119
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring marine-derived compounds for MET signalling pathway inhibition in cancer: integrating virtual screening, ADME profiling and molecular dynamics investigations

, , , , , , , , , & show all
Pages 1003-1021 | Received 28 Aug 2023, Accepted 13 Nov 2023, Published online: 28 Nov 2023

References

  • C.E. DeSantis, C.C. Lin, A.B. Mariotto, R.L. Siegel, K.D. Stein, J.L. Kramer, R. Alteri, A.S. Robbins, and A. Jemal, Cancer treatment and survivorship statistics, 2014, CA Cancer J. Clin. 64 (2014), pp. 252–271. doi:10.3322/caac.21235.
  • A. Jemal, F. Bray, M.M. Center, J. Ferlay, E. Ward, and D. Forman, Global cancer statistics, CA Cancer J. Clin. 61 (2011), pp. 69–90. doi:10.3322/caac.20107.
  • B. Izar, J. Rotow, J. Gainor, J. Clark, and B. Chabner, Pharmacokinetics, clinical indications, and resistance mechanisms in molecular targeted therapies in cancer, Pharmacol. Rev. 65 (2013), pp. 1351–1395. doi:10.1124/pr.113.007807.
  • A. Arora and E.M. Scholar, Role of tyrosine kinase inhibitors in cancer therapy, J. Pharmacol. Exp. Ther. 315 (2005), pp. 971–979. doi:10.1124/jpet.105.084145.
  • C.R. Maroun and T. Rowlands, The met receptor tyrosine kinase: A key player in oncogenesis and drug resistance, Pharmacol. Ther. 142 (2014), pp. 316–338. doi:10.1016/j.pharmthera.2013.12.014.
  • L. West, S.J. Vidwans, N.P. Campbell, J. Shrager, G.R. Simon, R. Bueno, P.A. Dennis, G.A. Otterson, R. Salgia, and S.K. Batra, A novel classification of lung cancer into molecular subtypes, PLoS One 7 (2012), pp. e31906. doi:10.1371/journal.pone.0031906.
  • W. Tai, T. Lu, H. Yuan, F. Wang, H. Liu, S. Lu, Y. Leng, W. Zhang, Y. Jiang, and Y. Chen, Pharmacophore modeling and virtual screening studies to identify new c-Met inhibitors, J. Mol. Model. 18 (2012), pp. 3087–3100. doi:10.1007/s00894-011-1328-5.
  • A.Y. Elnagar, P.W. Sylvester, and K.A. El Sayed, (-)-Oleocanthal as a c-Met inhibitor for the control of metastatic breast and prostate cancers, Planta Med. 77 (2011), pp. 1013–1019. doi:10.1055/s-0030-1270724.
  • S. Giordano, C. Ponzetto, M.F. Di Renzo, C.S. Cooper, and P.M. Comoglio, Tyrosine kinase receptor indistinguishable from the c-Met protein, Nature 339 (1989), pp. 155–156. doi:10.1038/339155a0.
  • L. Naldini, E. Vigna, R.P. Narsimhan, G. Gaudino, R. Zarnegar, G.K. Michalopoulos, and P.M. Comoglio, Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET, Oncogene 6 (1991), pp. 501–504.
  • A.A. Sadiq and R. Salgia, MET as a possible target for non-small-cell lung cancer, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 31 (2013), pp. 1089–1096. doi:10.1200/JCO.2012.43.9422.
  • G.V. Scagliotti, S. Novello, and J. von Pawel, The emerging role of MET/HGF inhibitors in oncology, Cancer Treat. Rev. 39 (2013), pp. 793–801. doi:10.1016/j.ctrv.2013.02.001.
  • P.K. Paik, A. Drilon, P.-D. Fan, H. Yu, N. Rekhtman, M.S. Ginsberg, L. Borsu, N. Schultz, M.F. Berger, C.M. Rudin, and M. Ladanyi, Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping, Cancer Discov. 5 (2015), pp. 842–849. doi:10.1158/2159-8290.CD-14-1467.
  • K. Chang, A. Karnad, S. Zhao, and J.W. Freeman, Roles of c-Met and RON kinases in tumor progression and their potential as therapeutic targets, Oncotarget 6 (2015), pp. 3507–3518. doi:10.18632/oncotarget.3420.
  • R.W. Jenkins, G.R. Oxnard, S. Elkin, E.K. Sullivan, J.L. Carter, and D.A. Barbie, Response to Crizotinib in a patient with lung adenocarcinoma harboring a MET splice site mutation, Clin. Lung Cancer 16 (2015), pp. e101–4. doi:10.1016/j.cllc.2015.01.009.
  • C. Wang and X. Lu, Targeting MET: Discovery of small molecule inhibitors as non-small cell lung cancer therapy, J. Med. Chem. 66 (2023), pp. 7670–7697. doi:10.1021/acs.jmedchem.3c00028.
  • J.J. Cui, Targeting receptor tyrosine kinase MET in cancer: Small molecule inhibitors and clinical progress, J. Med. Chem. 57 (2014), pp. 4427–4453. doi:10.1021/jm401427c.
  • G.A. Patwardhan, M. Marczyk, V.B. Wali, D.F. Stern, L. Pusztai, and C. Hatzis, Treatment scheduling effects on the evolution of drug resistance in heterogeneous cancer cell populations, NPJ Breast Cancer 7 (2021), pp. 60. doi:10.1038/s41523-021-00270-4.
  • N. Munshi, S. Jeay, Y. Li, C.-R. Chen, D.S. France, M.A. Ashwell, J. Hill, M.M. Moussa, D.S. Leggett, and C.J. Li, ARQ 197, a novel and selective inhibitor of the human c-met receptor tyrosine kinase with antitumor activity, Mol. Cancer Ther. 9 (2010), pp. 1544–1553. doi:10.1158/1535-7163.MCT-09-1173.
  • J. Best, C. Schotten, G. Lohmann, G. Gerken, and A. Dechêne, Tivantinib for the treatment of hepatocellular carcinoma, Expert Opin. Pharmacother. 18 (2017), pp. 727–733. doi:10.1080/14656566.2017.1316376.
  • M.-J. Li, G.-Z. Wu, Q. Kaas, T. Jiang, and R.-L. Yu, Development of efficient docking strategies and structure-activity relationship study of the c-Met type II inhibitors, J. Mol. Graph. Model. 75 (2017), pp. 241–249. doi:10.1016/j.jmgm.2017.04.004.
  • X.-J. Yan, L.-H. Gong, F.-Y. Zheng, K.-J. Cheng, Z.-S. Chen, and Z. Shi, Triterpenoids as reversal agents for anticancer drug resistance treatment, Drug Discov. Today 19 (2014), pp. 482–488. doi:10.1016/j.drudis.2013.07.018.
  • M. Carocho and I.C.F.R. Ferreira, The role of phenolic compounds in the fight against cancer–a review, Anticancer. Agents Med. Chem. 13 (2013), pp. 1236–1258. doi:10.2174/18715206113139990301.
  • F. Vahedi, M. Fathi Najafi, and K. Bozari, Evaluation of inhibitory effect and apoptosis induction of Zyzyphus Jujube on tumor cell lines, an in vitro preliminary study, Cytotechnology 56 (2008), pp. 105–111. doi:10.1007/s10616-008-9131-6.
  • C. Jiménez, Marine natural products in medicinal chemistry, ACS Med. Chem. Lett. 6 (2018), pp. 959–961. doi:10.1021/acsmedchemlett.8b00368.
  • G.D. Ruggieri, Drugs from the sea, Science 194 (1976), pp. 491–497. doi:10.1126/science.9691.
  • A.R. Carroll, B.R. Copp, R.A. Davis, R.A. Keyzers, and M.R. Prinsep, Marine natural products, Nat. Prod. Rep. 38 (2021), pp. 362–413. doi:10.1039/D0NP00089B.
  • F. Pereira and J. Aires-de-Sousa, Computational methodologies in the exploration of marine natural product leads, Mar. Drugs 16 (2018), pp. 1–25. doi:10.3390/md16070236.
  • G. Madhavi Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, and W. Sherman, Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments, J. Comput. Aided Mol. Des. 27 (2013), pp. 221–234. doi:10.1007/s10822-013-9644-8.
  • E. Harder, W. Damm, J. Maple, C. Wu, M. Reboul, J.Y. Xiang, L. Wang, D. Lupyan, M.K. Dahlgren, J.L. Knight, J.W. Kaus, D.S. Cerutti, G. Krilov, W.L. Jorgensen, R. Abel, and R.A. Friesner, OPLS3: A force field providing broad coverage of drug-like small molecules and proteins, J. Chem. Theory Comput. 12 (2016), pp. 281–296. doi:10.1021/acs.jctc.5b00864.
  • A. Edris, M. Abdelrahman, W. Osman, A.E. Sherif, A. Ashour, E.A.E. Garelnabi, S.R.M. Ibrahim, R. Bafail, W.A. Samman, K.F. Ghazawi, G.A. Mohamed, and A.A. Alzain, Design of novel letrozole analogues targeting aromatase for breast cancer: Molecular docking, molecular dynamics, and theoretical studies on gold nanoparticles, Metabolites 13 (2023), pp. 583. doi:10.3390/metabo13050583.
  • R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. Repasky, E.H. Knoll, M. Shelley, J.K. Perry, D.E. Shaw, P. Francis, and P.S. Shenkin, Glide: A new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy, J. Med. Chem. 47 (2004), pp. 1739–1749. doi:10.1021/jm0306430.
  • L. Eltaib and A.A. Alzain, Targeting the omicron variant of SARS-CoV-2 with phytochemicals from Saudi medicinal plants: Molecular docking combined with molecular dynamics investigations, J. Biomol. Struct. Dyn. (2022), pp. 1–13. doi:10.1080/07391102.2022.2146203.
  • A.A. Alzain and F.A. Elbadwi, Identification of novel TMPRSS2 inhibitors for COVID-19 using e-pharmacophore modelling, molecular docking, molecular dynamics and quantum mechanics studies, Inf. Med. Unlocked 26 (2021), pp. 100758. doi:10.1016/j.imu.2021.100758.
  • A.M. Ali, A.A. Makki, W. Ibraheem, M. Abdelrahman, W. Osman, A.E. Sherif, A. Ashour, S.R.M. Ibrahim, K.F. Ghazawi, W.A. Samman, and A.A. Alzain, Design of novel phosphatidylinositol 3-kinase inhibitors for non-Hodgkin’s lymphoma: Molecular docking, molecular dynamics, and density functional theory studies on gold nanoparticles, Molecules 28 (2023), pp. 2289. doi:10.3390/molecules28052289.
  • A. Faiella, F. Riccardi, G. Cartenì, M. Chiurazzi, and L. Onofrio, The emerging role of c-met in carcinogenesis and clinical implications as a possible therapeutic target, J. Oncol. 2022 (2022), pp. 5179182. doi:10.1155/2022/5179182.
  • L.S. Rosen, J.W. Goldman, A.P. Algazi, P.K. Turner, B. Moser, T. Hu, X.A. Wang, J. Tuttle, V. Wacheck, J.E. Wooldridge, and M. Banck, A first-in-human phase i study of a bivalent MET antibody, Emibetuzumab (LY2875358), as monotherapy and in combination with erlotinib in advanced cancer, Clin. Cancer Res. 23 (2017), pp. 1910–1919. doi:10.1158/1078-0432.CCR-16-1418.
  • J.H. Strickler, P. LoRusso, R. Salgia, Y.-K. Kang, C.J. Yen, C.-C. Lin, P. Ansell, M. Motwani, S. Wong, H. Yue, L. Wang, E. Reilly, D. Afar, L. Naumovski, and R.K. Ramanathan, Phase I dose-escalation and -expansion study of telisotuzumab (ABT-700), an anti-c-met antibody, in patients with advanced solid tumors, Mol. Cancer Ther. 19 (2020), pp. 1210–1217. doi:10.1158/1535-7163.MCT-19-0529.
  • L.G. Ferreira, R.N. Dos Santos, G. Oliva, and A.D. Andricopulo, Molecular docking and structure-based drug design strategies, Molecules 20 (2015), pp. 13384–13421. doi:10.3390/molecules200713384.
  • H.M. Ashtawy and N.R. Mahapatra, Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins, BMC Bioinf. 16 (2015), pp. S3. doi:10.1186/1471-2105-16-S6-S3.
  • D.R. Houston and M.D. Walkinshaw, Consensus docking: Improving the reliability of docking in a virtual screening context, J. Chem. Inf. Model. 53 (2013), pp. 384–390. doi:10.1021/ci300399w.
  • H. Yuan, Q. Liu, L. Zhang, S. Hu, T. Chen, H. Li, Y. Chen, Y. Xu, and T. Lu, Discovery, optimization and biological evaluation for novel c-Met kinase inhibitors, Eur. J. Med. Chem. 143 (2018), pp. 491–502. doi:10.1016/j.ejmech.2017.11.073.
  • Y. Yang, Y. Zhang, L. Yang, L. Zhao, L. Si, H. Zhang, Q. Liu, and J. Zhou, Discovery of imidazopyridine derivatives as novel c-Met kinase inhibitors: Synthesis, SAR study, and biological activity, Bioorg. Chem. 70 (2017), pp. 126–132. doi:10.1016/j.bioorg.2016.12.002.
  • J.J. Cui, H. Shen, M. Tran-Dubé, M. Nambu, M. McTigue, N. Grodsky, K. Ryan, S. Yamazaki, S. Aguirre, M. Parker, Q. Li, H. Zou, and J. Christensen, Lessons from (s)-6-(1-(6-(1-methyl-1h-pyrazol-4-yl)-[1,2,4]triazolo[4,3-b]pyridazin-3-yl)ethyl)quinoline (pf-04254644), an inhibitor of receptor tyrosine kinase c-met with high protein kinase selectivity but broad phosphodiesterase family inhibition leadi, J. Med. Chem. 56 (2013), pp. 6651–6665. doi:10.1021/jm400926x.
  • H. Cui, X. Peng, J. Liu, C. Ma, Y. Ji, W. Zhang, M. Geng, and Y. Li, Design, synthesis and biological evaluation of c-Met kinase inhibitors bearing 2-oxo-1,2-dihydroquinoline scaffold, Bioorg. Med. Chem. Lett. 26 (2016), pp. 4483–4486. doi:10.1016/j.bmcl.2016.07.077.
  • Y. Zhao, J. Zhang, R. Zhuang, R. He, J. Xi, X. Pan, Y. Shao, J. Pan, J. Sun, Z. Cai, S. Liu, W. Huang, and X. Lv, Synthesis and evaluation of a series of pyridine and pyrimidine derivatives as type II c-Met inhibitors, Bioorg. Med. Chem. 25 (2017), pp. 3195–3205. doi:10.1016/j.bmc.2017.04.003.
  • P.K. Parikh and M.D. Ghate, Recent advances in the discovery of small molecule c-met kinase inhibitors, Eur. J. Med. Chem. 143 (2018), pp. 1103–1138. doi:10.1016/j.ejmech.2017.08.044.
  • X. Liu, Y. Li, Q. Zhang, Q. Pan, P. Zheng, X. Dai, Z. Bai, and W. Zhu, Design, Synthesis, and biological evaluation of [1,24]triazolo[43-a] pyrazine derivatives as novel dual c-Met/VEGFR-2 inhibitors, Front. Chem. (2022), pp. 815534. doi:10.3389/fchem.2022.815534.
  • M.H. El-Wakil, H.M. Ashour, M.N. Saudi, A.M. Hassan, and I.M. Labouta, Design, synthesis and molecular modeling studies of new series of antitumor 1,2,4-triazines with potential c-met kinase inhibitory activity, Bioorg. Chem. 76 (2018), pp. 154–165. doi:10.1016/j.bioorg.2017.11.006.
  • W. Zhu, W. Wang, S. Xu, J. Wang, Q. Tang, C. Wu, Y. Zhao, and P. Zheng, Synthesis, and docking studies of phenylpyrimidine-carboxamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety as c-Met inhibitors, Bioorg. Med. Chem. 24 (2016), pp. 1749–1756. doi:10.1016/j.bmc.2016.02.046.
  • S. Aliebrahimi, S.M. Kouhsari, S.N. Ostad, S.S. Arab, and L. Karami, Identification of phytochemicals targeting c-Met kinase domain using consensus docking and molecular dynamics simulation studies, Cell Biochem. Biophys. 76 (2018), pp. 135–145. doi:10.1007/s12013-017-0821-6.
  • T. Damghani, M. Elyasi, S. Pirhadi, Z. Haghighijoo, and S. Ghazi, Type II c-met inhibitors: Molecular insight into crucial interactions for effective inhibition, Mol. Divers. 26 (2022), pp. 1411–1423. doi:10.1007/s11030-021-10267-7.
  • T. Yamada, M. Doi, A. Miura, W. Harada, M. Hiramura, K. Minoura, R. Tanaka, and A. Numata, Absolute stereostructures of cell-adhesion inhibitors, peribysins A, E, F and G, produced by a sea hare-derived periconia sp, J. Antibiot. 58 (2005), pp. 185–191. doi:10.1038/ja.2005.21.
  • H. Kamiya, K. Muramoto, and M. Yamazaki, Aplysianin-A, an antibacterial and antineoplastic glycoprotein in the albumen gland of a sea hare, Aplysia kurodai, Experientia 42 (1986), pp. 1065–1067. doi:10.1007/BF01940736.
  • X. Zhang, T. Zhuang, Z. Liang, L. Li, M. Xue, J. Liu, and H. Liang, Breast cancer suppression by aplysin is associated with inhibition of PI3K/AKT/FOXO3a pathway, Oncotarget 8 (2017), pp. 63923–63934. doi:10.18632/oncotarget.19209.
  • X. Yang, H. Zhu, and W. Yang, Research progress of antitumor components from original animals of traditional Chinese medicine powder of Notarchus, Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi =, China J. Chinese Mater. Medica 36 (2011), pp. 3038–3046.
  • M. Yamazaki, J. Kisugi, M. Ikenami, H. Kamiya, and D. Mizuno, Cytolytic factor in eggs of the sea hare Aplysia kurodai, Gan 75 (1984), pp. 269–274.
  • T. Yamada, M. Iritani, H. Ohishi, K. Tanaka, K. Minoura, M. Doi, and A. Numata, Pericosines, antitumour metabolites from the sea hare-derived fungus Periconia byssoides. Structures and biological activities, Org. Biomol. Chem. 5 (2007), pp. 3979–3986. doi:10.1039/b713060k.
  • J. Kisugi, H. Kamiya, and M. Yamazaki, Purification and characterization of aplysianin E, an antitumor factor from sea hare eggs, Cancer Res. 47 (1987), pp. 5649–5653.
  • P.G. Cruz, A.M. Fribley, J.R. Miller, M.J. Larsen, P.J. Schultz, R.T. Jacob, G. Tamayo-Castillo, R.J. Kaufman, and D.H. Sherman, Novel lobophorins inhibit oral cancer cell growth and induce atf4- and chop-dependent cell death in murine fibroblasts, ACS Med. Chem. Lett. 6 (2015), pp. 877–881. doi:10.1021/acsmedchemlett.5b00127.
  • X. Xu, F. Song, S. Wang, S. Li, F. Xiao, J. Zhao, Y. Yang, S. Shang, L. Yang, and J. Shi, Dibenzyl bromophenols with diverse dimerization patterns from the brown alga Leathesia nana, J. Nat. Prod. 67 (2004), pp. 1661–1666. doi:10.1021/np0400609.
  • M. Liu, P.E. Hansen, and X. Lin, Bromophenols in marine algae and their bioactivities, Mar. Drugs 9 (2011), pp. 1273–1292. doi:10.3390/md9071273.
  • K. Xu, C. Guo, D. Shi, J. Meng, H. Tian, and S. Guo, Discovery of natural dimeric naphthopyrones as potential cytotoxic agents through ROS-mediated apoptotic pathway, Mar. Drugs 17 (2019), pp. 1–26. doi:10.3390/md17040207.
  • R. Sun, M. Zhang, B. Li, S. Jiang, W. Yu, L. Yang, Y. Han, Z. Zhong, and W. Zhao, A novel bromophenol compound from Leathesia nana inhibits breast cancer in a direct tumor killing and immunotherapy manner, Molecules 28 (2023), pp. 1–31. doi:10.3390/molecules28145349.
  • J. Hiort, K. Maksimenka, M. Reichert, S. Perović-Ottstadt, W.H. Lin, V. Wray, K. Steube, K. Schaumann, H. Weber, P. Proksch, R. Ebel, W.E.G. Müller, and G. Bringmann, New natural products from the sponge-derived fungus Aspergillus niger, J. Nat. Prod. 67 (2004), pp. 1532–1543. doi:10.1021/np030551d.
  • J. Velisek and K. Cejpek, Pigments of higher fungi – a review, Czech J. Food Sci. 29 (2018), pp. 87–102. doi:10.17221/524/2010-CJFS.
  • C. Van Anh, J.S. Kang, J.-W. Yang, J.-H. Kwon, C.-S. Heo, H.-S. Lee, C.H. Park, and H.J. Shin, Sesquiterpenes from Streptomyces qinglanensis and their cytotoxic activity, Mar. Drugs 21 (2023), pp. 1–26. doi:10.3390/md21060361.
  • G. Erkel, A. Gehrt, T. Anke, and O. Sterner, Induction of differentiation in acute promyelocytic leukemia cells (HL-60) by the verticillin derivative sch 52900, Z. Naturforsch. C 57 (2002), pp. 759–767. doi:10.1515/znc-2002-7-834.
  • K. Motohashi, M. Takagi, and K. Shin-Ya, Tetracenoquinocin and 5-iminoaranciamycin from a sponge-derived Streptomyces sp. Sp080513GE-26, J. Nat. Prod. 73 (2010), pp. 755–758. doi:10.1021/np9007409.
  • Y. Arai, H. Iinuma, Y. Ikeda, M. Igarashi, M. Hatano, N. Kinoshita, T. Ukaji, S. Simizu, and K. Umezawa, Migracins a and B, new inhibitors of cancer cell migration, produced by Streptomyces sp, J. Antibiot. 66 (2013), pp. 225–230. doi:10.1038/ja.2012.112.
  • C.-F. Chiu, S.-J. Chiu, L.-Y. Bai, C.-H. Feng, J.-L. Hu, W.-Y. Lin, H.-Y. Huang, and J.-R. Weng, A macrolide from Streptomyces sp. modulates apoptosis and autophagy through Mcl-1 downregulation in human breast cancer cells, Environ. Toxicol. 36 (2021), pp. 1316–1325. doi:10.1002/tox.23128.
  • L.T.-H. Tan, K.-G. Chan, P. Pusparajah, W.-F. Yin, T.M. Khan, L.-H. Lee, and B.-H. Goh, Mangrove derived Streptomyces sp. MUM265 as a potential source of antioxidant and anticolon-cancer agents, BMC Microbiol. 19 (2019), pp. 38–72. doi:10.1186/s12866-019-1409-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.