. Chen, Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) and neurobehavior in US children through 8 years of age: The HOME study, Environ. Res. 195 (2021), pp. 110825. doi:10.1016/j.envres.2021.110825.
  • J. Oh, D.H. Bennett, A.M. Calafat, D. Tancredi, D.L. Roa, R.J. Schmidt, I. Hertz-Picciotto, and H.M. Shin, Prenatal exposure to per- and polyfluoroalkyl substances in association with autism spectrum disorder in the MARBLES study, Environ. Int. 147 (2021), pp. 106328. doi:10.1016/j.envint.2020.106328.
  • J. Oh, R.J. Schmidt, D. Tancredi, A.M. Calafat, D.L. Roa, I. Hertz-Picciotto, and H.M. Shin, Prenatal exposure to per- and polyfluoroalkyl substances and cognitive development in infancy and toddlerhood, Environ. Res. 196 (2021), pp. 110939. doi:10.1016/j.envres.2021.110939.
  • C.R. Stein and D.A. Savitz, Serum perfluorinated compound concentration and attention deficit/hyperactivity disorder in children 5–18 years of age, Environ. Health Perspect. 119 (2011), pp. 1466–1471. doi:10.1289/ehp.1003538.
  • A.M. Vuong, K. Yolton, G.M. Webster, A. Sjödin, A.M. Calafat, J.M. Braun, K.N. Dietrich, B.P. Lanphear, and A. Chen, Prenatal polybrominated diphenyl ether and perfluoroalkyl substance exposures and executive function in school-age children, Environ. Res. 147 (2016), pp. 556–564. doi:10.1016/j.envres.2016.01.008.
  • K. Hoffman, T.F. Webster, M.G. Weisskopf, J. Weinberg, and V.M. Vieira, Exposure to polyfluoroalkyl chemicals and attention deficit/hyperactivity disorder in U.S. children 12–15 years of age, Environ. Health Perspect. 118 (2010), pp. 1762–1767. doi:10.1289/ehp.1001898.
  • Z. Liew, B. Ritz, O.S.V. Ehrenstein, B.H. Bech, E.A. Nohr, C. Fei, R. Bossi, T.B. Henriksen, E.C. Bonefeld-Jørgensen, and J. Olsen, Attention deficit/hyperactivity disorder and childhood autism in association with prenatal exposure to perfluoroalkyl substances: A nested case–control study in the Danish national birth cohort, Environ. Health Perspect. 123 (2015), pp. 367–373. doi:10.1289/ehp.1408412.
  • M. Strøm, S. Hansen, S.F. Olsen, L.S. Haug, P. Rantakokko, H. Kiviranta, and T.I. Halldorsson, Persistent organic pollutants measured in maternal serum and offspring neurodevelopmental outcomes–a prospective study with long-term follow-up, Environ. Int. 68 (2014), pp. 41–48. doi:10.1016/j.envint.2014.03.002.
  • D.H. Kim, U.J. Kim, H.Y. Kim, S.D. Choi, and J.E. Oh, Perfluoroalkyl substances in serum from South Korean infants with congenital hypothyroidism and healthy infants–its relationship with thyroid hormones, Environ. Res. 147 (2016), pp. 399–404. doi:10.1016/j.envres.2016.02.037.
  • T.T. Schug, R. Abagyan, B. Blumberg, T.J. Collins, D. Crews, P.L. DeFur, S.M. Dickerson, T.M. Edwards, A.C. Gore, L.J. Guillette, T. Hayes, J.J. Heindel, A. Moores, H.B. Patisaul, T.L. Tal, K.A. Thayer, L.N. Vandenberg, J. Warner, C.S. Watson, F.S. Saal, R.T. Zoeller, K.P. O’Brien, and J.P. Myers, Designing endocrine disruption out of the next generation of chemicals, Green Chem. 15 (2013), pp. 181–198. doi:10.1039/c2gc35055f.
  • P. Catanuto, S. Doublier, E. Lupia, A. Fornoni, M. Berho, M. Karl, G.E. Striker, X. Xia, and S. Elliot, 17 β-estradiol and tamoxifen upregulate estrogen receptor β expression and control podocyte signaling pathways in a model of type 2 diabetes, Kidney Int. 75 (2009), pp. 1194–1201. doi:10.1038/ki.2009.69.
  • S.V. Dangudubiyyam, J.S. Mishra, H. Zhao, and S. Kumar, Perfluorooctane sulfonic acid (PFOS) exposure during pregnancy increases blood pressure and impairs vascular relaxation mechanisms in the adult offspring, Reprod. Toxicol. 98 (2020), pp. 165–173. doi:10.1016/j.reprotox.2020.09.008.
  • X. Han, L. Meng, G. Zhang, Y. Li, Y. Shi, Q. Zhang, and G. Jiang, Exposure to novel and legacy per- and polyfluoroalkyl substances (PFASs) and associations with type 2 diabetes: A case-control study in east China, Environ. Int. 156 (2021), pp. 106637. doi:10.1016/j.envint.2021.106637.
  • R. Krysiak, B. Marek, and B. Okopień, Inhibitory effect of carbamazepine on hypotensive action of spironolactone in primary aldosteronism, Endokrynol. Pol. 60 (2009), pp. 52–55.
  • G. Pitter, M. Zare Jeddi, G. Barbieri, M. Gion, A.S.C. Fabricio, F. Daprà, F. Russo, T. Fletcher, and C. Canova, Perfluoroalkyl substances are associated with elevated blood pressure and hypertension in highly exposed young adults, Environ. Health 19 (2020), pp. 102. doi:10.1186/s12940-020-00656-0.
  • Q. Sun, G. Zong, D. Valvi, F. Nielsen, B. Coull, and P. Grandjean, Plasma concentrations of perfluoroalkyl substances and risk of type 2 diabetes: A prospective investigation among U.S. women, Environ. Health Perspect. 126 (2018), pp. 037001. doi:10.1289/EHP2619.
  • J.E. Chambers, H. Greim, R.J. Kendall, H. Segner, R.M. Sharpe, and G. Van Der Kraak, Human and ecological risk assessment of a crop protection chemical: A case study with the azole fungicide epoxiconazole, Crit. Rev. Toxicol. 44 (2014), pp. 176–210. doi:10.3109/10408444.2013.855163.
  • T. Zhan, S. Cui, X. Liu, C. Zhang, Y.-M.M. Huang, and S. Zhuang, Enhanced disrupting effect of benzophenone-1 chlorination byproducts to the androgen receptor: Cell-based assays and gaussian accelerated molecular dynamics simulations, Chem. Res. Toxicol. 34 (2021), pp. 1140–1149. doi:10.1021/acs.chemrestox.1c00023.
  • H. Cho, H. Gim, H. Li, L. Subedi, S. Kim, J. Ryu, and R. Jeon, Structure–activity relationship of phytoestrogen analogs as ERα/β agonists with neuroprotective activities, Chem. Pharm. Bull. 69 (2021), pp. 99–105. doi:10.1248/cpb.c20-00706.
  • L. Amazit, F. Le Billan, P. Kolkhof, K. Lamribet, S. Viengchareun, M.R. Fay, J.A. Khan, A. Hillisch, M. Lombès, M.-E. Rafestin-Oblin, and J. Fagart, Finerenone impedes aldosterone-dependent nuclear import of the mineralocorticoid receptor and prevents genomic recruitment of steroid receptor coactivator-1*, J. Biol. Chem. 290 (2015), pp. 21876–21889. doi:10.1074/jbc.M115.657957.
  • P. Dufour, C. Pirard, P. Petrossians, A. Beckers, and C. Charlier, Association between mixture of persistent organic pollutants and thyroid pathologies in a Belgian population, Environ. Res. 181 (2020), pp. 108922. doi:10.1016/j.envres.2019.108922.
  • L. Torres-Sanchez, M. Zepeda, M.E. Cebrián, J. Belkind-Gerson, R.M. Garcia-Hernandez, U. Belkind-Valdovinos, and L. López-Carrillo, Dichlorodiphenyldichloroethylene exposure during the first trimester of pregnancy alters the anal position in male infants, Ann. N. Y. Acad. Sci. 1140 (2008), pp. 155–162. doi:10.1196/annals.1454.004.
  • H. Saiyed, A. Dewan, V. Bhatnagar, U. Shenoy, R. Shenoy, H. Rajmohan, K. Patel, R. Kashyap, P. Kulkarni, and B. Rajan, Effect of endosulfan on male reproductive development, Environ. Health Perspect. 111 (2003), pp. 1958–1962. doi:10.1289/ehp.6271.
  • H. Xu and Y. Bo, Associations between pyrethroid exposure and serum sex steroid hormones in adults: Findings from a nationally representative sample, Chemosphere 300 (2022), pp. 134591. 10.1016/j.chemosphere.2022.134591.
  • T. Mroz, K. Mroz, and P. Tutka, Androgens and epilepsy, Prz. Lek. 67 (2010), pp. 1186–1193.
  • T. Jakubus, M. Michalska-Jakubus, K. Łukawski, A. Janowska, and S.J. Czuczwar, Atherosclerotic risk among children taking antiepileptic drugs, Pharmacol. Rep. 61 (2009), pp. 411–423. doi:10.1016/S1734-1140(09)70082-9.
  • B. Uzzan, D. Dumont-Fischer, N. Lahlou, H. Bihan, M.C. Boissier, J.C. Alvarez, G.Y. Perret, and R. Cohen, Factitious increases in serum testosterone concentrations related to phenylbutazone therapy, Fundam. Clin. Pharmacol. 22 (2008), pp. 159–160. doi:10.1111/j.1472-8206.2007.00564.x.
  • E.J. Giltay, C. Popp-Snijders, D. van Schaardenburg, B.J. Dekker-Saeys, L.J. Gooren, and B.A. Dijkmans, Serum testosterone levels are not elevated in patients with ankylosing spondylitis, J. Rheumatol. 25 (1998), pp. 2389–2394.
  • W. Cao, P. Yu, K. Yang, and D. Cao, Aflatoxin B1: Metabolism, toxicology, and its involvement in oxidative stress and cancer development, Toxicol. Mech. Methods 32 (2022), pp. 395–419. doi:10.1080/15376516.2021.2021339.
  • A. Ramírez Carnero, A. Lestido-Cardama, P. Vazquez Loureiro, L. Barbosa-Pereira, A. Rodríguez Bernaldo de Quirós, and R. Sendón, Presence of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in food contact materials (FCM) and its migration to food, Foods 10 (2021), pp. 1443. doi:10.3390/foods10071443.
  • J.L. Domingo and M. Nadal, Human exposure to per-and polyfluoroalkyl substances (PFAS) through drinking water: A review of the recent scientific literature, Environ. Res. 177 (2019), pp. 108648. doi:10.1016/j.envres.2019.108648.
  • Ş. Sungur, Dietary exposure to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS): A review of recent literature, Toxin Rev. 37 (2018), pp. 106–116. doi:10.1080/15569543.2017.1346685.
  • M. Lorenzo, M. Farré, C. Blasco, M. Onghena, Y. Picó, and D. Barceló, Perfluoroalkyl substances in breast milk, infant formula and baby food from Valencian community (Spain), Environ. Nanotechnol. Monit. Manage. 6 (2016), pp. 108–115. 10.1016/j.enmm.2016.09.001.
  • S.M. Bartell, A.M. Calafat, C. Lyu, K. Kato, P.B. Ryan, and K. Steenland, Rate of decline in serum PFOA concentrations after granular activated carbon filtration at two public water systems in Ohio and West Virginia, Environ. Health Perspect. 118 (2010), pp. 222–228. doi:10.1289/ehp.0901252.
  • X.Y. Ye, K. Kato, L.Y. Wong, T. Jia, A. Kalathil, J. Latremouille, and A.M. Calafat, Per- and polyfluoroalkyl substances in sera from children 3 to 11 years of age participating in the National Health and Nutrition Examination Survey 2013–2014, Int. J. Hyg. Environ. Health 221 (2018), pp. 9–16. doi:10.1016/j.ijheh.2017.09.011.
  • K. Kato, L.-Y. Wong, L.T. Jia, Z. Kuklenyik, and A.M. Calafat, Trends in exposure to polyfluoroalkyl chemicals in the U.S. Population: 1999−2008, Environ. Sci. Technol. 45 (2011), pp. 8037–8045. doi:10.1021/es1043613.
  • S. Mondal, R. Das, and S.K. Chakrabarti, A new photometric survey design for detection of extra-solar planets by transit technique, AIP Conf. Proc. 1543 (2013), pp. 187–193. doi:10.1063/1.4812613.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.