30
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Anti-inflammatory action of new hybrid N-acyl-[1,2]dithiolo-[3,4-c]quinoline-1-thione

, ORCID Icon, ORCID Icon, , ORCID Icon, , , ORCID Icon, ORCID Icon & show all
Pages 343-366 | Received 12 Feb 2024, Accepted 18 Apr 2024, Published online: 22 May 2024

References

  • M. Nath, K. Bhattacharjee, and Y. Choudhury, Pleiotropic effects of anti-diabetic drugs: A comprehensive review, Eur. J. Pharmacol. 884 (2020), pp. 173349. doi:10.1016/j.ejphar.2020.173349.
  • P. Poornima, J.D. Kumar, Q. Zhao, M. Blunder, and T. Efferth, Network pharmacology of cancer: From understanding of complex interactomes to the design of multi-target specific therapeutics from nature, Pharmacol. Res. 111 (2016), pp. 290–302. doi:10.1016/j.phrs.2016.06.018.
  • Y. Peng, M. Ao, B. Dong, Y. Jiang, L. Yu, Z. Chen, C. Hu, and R. Xu, Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures, Drug Des. Devel. Ther. 15 (2021), pp. 4503–4525. doi:10.2147/DDDT.S327378.
  • T. Kenakin and E.L. Barker, Biased receptor signaling in drug discovery, Pharmacol. Rev. 71 (2019), pp. 267–315. doi:10.1124/pr.118.016790.
  • S.D.M. Brown and H.V. Lad, The dark genome and pleiotropy: Challenges for precision medicine, Mamm. Genome 30 (2019), pp. 212–216. doi:10.1007/s00335-019-09813-4.
  • J.B. Dahl, R.V. Nielsen, J. Wetterslev, L. Nikolajsen, K. Hamunen, V.K. Kontinen, M.S. Hansen, J.J. Kjer, and O. Mathiesen, Post-operative analgesic effects of paracetamol, NSAIDs, glucocorticoids, gabapentinoids and their combinations: A topical review, Acta Anaesthesiol. Scand. 58 Scandinavian Postoperative Pain Alliance (ScaPAlli), (2014), pp. 1165–1181. doi:10.1111/aas.12382.
  • A. Sinniah, S. Yazid, and R.J. Flower, From NSAIDs to glucocorticoids and beyond, Cells 10 (2021), pp. 3524. doi:10.3390/cells10123524.
  • A.J. Scheen, Retrait du rofecoxib (Vioxx): À propos de la sécurité cardiovasculaire des anti-inflammatoires non stéroïdiens cox-2 sélectifs [Withdrawal of rofecoxib (Vioxx): What about cardiovascular safety of COX-2 selective non-steroidal anti-inflammatory drugs?], Rev. Med. Liege 59 (2004), pp. 565–569.
  • J.M. Dogne, C.T. Supuran, and D. Pratico, Adverse cardiovascular effects of the coxibs, J. Med. Chem. 48 (2005), pp. 2251–2257. doi:10.1021/jm0402059.
  • G. Hijos-Mallada, C. Sostres, and F. Gomollon, NSAIDs, gastrointestinal toxicity and inflammatory bowel disease, Gastroenter. Hepatol. 45 (2022), pp. 215–222. doi:10.1016/j.gastrohep.2021.06.003.
  • D. Mehta and D.K. Bhargava, Non-steroidal anti-inflammatory drugs and gastrointestinal toxicity, Apollo Med. 7 (2010), pp. 251–262. doi:10.1016/S0976-0016(12)60018-0.
  • A. Eisinger, V. Sostre-Santiago, G. Kanagalingam, A. Jafroodifar, M.D. Ramos, and B. Sapkota, S3429: Iron deficiency anemia and small bowel strictures: Thinking beyond Crohn’s disease, Am. J. Gastroenterol. 117 (2022), pp. e2164. doi:10.14309/01.ajg.0000870356.14765.87.
  • J.J. P, S.L. Manju, K.R. Ethiraj, and G. Elias, Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: A structure-based approach, Eur. J. Pharm. Sci. 121 (2018), pp. 356–381. doi:10.1016/j.ejps.2018.06.003.
  • M.M.M. El-Miligy, A.K. Al-Kubeisi, M.G. Bekhit, S.R. El-Zemity, R.A. Nassra, and A.A. Hazzaa, Towards safer anti-inflammatory therapy: Synthesis of new thymol–pyrazole hybrids as dual COX-2/5-LOX inhibitors, J. Enz. Inhib. Med. Chem. 38 (2023), pp. 294–308. doi:10.1080/14756366.2022.2147164.
  • H. Kimura, Hydrogen sulfide and polysulfides as signaling molecules, Proc. Jpn. Acad. Ser. B, Phys. Biol. Sci. 91 (2015), pp. 131–159. doi:10.2183/pjab.91.131.
  • J.C. Mathai, A. Missner, P. Kügler, S.M. Saparov, M.L. Zeidel, J.K. Lee, and P. Pohl, No facilitator required for membrane transport of hydrogen sulfide, Proc. Natl. Acad. Sci. 106 (2009), pp. 16633–16638. doi:10.1073/pnas.0902952106.
  • M.S. Kasparek, D.R. Linden, M.E. Kreis, and M.G. Sarr, Gasotransmitters in the gastrointestinal tract, Surgery 143 (2008), pp. 455–459. doi:10.1016/j.surg.2007.10.017.
  • H. Kimura, Hydrogen sulfide and polysulfides as biological mediators, Molecules 19 (2014), pp. 16146–16157. doi:10.3390/molecules191016146.
  • L. Rochette and C. Vergely, Le sulfure d’hydrogène (H2S), un gaz endogène à l’odeur d’oeuf pourri, pourrait être un régulateur des fonctions cardiovasculaires [Hydrogen sulfide (H2S), an endogenous gas with odor of rotten eggs might be a cardiovascular function regulator], Ann. Cardiol. Angeiol. 57 (2008), pp. 136–138. doi:10.1016/j.ancard.2008.02.014.
  • H.S. Smith, Hydrogen sulfide’s involvement in modulating nociception, Pain Physician 12 (2009), pp. 901–910. doi:10.36076/ppj.2009/12/901.
  • G. Cirino, C. Szabo, and A. Papapetropoulos, Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs, Physiol. Rev. 103 (2023), pp. 31–276. doi:10.1152/physrev.00028.2021.
  • M. Lavu, S. Bhushan, and D.J. Lefler, Hydrogen sulfide-mediated cardioprotection: Mechanisms and therapeutic protection, Clin. Sci. 120 (2011), pp. 219–229. doi:10.1042/CS20100462.
  • A. Nakao, R. Sugimoto, T.R. Billiar, and K.R. McCurry, Therapeutic antioxidant medical gas, J. Clin. Biochem. Nutr. 44 (2009), pp. 1–13. doi:10.3164/jcbn.08-193R.
  • G. Wei, C. Ze-Yu, and Z. Yi-Zhun, Hydrogen sulfide and translational medicine, Acta Pharmacol. Sinica 34 (2013), pp. 1284–1291. doi:10.1038/aps.2013.127.
  • R. Wang, Two’s company, three’s a crowd: Can H 2 S be the third endogenous gaseous transmitter? Faseb J. 16 (2002), pp. 1792–1798. doi:10.1096/fj.02-0211hyp.
  • N.I. Tkacheva, S.V. Morozov, B.B. Lomivorotov, and I.A. Grigor’ev, Molecular biological problems of drug design and mechanism of drug action: Organic hydrogen sulfide donor compounds with cardioprotective properties (review), Pharm. Chem. J. 51 (2017), pp. 165–174. doi:10.1007/s11094-017-1576-5.
  • L. Li, G. Rossoni, A. Sparatore, L.C. Lee, P. Del Soldato, and P.K. Moore, Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative, Free. Radic. Biol. Med. 42 (2007), pp. 706–719. doi:10.1016/j.freeradbiomed.2006.12.011.
  • R. Kodela, M. Chattopadhyay, C.A. Velázquez-Martínez, and K. Kashfi, NOSH-aspirin (NBS-1120), a novel nitric oxide- and hydrogen sulfide-releasing hybrid has enhanced chemo-preventive properties compared with aspirin, is gastrointestinal safe with all the classic therapeutic indications, Biochem. Pharmacol. 98 (2015), pp. 564–572. doi:10.1016/j.bcp.2015.09.014.
  • S. Archer, The chemotherapy of shistosomiasis, Annu. Rev. Pharmacol. Toxicol. 25 (1985), pp. 485–508. doi:10.1146/annurev.pa.25.040185.002413.
  • W.T. Kensler and K.J. Helzlsouer, Oltipraz: Clinical opportunities for cancer chemoprevention, J. Cell. Biochem. 59 (1995), pp. 101–107. doi:10.1002/jcb.240590813.
  • G.J. Kelloff, C.W. Boone, J.A. Crowell, V.E. Steele, and R. Lubet, Chemopreventive drug development: Perspectives and progress, Cancer Epidemiol. Biomark. Prev. 3 (1994), pp. 85–98.
  • A.B. Benson, O.I. Olopade, M.J. Ratain, A. Rademaker, S. Mobarahan, L. Stucky-Marshall, and S. French, Chronic daily low dose of 4-methyl-5-(2-pyrazinyl)-1,2-dithiole-3-thione (oltipraz) in patients with previously resected colon polyps and first-degree female relatives of breast cancer patients, Clin. Cancer Res. 6 (2000), pp. 3870–3877.
  • V. Kartsev, S.Kh. Shikhaliev, A. Geronikaki, S.M. Medvedeva, I.V. Ledenyova, M., Yu. Krysin, A. Petrou, A. Ciric, J. Glamoclija, and M. Sokovic, Appendix A. dithioloquinolinethiones as new potential multitargeted antibacterial and antifungal agents: Synthesis, biological evaluation and molecular docking studies, Eur. J. Med. Chem. 175 (2019), pp. 201–214. doi:10.1016/j.ejmech.2019.04.046.
  • S.M. Medvedeva and K.S. Shikhaliev, Synthesis of 4,5-dihydro-1h-[12]dithiolo[34-c]quinoline-1-thione derivatives and their application as protein kinase inhibitors, Molecules 27 (2022), pp. 4033. doi:10.3390/molecules27134033.
  • A. Sulimov, I. Ilin, D. Kutov, K. Shikhaliev, D. Shcherbakov, O. Pyankov, N. Stolpovskaya, S. Medvedeva, and V. Sulimov, New chemicals suppressing SARS-CoV-2 replication in cell culture, Molecules 27 (2022), pp. 5732. doi:10.3390/molecules27175732.
  • S.M. Medvedeva, S.Kh. Shikhaliev, A.A. Geronikaki, P.I. Savosina, D.S. Druzhilovskiy, and V.V. Poroikov, Computer-aided discovery of pleiotropic effects: Anti-inflammatory action of dithioloquinolinethiones as a case study, SAR QSAR Environ. Res. 33 (2022), pp. 273–287. doi:10.1080/1062936X.2022.2064547.
  • M. Merlani, N. Nadaraia, N. Barbakadze, L. Amiranashvili, M. Kakhabrishvili, A. Petrou, T. Carević, J. Glamočlija, and A. Geronikaki, Steroidal hydrazones as antimicrobial agents: Biological evaluation and molecular docking studies, SAR QSAR Environ. Res. 35 (2024), pp. 137–155. doi:10.1080/1062936X.2024.2309183.
  • P. Theodosis-Nobelos, G. Papagiouvannis, P.N. Kourounakis, and E.A. Rekka, Active anti-inflammatory and hypolipidemic derivatives of lorazepam, Molecules 24 (2019), pp. 3277. doi:10.3390/molecules24183277.
  • A. Geronikaki, P. Eleftheriou, D. Hadjipavlou-Litina, D. Filimonov, and V. Poroikov, Computer-aided discovery of potential anti-inflammatory thiazolidinones with dual 5-LOX/COX inhibition, J. Med. Chem. 51 (2008), pp. 1601–1609. doi:10.1021/jm701496h.
  • H.M. Berman, K. Henrick, and H. Nakamura, Announcing the worldwide protein data bank, Nat. Struct. Biol. 10 (2003), pp. 980. doi:10.1038/nsb1203-980.
  • G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, and A.J. Olson, Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem. 16 (2009), pp. 2785–2791. doi:10.1002/jcc.21256.
  • G. Wolber and T. Langer, LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters, J. Chem. Inf. Model. 45 (2005), pp. 160–169. doi:10.1021/ci049885e.
  • DrugBank database, statistics, 2023. Available at https://go.drugbank.com/stats
  • D.S. Wishart, C. Knox, A.C. Guo, D. Cheng, S. Shrivastava, D. Tzur, B. Gautam, and M. Hassanali, DrugBank: A knowledgebase for drugs, drug actions and drug targets, Nucleic Acids Res. 36 (2008), pp. D901–D906. doi:10.1093/nar/gkm958.
  • D. Filimonov, D. Druzhilovskiy, A. Lagunin, T. Gloriozova, A. Rudik, A. Dmitriev, P. Pogodin, and V. Poroikov, Computer-aided prediction of biological activity spectra for chemical compounds: Opportunities and limitations, Biomed. Chem. RM 1 (2018), pp. e00004. doi:10.18097/BMCRM00004.
  • D. Filimonov, V. Poroikov, Y. Borodina, and T. Gloriozova, Chemical similarity assessment through multilevel neighborhoods of atoms: Definition and comparison with the other descriptors, J. Chem. Inf. Comput. Sci. 39 (1999), pp. 666–670. doi:10.1021/ci980335o.
  • A.A. Lagunin, A.V. Zakharov, D.A. Filimonov, and V.V. Poroikov, A new approach to QSAR modelling of acute toxicity, SAR QSAR Environ. Res. 18 (2007), pp. 285–298. doi:10.1080/10629360701304253.
  • D.S. Druzhilovskiy, L.A. Stolbov, P.I. Savosina, P.V. Pogodin, D.A. Filimonov, A.V. Veselovsky, K. Stefanisko, N.I. Tarasova, M.C. Nicklaus, and V.V. Poroikov, Computational approaches to identify a hidden pharmacological potential in large chemical libraries, Sup. Front. Innov. 7 (2020), pp. 57–76. doi:10.14529/jsfi200306.
  • ChemAxon instant J Chem documentation, performing an overlap analysis, 2023. Available at https://docs.chemaxon.com/display/docs/performing-an-overlap-analysis.md
  • ChemAxon instant JChem documentation, database table entity, 2023. Available at https://docs.chemaxon.com/display/docs/editing-entities.md
  • ChemAxon cross-product documentation, chemical hashed fingerprint, 2023. Available at https://docs.chemaxon.com/display/docs/chemical-hashed-fingerprint.md
  • ChemAxon JChem base documentation, similarity search, 2023. Available at https://docs.chemaxon.com/display/docs/similarity-search.md
  • BioSolveIT GmbH, infiniSee version 5.0.1, 2023. Available at https://www.biosolveit.de/products/infinisee/
  • M. Rarey and M. Stahl, Similarity searching in large combinatorial chemistry spaces, J. Comput. Aided Mol. Des. 15 (2001), pp. 497–520. doi:10.1023/A:1011144622059.
  • S. Peterson, A. Jalil, K. Beard, M. Kakara, and S. Sriwastava, Updates on efficacy and safety outcomes of new and emerging disease modifying therapies and stem cell therapy for multiple sclerosis: A review, Mult. Scler. Relat. Disord. 68 (2022), pp. 104125. doi:10.1016/j.msard.2022.104125.
  • C.Y. Fu, C.R. Zhong, Y.T. Yang, M. Zhang, W.A. Li, Q. Zhou, and F. Zhang, Sirt1 activator SRT2104 protects against oxygen-glucose deprivation/reoxygenation-induced injury via regulating microglia polarization by modulating Sirt1/NF-κB pathway, Brain Res. 1753 (2021), pp. 147236. doi:10.1016/j.brainres.2020.147236.
  • IUPHAR/BPS guide to pharmacology DataBase, BMS-986142 record, 2023. Available at https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=structure&ligandId=9857
  • K. Miyazawa, Y. Iimori, M. Makino, T. Mikami, and K. Miyasaka, Effects of some non-steroidal anti-inflammatory drugs and other agents on cyclooxygenase and lipoxygenase activities in some enzyme preparations, Jpn. J. Pharmacol. 38 (1985), pp. 199–205. doi:10.1254/jjp.38.199.
  • L. Levy, The antiinflammatory action of some compounds with antioxidant properties, Inflammation 1 (1976), pp. 333–345. doi:10.1007/BF00920335.
  • C. Reddelin and A. Thurm, Über das angebliche Aceton-anil, Berichte der deutschen chemischen Gesellschaft (A and B Series) 65 (1932), pp. 1511–1521. doi:10.1002/cber.19320650855.
  • J.P. Brown, Reactions of 2,2-dialkyl-1,2-dihydroquinolines. Part IV. 4,5-dihydro-4,4-dimethyl-1H- 12-dithiolo[3,4-c]quinoline-1-thiones, J. Chem. Soc. Organic (1968), pp. 1074–1075. doi:10.1039/j39680001074.
  • S.M. Medvedeva, M.E. Plaksina, and K.S. Shikhaliev, The synthesis of 6-R-224-trimethyl-1,2-dihydroquinoline- and 6-R-4-R’-2,2,4-trimethyl-1,2,34-tetrahydroquinoline-8-carboxylic acids – the structural analogues of helquinoline, J. Org. Pharm. Chem. 13 (2015), pp. 21–25. doi:10.24959/ophcj.15.847.
  • K.S. Shihaliev, Z.V. Shmyreva, and L.P. Zalukaev Acylation of 4,5-dihydro-4,4-dimetil-5H-2,3-ditiolo[54-c]quihinolin-1-thion, Zhurnal Organicheskoj Himii 24 (1988), pp. 232–233. doi:10.1002/chin.198821209.
  • S. Kh.Shikhaliev, S.M. Medvedeva, V.V. Pigarev, A.S. Solov’ev, and G.V. Shatalov, New heterocyclic compounds derived from 8-r-4,4-dimethyl-23-dithiolo-[5,4-c]quinoline-1-thiones, Russ. J. Gen. Chem. 70 (2000), pp. 450–452.
  • R. Vinegar, W. Schreiber, and R. Hugo, Biphasic development of carrageenin edema in rats, J. Pharmacol. Exp. Ther. 166 (1969), pp. 96–103.
  • P. Theodosis-Nobelos, G. Marc, and E.A. Rekka, Design, synthesis and evaluation of antioxidant and NSAID derivatives with antioxidant, anti-inflammatory and plasma lipid lowering effects, Molecules 29 (2024), pp. 1016–1036. doi:10.3390/molecules29051016.
  • P. Tziona, P. Theodosis-Nobelos, G. Papagiouvannis, A. Petrou, C. Drouza, and E.A. Rekka, Enhancement of the anti-inflammatory activity of NSAIDs by their conjugation with 34,5-trimethoxybenzyl alcohol, Molecules 27 (2022), pp. 2014–2032. doi:10.3390/molecules27072104.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.