57
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Prioritizing pharmaceutically active compounds (PhACs) based on occurrence-persistency-mobility-toxicity (OPMT) criteria: an application to the Brazilian scenario

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1023-1039 | Received 18 Sep 2023, Accepted 19 Nov 2023, Published online: 04 Dec 2023

References

  • A. Capaldo, F. Gay, and V. Laforgia, Changes in the gills of the European eel (Anguilla anguilla) after chronic exposure to environmental cocaine concentration, Ecotoxicol. Environ. Saf 169 (2019), pp. 112–119.
  • T.H. Miller, K.T. Ng, S.T. Bury, S.E. Bury, N.R. Bury, and L.P. Barron, Biomonitoring of pesticides, pharmaceuticals and illicit drugs in a freshwater invertebrate to estimate toxic or effect pressure, Environ. Int. 129 (2019), pp. 595–606.
  • M. Valdez-Carrillo, L. Abrell, J. Ramírez-Hernández, J.A. Reyes-López, and C. Carreón-Diazconti, Pharmaceuticals as emerging contaminants in the aquatic environment of Latin America: A review, Environ. Sci. Pollut. Res. 27 (2020), pp. 44863–44891.
  • E. NRMMC, Australian Guidelines for Water Recycling: Augmentation of Drinking Water Supplies (Phase 2), Natural Resource Management Ministerial Council, Canberra, Australia, 2008.
  • S.K. Golfinopoulos, A.D. Nikolaou, N.S. Thomaidis, A.M. Kotrikla, M.C. Vagi, A.S. Petsas, and T.D. Lekkas, Determination of the priority substances regulated by 2000/60/EC and 2008/105/EC directives in the surface waters supplying water treatment plants of Athens, Greece, J. Environ. Sci. Health A 52 (2017), pp. 378–384.
  • B. Jin, C. Huang, Y. Yu, G. Zhang, and H.P.H. Arp, The need to adopt an international pmt strategy to protect drinking water resources, Environ. Sci. Technol. 54 (2020), pp. 11651–11653.
  • L.M. Bexfield, P.L. Toccalino, K. Belitz, W.T. Foreman, and E.T. Furlong, Hormones and pharmaceuticals in groundwater used as a source of drinking water across the United States, Environ. Sci. Technol. 53 (2019), pp. 2950–2960.
  • S.F. De Aquino, E.M.F. Brandt, S.E.C. Bottrel, F.B.R. Gomes, and S.D.Q. Silva, Occurrence of pharmaceuticals and endocrine disrupting compounds in Brazilian water and the risks they may represent to human health, Int. J. Environ. Res. 18 (2021), pp. 11765.
  • M. Zhong, T. Wang, W. Zhao, J. Huang, B. Wang, L. Blaney, and G. Yu, Emerging organic contaminants in Chinese surface water: Identification of priority pollutants, Eng. J. 11 (2021), pp. 111–125.
  • V. Roveri, L.L. Guimarães, W. Toma, and A.T. Correia, Occurrence of pharmaceuticals and cocaine in the urban drainage channels located on the outskirts of the São Vicente Island (São Paulo, Brazil) and related ecological risk assessment, Environ. Sci. Pollut. Res. 29 (2022), pp. 57931–57945. doi:10.1007/s11356-022-19736-4.
  • K.C. Machado, M.T. Grassi, C. Vidal, I.C. Pescara, W.F. Jardim, A.N. Fernandes, and F.J.R. Severo, A preliminary nationwide survey of the presence of emerging contaminants in drinking and source waters in Brazil, Sci. Total Environ. 572 (2016), pp. 138–146.
  • D.R.S. Lima, M.C. Tonucci, M. Libânio, and S.F. Aquino, Pharmaceuticals and endocrine disrupting compounds in Brazilian waters: Occurrence and removal techniques, Eng. Sanit. Ambient 22 (2017), pp. 1043–1054.
  • E.O. Reis, A.F.S. Foureaux, J.S. Rodrigues, V.R. Moreira, Y.A.R. Lebron, L.V.S. Santos, and L.C. Lange, Occurrence, removal and seasonal variation of pharmaceuticals in Brasilian drinking water treatment plants, Environ. Pollut. 250 (2019), pp. 773–781.
  • S. Ortiz de García, G.P. Pinto, P.A. García-Encina, and R.I. Mata, Ranking of concern, based on environmental indexes, for pharmaceutical and personal care products: An application to the Spanish case, J. Environ. Manage. 129 (2013), pp. 384–397.
  • S. Daouk, N. Chèvre, N. Vernaz, P. Bonnabry, P. Dayer, Y. Daali, and S. Fleury-Souverain, Prioritization methodology for the monitoring of active pharmaceutical ingredients in hospital effluents, J. Environ. Manage. 160 (2015), pp. 324–332.
  • C.E.M. Dos Santos and A.C. Nardocci, Prioritization of pharmaceuticals in drinking water exposure based on toxicity and environmental fate assessment by in silico tools: An integrated and transparent ranking, Comput. Toxicol. 9 (2019), pp. 12–21.
  • Y. Li, L. Zhang, J. Ding, and X. Liu, Prioritization of pharmaceuticals in water environment in China based on environmental criteria and risk analysis of top-priority pharmaceuticals, J. Environ. Manage. 253 (2020), pp. 109732. doi:10.1016/j.jenvman.2019.109732.
  • E.O. Reis, L.V.S. Santos, and L. Lange, Prioritization and environmental risk assessment of pharmaceuticals mixtures from Brazilian surface waters, Environ. Pollut. 288 (2021), pp. 117803.
  • S.E. Hale, H.P.H. Arp, I. Schliebner, and M. Neumann, What’s in a name: Persistent, mobile, and toxic (PMT) and very persistent and very mobile (vPvM) substances, Environ. Sci. Technol. 54 (2020), pp. 14790–14792.
  • D. Wisher, Martindale: The complete drug reference, J. Med. Libr. Assoc. 100 (2012), pp. 75–76.
  • H.P.H. Arp and S.E. Hale, REACH: Improvement of Guidance and Methods for the Identification and Assessment of PM/PMT Substances, Dessau-Rosslau, Germany, 2019.
  • M. Neumann and I. Schliebner, Protecting the Sources of Our Drinking Water: The Criteria for Identifying Persistent, Mobile, and Toxic (PMT) Substances and Very Persistent, and Very Mobile (vPvm) Substances Under the EU Chemical Legislation REACH, Dessau-Rosslau, Germany, 2019.
  • M. Scheurer, A. Sandholzer, T. Schnabel, S. Schneider-Werres, M. Schaffer, H. Börnick, and S. Beier, Persistent and mobile organic chemicals in water resources: Occurrence and removal options for water utilities, Water Supply. 22 (2022), pp. 1575–1592. doi:10.2166/ws.2021.336.
  • V. Roveri and L.L. Guimarães, In silico prediction of persistent, mobile, and toxic pharmaceuticals (PMT): A case study in São Paulo metropolitan region, Brazil, Comput. Toxicol. 25 (2023), pp. 100254.
  • S. Kim, PubChem: A Large-Scale Public Chemical Database for Drug Discovery, National Library of Medicine, Bethesda, Maryland, United States, 2023.
  • VEGA, Version 1.1.5 beta 48A. Virtual Models For Property Evaluation of Chemicals Within a Global Architecture, Milan, Italy, 2019. Available at https://www.vegahub.eu/about-vegahub/.
  • F. Pizzo, A. Lombardo, A. Manganaro, and E. Benfenati, In silico models for predicting ready biodegradability under REACH: A comparative study, Sci. Total Environ. 463-464 (2013), pp. 161–168.
  • D. Kowalska, J. Maculewicz, P. Stepnowski, and J. Dołżonek, Ionic liquids as environmental hazards – crucial data in view of future PBT and PMT assessment, J. Hazard. Mater. 403 (2020), pp. 123896.
  • R. Wielens Becker, L. Alves Jachstet, A. Dallegrave, A. Ruiz-Padillo, R. Zanella, and C. Sirtori, Multi-criteria decision-making techniques associated with (Q)SAR risk assessment for ranking surface water microcontaminants identified using LC-QTOF MS, Sci. Total Environ. 797 (2021), pp. 149002.
  • K. Mansouri, C.M. Grulke, R.S. Judson, and A.J. Williams, OPERA models for predicting physicochemical properties and environmental fate endpoints, J. Cheminf. 10 (2018), pp. 10.
  • B.W. Schwab, E.P. Hayes, J.M. Fiori, F.J. Mastrocco, N.M. Roden, D. Cragin, and P.D. Anderson, Human pharmaceuticals in US surface waters: A human health risk assessment, Regul. Toxicol. Pharm. 42 (2005), pp. 296–312.
  • D.L. Blanset, J. Zhang, and M.G. Robson, Probabilistic estimates of lifetime daily doses from consumption of drinking water containing trace levels of N, N-diethyl-meta-toluamide (DEET), triclosan, or acetaminophen and the associated risk to human health, Hum. Ecol. Risk Assess. 13 (2007), pp. 615–631. doi:10.1080/10807030701341209.
  • V.L. Cunningham, S.P. Binks, and M.J. Olson, Human health risk assessment from the presence of human pharmaceuticals in the aquatic environment, Regul. Toxicol. Pharm. 53 (2009), pp. 39–45.
  • H. Yarahmadi, S.V. Duy, M. Hachad, S. Dorner, S. Sauvé, and M. Prévost, Seasonal variations of steroid hormones released by wastewater treatment plants to river water and sediments: Distribution between particulate and dissolved phases, Sci. Total Environ. 635 (2018), pp. 144–155.
  • P. Kovalakova, L. Cizmas, T.J. McDonald, B. Marsalek, M. Feng, and V.K. Sharma, Occurrence and toxicity of antibiotics in the aquatic environment: A review, Chemosphere 251 (2020), pp. 126351. doi:10.1016/j.chemosphere.2020.126351.
  • R.B. De Andrade Aragão, D. Semensatto, L.A. Calixto, and G. Labuto, Pharmaceutical market, environmental public policies and water quality: The case of the São Paulo Metropolitan Region, Brazil, Cad. Saúde Pública 36 (2020), pp e00192319.
  • J. Deen and L. von Seidlein, Paracetamol for dengue fever: No benefit and potential harm?, Lancet Glob. Health 7 (2019), pp. e552–e553.
  • A. Weizel, M.P. Schlüsener, G. Dierkes, and T.A. Ternes, Occurrence of glucocorticoids, mineralocorticoids, and progestogens in various treated wastewater, rivers, and streams, Environ. Sci. Technol. 52 (2018), pp. 5296–5307. doi:10.1021/acs.est.7b06147.
  • M. Patel, R. Kumar, K. Kishor, T. Mlsna, C.U. Pittman, and D. Mohan, Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods, Chem. Rev. 119 (2019), pp. 3510–3673. doi:10.1021/acs.chemrev.8b00299.
  • J.C. Dos Santos, M. Faria Junior, and C.B.A. Restini, Potential drug interactions identified in prescriptions to hypertensive patients, Rev. Bras. Clin. Med. São Paulo 10 (2012), pp. 308–317.
  • V. Roveri, L.L. Guimarães, W. Toma, and A.T. Correia, Occurrence and ecological risk assessment of pharmaceuticals and cocaine in the urban drainage channels of Santos beaches (São Paulo, Brazil): A neglected, but sensitive issue, Environ. Sci. Pollut. Res. 28 (2021), pp. 65595–65609. doi:10.1007/s11356-021-15249-8.
  • M. Huerta-Fontela, M.T. Galceran, and F. Ventura, Occurrence and removal of pharmaceuticals and hormones through drinking water treatment, Water Res. 45 (2011), pp. 1432–1442.
  • R. Tröger, H. Ren, D. Yin, C. Postigo, P.D. Nguyen, C. Baduel, and K. Wiberg, What’s in the water? – target and suspect screening of contaminants of emerging concern in raw water and drinking water from Europe and Asia, Water Res. 198 (2021), pp. 117099.
  • E. Fonseca, F. Hernández, M. Ibáñez, A. Rico, E. Pitarch, and L. Bijlsma, Occurrence and ecological risks of pharmaceuticals in a Mediterranean river in Eastern Spain, Environ. Int. 144 (2020), pp. 106004. doi:10.1016/j.envint.2020.106004.
  • K. Balakrishna, A. Rath, Y. Praveenkumarreddy, K.S. Guruge, and B. Subedi, A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies, Ecotoxicol. Environ. Saf. 137 (2017), pp. 113–120.
  • L.F. Angeles, S. Islam, J. Aldstadt, K.N. Saqeeb, M. Alam, M.A. Khan, and D.S. Aga, Retrospective suspect screening reveals previously ignored antibiotics, antifungal compounds, and metabolites in Bangladesh surface waters, Sci. Total Environ. 712 (2019), pp. 136285.
  • I.T. Cousins, C.A. Ng, Z. Wang, and M. Scheringer, Why is high persistence alone a major cause of concern? Environ. Sci. 21 (2019), pp. 781–792.
  • S.E. Hale, H.P.H. Arp, I. Schliebner, and M. Neumann, Getting in control of persistent, mobile and toxic (PMT) and very persistent and very mobile (vPvm) substances to protect water resources: Strategies from diverse perspectives, Environ. Sci. Eur. 34 (2022), pp. 22.
  • H. Chang, Y. Wan, S. Wu, Z. Fan, and J. Hu, Occurrence of androgens and progestogens in wastewater treatment plants and receiving river waters: Comparison to estrogens, Water Res. 45 (2011), pp. 732–740. doi:10.1016/j.watres.2010.08.046.
  • R.A. Willi, N. Salgueiro-González, S. Faltermann, T. Hettich, and K. Fent, Environmental glucocorticoids corticosterone, betamethasone and flumethasone induce more potent physiological than transcriptional effects in zebrafish embryos, Sci. Total Environ. 672 (2019), pp. 183–191. doi:10.1016/j.scitotenv.2019.03.426.
  • G.D. Alkimin, A.M.V.M. Soares, C. Barata, and B. Nunes, Evaluation of ketoprofen toxicity in two freshwater species: Effects on biochemical, physiological and population endpoints, Environ. Pollut. 265 (2020), pp. 114993.
  • V. Stancová, A. Ziková, Z. Svobodová, and W. Kloas, Effects of the non-steroidal anti-inflammatory drug(NSAID) naproxen on gene expression of antioxidant enzymes in zebrafish (Danio rerio), Environ. Toxicol. Pharmacol. 40 (2015), pp. 343–348. doi:10.1016/j.etap.2015.07.009.
  • M.M. Cosme, A.L. Lister, and G. Van Der Kraak, Inhibition of spawning in zebrafish (Danio rerio): Adverse outcome pathways of quinacrine and ethinylestradiol, Gen. Comp. Endocrinol. 219 (2015), pp. 89–101.
  • B.J. Young, G.C. López, D.S. Cristos, D.C. Crespo, G.M. Somoza, and P. Carriquiriborde, Intersex and liver alterations induced by long-term sublethal exposure to 17α-ethinylestradiol in adult male Cnesterodon decemmaculatus (Pisces: Poeciliidae), Environ. Toxicol. Chem. 36 (2016), pp. 1738–1745.
  • L.M. Jackson, B.E. Felgenhauer, and P.L. Klerks, Feminization, altered gonadal development, and liver damage in least killifish (Heterandria formosa) exposed to sublethal concentrations of 17α-ethinylestradiol, Ecotoxicol. Environ. Saf 170 (2019), pp. 331–337.
  • M. Saaristo, A. McLennan, C.P. Johnstone, B.O. Clarke, and B.B.M. Wong, Impacts of the antidepressant fluoxetine on the anti-predator behaviours of wild guppies (Poecilia reticulata), Aqua. Toxicol. 183 (2017), pp. 38–45.
  • J.L. Ward, V. Korn, A.N. Auxier, and H.L. Schoenfuss, Temperature and estrogen alter predator–prey interactions between fish species, Integr. Org. Biol 2. (2020), pp. obaa008.
  • T. Perondi, W. Michelon, A. Basso, J.K. Bohrer, A. Viancelli, T.G. Fonseca, and T.S. Pokrywiecki, Degradation of estriol (E3) and transformation pathways after applying photochemical removal processes in natural surface water, Water Sci. Technol. 82 (2020), pp. 1445–1453.
  • A.M. Pisetta, V. Roveri, L.L. Guimarães, T.M.N. de Oliveira, and A.T. Correia, First report on the occurrence of pharmaceuticals and cocaine in the coastal waters of Santa Catarina, Brazil, and its related ecological risk assessment, Environ. Sci. Pollut. Res. 29 (2022), pp. 63099–63111.
  • V. Roveri, L.L. Guimarães, and A.T. Correia, Computational modeling (in silico) methods combined with ecotoxicological experiments (in vivo) to predict the environmental risks of an antihistamine drug (loratadine), Drug Chem. Toxicol. (2023), pp. 1–12. doi:10.1080/01480545.2023.2232563.
  • Estimation Programs Interface Suite for Microsoft Windows, v. 4.11. The United States Environmental Protection Agency, Washington, DC, USA, 2017. Available at https://www.epa.gov/tsca-screening-tools/download-epi-suitetm-estimation-program-interface-v411.
  • QSAR Toolbox, Version 4.5. Organisation For Economic Co-Operation And Development, Paris, France, 2021. Available at http://www.qsartoolbox.org.
  • F. Misaghi, F. Delgosha, M. Razzaghmanesh, and B. Myers, Introducing a water quality index for assessing water for irrigation purposes: A case study of the Ghezel Ozan River, Sci. Total Environ. 589 (2017), pp. 107–116.
  • X. Nong, D. Shao, H. Zhong, and J. Liang, Evaluation of water quality in the south-to-north water diversion project of China using the water quality index (WQI) method, Water Res. 178 (2020), pp. 115781. doi:10.1016/j.watres.2020.115781.
  • V. Roveri, L.L. Guimarães, and A. Correia, A combined approach using water quality indexes and statistical analyses to assess the urban surface runoff: A case study in São Paulo Coastal Zone, Brazil, Anu. Inst. Geociênc. 46 (2023). doi:10.11137/1982-3908_2023_46_53026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.