41
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Metrics for estimating vapour pressure deviation from ideality in binary mixtures

ORCID Icon, ORCID Icon &
Pages 943-961 | Received 05 Aug 2023, Accepted 30 Oct 2023, Published online: 20 Nov 2023

References

  • A. Klamt, COSMO-RS from Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design, Elsevier Science, Leverkusen, Germany, 2005.
  • R. Wittig, J. Lohmann, and J. Gmehling, Vapor−liquid equilibria by UNIFAC group contribution. 6. Revision and extension, Ind. Eng. Chem. Res. 42 (2003), pp. 183–188. doi:10.1021/ie020506l.
  • P. Willett, J.M. Barnard, and G.M. Downs, Chemical similarity searching, J. Chem. Inf. Comput. Sci. 38 (1998), pp. 983–996. doi:10.1021/ci9800211.
  • M.H. Abraham, Application of solvation equations to chemical and biochemical processes, Pure Appl. Chem. 65 (1993), pp. 2503–2512. doi:10.1351/pac199365122503.
  • A.M. Zissimos, M.H. Abraham, A. Klamt, F. Eckert, and J. Wood, A comparison between the two general sets of linear free energy descriptors of Abraham and Klamt, J. Chem. Inf. Comput. Sci. 42 (2002), pp. 1320–1331. doi:10.1021/ci025530o.
  • T. Brown, QSPRs for predicting equilibrium partitioning in solvent–air systems from the chemical structures of solutes and solvents, J. Solution Chem. 51 (2022), pp. 1101–1132. doi:10.1007/s10953-022-01162-2.
  • K.U. Goss, Predicting the equilibrium partitioning of organic compounds using just one linear solvation energy relationship (LSER), Fluid Phase Equil. 233 (2005), pp. 19–22. doi:10.1016/j.fluid.2005.04.006.
  • S. Baskaran, Y.D. Lei, and F. Wania, Reliable prediction of the octanol–air partition ratio, Environ. Toxicol. Chem. 40 (2021), pp. 3166–3180. doi:10.1002/etc.5201.
  • T. Zhu, W. Chen, H. Cheng, Y. Wang, and R.P. Singh, Prediction of polydimethylsiloxane-water partition coefficients based on the pp-LFER and QSAR models, Ecotoxicol. Environ. Saf. 182 (2019), pp. 109374. doi:10.1016/j.ecoenv.2019.109374.
  • A. Klamt, Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena, J. Phys. Chem. 99 (1995), pp. 2224–2235. doi:10.1021/j100007a062.
  • A. Klamt, V. Jonas, T. Bürger, and J.C.W. Lohrenz, Refinement and parametrization of COSMO-RS, J. Phys. Chem. A 102 (1998), pp. 5074–5085. doi:10.1021/jp980017s.
  • F. Eckert and A. Klamt, Fast solvent screening via quantum chemistry: COSMO-RS approach, AIChE J. 48 (2002), pp. 369–385. doi:10.1002/aic.690480220.
  • COSMOtherm, version C3.0, Release 19, Leverkusen, Germany, COSMOlogic GmbH & Co. KG, 2019.
  • A. Klamt, F. Eckert, and M. Hornig, COSMO-RS: A novel view to physiological solvation and partition questions, J. Comput. Aided Mol. Des. 15 (2001), pp. 355–365. doi:10.1023/A:1011111506388.
  • A. Klamt and F. Eckert, COSMO-RS: A novel way from quantum chemistry to free energy, solubility, and general QSAR-descriptors for partitioning, in Rational Approaches to Drug Design, H.D. Höltje, W. and Sippl, eds., Prous Science, 2001, pp. 195–205.
  • C. Mehler, A. Klamt, and W. Peukert, Use of COSMO-RS for the prediction of adsorption equilibria, AIChE J. 48 (2002), pp. 1093–1099. doi:10.1002/aic.690480518.
  • P. Gramatica, N. Chirico, E. Papa, S. Cassani, and S. Kovarich, QSARINS: A new software for the development, analysis, and validation of QSAR MLR models, J. Comput. Chem. 34 (2013), pp. 2121–2132. doi:10.1002/jcc.23361.
  • D.D. Deshpande and S.L. Oswal, 1. Excess Gibbs free energies and excess volumes, J. Chem. Thermodyn. 7 (1975), pp. 155–159. doi:10.1016/0021-9614(75)90263-3.
  • T. Boublík and G.C. Benson, Molar excess Gibbs free energies of benzene – m-xylene mixtures, Can. J. Chem. 47 (1969), pp. 539–542. doi:10.1139/v69-082.
  • A. Apelblat, A. Tamir, and M. Wagner, The binary mixtures of acetic acid with n-butanol, n-hexanol, n-octanol and n-dodecanol, Z. Phys. Chem. 137 (1983), pp. 129–137. doi:10.1524/zpch.1983.137.2.129.
  • A.N. Campbell, E.M. Kartzmark, and J.M.T.M. Gieskes, Vapor–liquid equilibria, densities, and refractivities in the system acetic acid – chloroform – water at 25 °C, Can. J. Chem. 41 (1963), pp. 407–429. doi:10.1139/v63-059.
  • H. Arm, D. Bankay, K. Strub, and M. Waelti, Dampfdrücke, thermodynamische Mischungsfunktionen und Brechungsindices des binären systems Cyclohexan-Diäthyläther bei 25, Helv. Chim. Acta 50 (1967), pp. 1013–1016. doi:10.1002/hlca.19670500405.
  • K.L. Young, R.A. Mentzer, R.A. Greenkorn, and K.C. Chao, Vapor-liquid equilibrium in mixtures of cyclohexane + benzene, + octene-1, + m-xylene, and + n-heptane, J. Chem. Thermodyn. 9 (1977), pp. 979–985. doi:10.1016/0021-9614(77)90219-1.
  • D.V.S. Jain and O.P. Yadav, Vapour pressures and excess Gibbs energies of cyclohexane + o-xylene, + m-xylene, and + p-xylene, J. Chem. Thermodyn. 5 (1973), pp. 541–544. doi:10.1016/S0021-9614(73)80101-6.
  • V. Gupta, S. Maken, K.C. Kalra, and K.C. Singh, Molar excess Gibbs free energy of 1-propanol or 2-propanol + aromatic hydrocarbons at 298.15 K in terms of an association model with a Flory contribution term, Thermochim. Acta 277 (1996), pp. 187–198. doi:10.1016/0040-6031(95)02745-9.
  • K. Balslev and J. Abildskov, UNIFAC parameters for four new groups, Ind. Eng. Chem. Res. 41 (2002), pp. 2047–2057. doi:10.1021/ie010786p.
  • P. Rice and A. El-Nikheli, Isothermal vapour-liquid equilibrium data for the systems n-pentane with n-hexane, n-octane and n-decane, Fluid Phase Equil. 107 (1995), pp. 257–267. doi:10.1016/0378-3812(95)02679-9.
  • J.S. Choi and Y.C. Bae, Renormalization group corrections to the modified perturbed hard sphere chain equation of state for vapor liquid equilibria and interfacial tension of pure and binary mixtures, Fluid Phase Equil. 430 (2016), pp. 143–155. doi:10.1016/j.fluid.2016.09.029.
  • American Chemical Society, Isothermal vapor-liquid equilibrium data by total pressure method. systems acetaldehyde-ethanol, acetaldehyde-water, and ethanol-water. Available at https://pubs.acs.org/doi/pdf/10.1021/je60046a010.
  • H. Guerrero, I. Giner, H. Artigas, C. Lafuente, and I. Gascón, Isothermal vapor−liquid equilibrium of ternary mixtures containing 2-methyl-1-propanol or 2-methyl-2-propanol, n-hexane, and 1-chlorobutane at 298.15 K, J. Chem. Eng. Data 55 (2010), pp. 739–744. doi:10.1021/je900436f.
  • E. Hála, I. Wichterle, J. Polák, and T. Boublik, Vapour-Liquid Equilibrium Data at Normal Pressures, Pergamon Press Ltd., Institute of Chemical Process Fundamentals, Prague, Czechoslovakia, 1968.
  • E.H.J. Cunaeus, Die Bestimmung des Brechungsvermögens als Methode zur Untersuchung der Zusammensetzung koexistierender Dampf- und Flüssigkeitsphasen, Z. Phys. Chem. 36 (1901), pp. 232–238. doi:10.1515/zpch-1901-3616.
  • J. Sameshima, On the system acetone—ethyl ether. J. Am. Chem. Soc. 40 (1918), pp. 1482–1503. doi:10.1021/ja02243a002.
  • J. Nagai, and N. Ishii. Parts II-IV, J. Soc. Chem. Ind. Jap. 38 (1935), pp. 86–25271068.
  • N. Ishii, Studies on volatility of fuels containing ethyl alcohol V-VI, J. Soc. Chem. Ind. Jap. 38 (1935), pp. 659–25271068.
  • K.S. Yuan, B.C.-Y. Lu, A.K. Deshpande, and J.K.C. Ho, Part III. system ethanol - cyclohexane at atmospheric pressure, J. Chem. Eng. Data 8 (1963), pp. 549–559. doi:10.1021/je60019a024.
  • G.C. Schmidt and G. Binäre, Binäre Gemische, Z. Phys. Chem. 121 (1926), pp. 221–253. doi:10.1515/zpch-1926-12119.
  • G. Guglielmoq, Sulle Tensioni Parziali e le Pressioni Osmotiche delle Miscele di Liquidi Volatili, Rendiconti/Acad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 1 (1892), pp. 294–298.
  • F. Becker, M. Kiefer, P. Rhensius, and H.D. Schaefer, Interpretation von Dampfdruckdiagrammen binärer flüssiger Mischungen mit Hilfe von Gleichgewichtsmodellen, Z. Phys. Chem. 92 (1974), pp. 169–192. doi:10.1524/zpch.1974.92.4-6.169.
  • V. Antón, S. Martín, C. Lafuente, and I. Gascón, Experimental and predicted vapour–liquid equilibrium of the binary mixtures n-heptane + chlorobutane isomers, Fluid Phase Equil. 409 (2016), pp. 72–77. doi:10.1016/j.fluid.2015.09.031.
  • M. Góral, P. Oracz, A. Skrzecz, A. Bok, and A. Mączyński, Recommended vapor–liquid equilibrium data. Part 1: Binary n-Alkanol–n-Alkane systems, J. Phys. Chem. Ref. Data 31 (2002), pp. 701–748. doi:10.1063/1.1480097.
  • PHYSPROP Physical Properties Database, SRC Inc (www.srcinc.com).
  • US EPA. Estimation Programs Interface SuiteTM For Microsoft® Windows, V 4.11, United States Environmental Protection Agency, Washington, DC, USA, 2022.
  • K. Mansouri, C.M. Grulke, R.S. Judson, and A.J. Williams, OPERA models for predicting physicochemical properties and environmental fate endpoints, J. Cheminform. 10 (2018), pp. 10. doi:10.1186/s13321-018-0263-1.
  • T.N. Brown, Empirical regressions between system parameters and solute descriptors of polyparameter linear free energy relationships (PPLFERs) for predicting solvent-air partitioning, Fluid Phase Equil. 540 (2021), pp. 113035. doi:10.1016/j.fluid.2021.113035.
  • P. Gramatica, E. Papa, and A. Sangion, QSAR modeling of cumulative environmental end-points for the prioritization of hazardous chemicals, Environ. Sci. 20 (2018), pp. 38–47. doi:10.1039/C7EM00519A.
  • P. Gramatica, Principles of QSAR modeling: Comments and suggestions from personal experience, IJQSPR 5 (2020), pp. 61–97. doi:10.4018/IJQSPR.20200701.oa1.
  • A. Klamt and F. Eckert, Prediction of vapor liquid equilibria using COSMOtherm, Fluid Phase Equil. 217 (2004), pp. 53–57. doi:10.1016/j.fluid.2003.08.018.
  • M. Hu, H. Tian, J. Sun, R. Zhang, Q. Zhao, and W. Xu, Vapor–liquid equilibrium measurements of cyclohexene–isophorone and cyclohexanol–isophorone binary systems and predictions for cyclohexene–cyclohexanol–isophorone ternary system, J. Chem. Eng. Data 65 (2020), pp. 3103–3108. doi:10.1021/acs.jced.0c00103.
  • Y. Li, X. Chen, L. Wang, X. Wei, W. Nong, and X. Wei, J. Liang, Measurement and prediction of isothermal vapor–liquid equilibrium of α-pinene + camphene/longifolene + abietic acid + palustric acid + neoabietic acid systems, Chin. J. Chem. Engin. 53 (2023), pp. 155–169. doi:10.1016/j.cjche.2021.12.030.
  • F. Eckert and A. Klamt, Validation of the COSMO-RS method: Six binary systems, Ind. Eng. Chem. Res. 40 (2001), pp. 2371–2378. doi:10.1021/ie0009132.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.