4,099
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of QSAR models for predicting mutagenicity: outcome of the Second Ames/QSAR international challenge project

ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, , , , , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, , , ORCID Icon, , ORCID Icon, , & show all
Pages 983-1001 | Received 11 Sep 2023, Accepted 13 Nov 2023, Published online: 04 Dec 2023

References

  • ICH-M7 (R1), ICH Harmonized Guideline, Assessment and control Of DNA reactive (Mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk Current step 4 version dated 31 March 2017, 2017. Available at https://database.ich.org/sites/default/files/M7_R1_Guideline.pdf.
  • R. Benigni, C. Laura Battistelli, C. Bossa, A. Giuliani, E. Fioravanzo, A. Bassan, M. Fuart Gatnik, J. Rathman, C. Yang, and O. Tcheremenskaia, Evaluation of the applicability of existing (Q)SAR models for predicting the genotoxicity of pesticides and similarity analysis related with genotoxicity of pesticides for facilitating of grouping and read across, EFSA Support. Publ. 16 (2019), pp. 1598E. doi:10.2903/sp.efsa.2019.EN-1598.
  • K. Hansen, S. Mika, T. Schroeter, A. Sutter, A. Ter Laak, T. Steger-Hartmann, N. Heinrich, and K.-R. Müller, Benchmark data set for in silico prediction of Ames mutagenicity, J. Chem. Inf. Model. 49 (2009), pp. 2077–2081. doi:10.1021/ci900161g.
  • D. Kirkland, E. Zeiger, F. Madia, N. Gooderham, P. Kasper, A. Lynch, T. Morita, G. Ouedraogo, J.M. Parra Morte, S. Pfuhler, V. Rogiers, M. Schulz, V. Thybaud, J. van Benthem, P. Vanparys, A. Worth, and R. Corvi, Can in vitro mammalian cell genotoxicity test results be used to complement positive results in the Ames test and help predict caCan in vitro mammalian cell genotoxicity test results be used to complement positive results in the Ames test and help predict carcinogenic or in vivo genotoxic activity? I. Reports of individual databases presented at an EURL ECVAM Workshop, Mutat. Res. Genet. Toxicol. Environ. Mutag. 775-776 (2014), pp. 55–68.
  • D. Kirkland, E. Zeiger, F. Madia, and R. Corvi, Can in vitro mammalian cell genotoxicity test results be used to complement positive results in the Ames test and help predict carcinogenic or in vivo genotoxic activity? II. Construction and analysis of a consolidated database, Mutat. Res. Genet. Toxicol. Environ. Mutag. 775-776 (2014), pp. 69–80. doi:10.1016/j.mrgentox.2014.10.006.
  • F. Madia, D. Kirkland, T. Morita, P. White, D. Asturiol, and R. Corvi, EURL ECVAM genotoxicity and carcinogenicity database of substances eliciting negative results in the Ames test: Construction of the database, Mutat. Res. Genet. Toxicol. Environ. Mutag. 854-855 (2020), pp. 503199. doi:10.1016/j.mrgentox.2020.503199.
  • F. Metruccio, I. Castelli, C. Civitella, C. Galbusera, F. Galimberti, L. Tosti, and A. Moretto, Compilation of a database, specific for the pesticide active substance and their metabolites, comprising the main genotoxicity endpoints, EFSA Support. Publ. 14 (2017), pp. 1229E. doi:10.2903/sp.efsa.2017.EN-1229.
  • P. Pradeep, R. Judson, D.M. DeMarini, N. Keshava, T.M. Martin, J. Dean, C.F. Gibbons, A. Simha, S.H. Warren, M.R. Gwinn, and G. Patlewicz, An evaluation of existing QSAR models and structural alerts and development of new ensemble models for genotoxicity using a newly compiled experimental dataset, Comput. Toxicol. 18 (2021), pp. 100167. doi:10.1016/j.comtox.2021.100167.
  • P. Pradeep, R. Judson, D.M. DeMarini, N. Keshava, M. Todd, J. Dean, C. Gibbons, A. Simha, S. Warren, M. Gwinn, and G. Patlewicz, Evaluation of existing QSAR models and structural alerts and development of new ensemble models for genotoxicity using a newly compiled experimental dataset, The United States Environmental Protection Agency’s Center for Computational Toxicology and Exposure, 2021. Available at https://gaftp.epa.gov/COMPTOX/CCTE_Publication_Data/CCED_Publication_Data/PatlewiczGrace/CompTox-genetox/.
  • R. Benigni, C.L. Battistelli, C. Bossa, O. Tcheremenskaia, and P. Crettaz, New perspectives in toxicological information management, and the role of ISSTOX databases in assessing chemical mutagenicity and carcinogenicity, Mutagenesis 28 (2013), pp. 401–409. doi:10.1093/mutage/get016.
  • A. Hillebrecht, W. Muster, A. Brigo, M. Kansy, T. Weiser, and T. Singer, Comparative evaluation of in silico systems for Ames test mutagenicity prediction: Scope and limitations, Chem. Res. Toxicol. 24 (2011), pp. 843–854. doi:10.1021/tx2000398.
  • S.-Y. Bae, J. Lee, J. Jeong, C. Lim, and J. Choi, Effective data-balancing methods for class-imbalanced genotoxicity datasets using machine learning algorithms and molecular fingerprints, Comput. Toxicol. 20 (2021), pp. 100178. doi:10.1016/j.comtox.2021.100178.
  • C. Barber, A. Cayley, T. Hanser, A. Harding, C. Heghes, J.D. Vessey, S. Werner, S.K. Weiner, J. Wichard, A. Giddings, S. Glowienke, A. Parenty, A. Brigo, H.-P. Spirkl, A. Amberg, R. Kemper, and N. Greene, Evaluation of a statistics-based Ames mutagenicity QSAR model and interpretation of the results obtained, Regul. Toxicol. Pharmacol. 76 (2016), pp. 7–20. doi:10.1016/j.yrtph.2015.12.006.
  • M. Honma, A. Kitazawa, A. Cayley, R.V. Williams, C. Barber, T. Hanser, R. Saiakhov, S. Chakravarti, G.J. Myatt, K.P. Cross, E. Benfenati, G. Raitano, O. Mekenyan, P. Petkov, C. Bossa, R. Benigni, C.L. Battistelli, A. Giuliani, O. Tcheremenskaia, C. DeMeo, U. Norinder, H. Koga, C. Jose, N. Jeliazkova, N. Kochev, V. Paskaleva, C. Yang, P.R. Daga, R.D. Clark, and J. Rathman, Improvement of quantitative structure–activity relationship (QSAR) tools for predicting Ames mutagenicity: Outcomes of the Ames/QSAR International Challenge Project, Mutagenesis 34 (2019), pp. 3–16. doi:10.1093/mutage/gey031.
  • Japan Ministry of Health Labour and Welfare (MHLW), Industrial Safety and Health Act of Japan, Japan Ministry of Health Labour and Welfare (MHLW), ed., 1972.
  • The Division of Genetics and Mutagenesis/National Institute of Health Sciences (DGM/NIHS), AMES/QSAR international collaborative study, 2019. Available at https://www.nihs.go.jp/dgm/amesqsar.html.
  • D. Weininger, SMILES, a chemical language and information-system. 1. Introduction to methodology and encoding rules, J. Chem. Inf. Comput. Model. 28 (1988), pp. 31–36. doi:10.1021/ci00057a005.
  • A. Furuhama, T. Kasamatsu, K. Sugiyama, and M. Honma, Curation of more than 10,000 Ames test data used in the Ames/QSAR international challenge projects, in QSAR in Safety Evaluation and Risk Assessment, H. Hong, ed., Academic Press, 2023, pp. 365–372. doi:10.1016/B978-0-443-15339-6.00022-9.
  • H.H. Gul, E. Egrioglu, and E. Bas, Statistical learning algorithms for dendritic neuron model artificial neural network based on sine cosine algorithm, Inf. Sci. 629 (2023), pp. 398–412. doi:10.1016/j.ins.2023.02.008.
  • OECD, OECD Series on Testing and Assessment No. 69, Guidance Document on the Validation of (Quantitative) Structure-Activity Relationships [(Q)SAR] Models, OECD, Paris, 2007. Available at http://www.oecd.org/dataoecd/55/35/38130292.pdf.
  • W.F. Schneider and H. Guo, Machine learning, J. Phys. Chem A 122 (2018), pp. 879–879. doi:10.1021/acs.jpca.8b00034.