80
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Potential antioxidant, α-glucosidase, butyrylcholinesterase and acetylcholinesterase inhibitory activities of major constituents isolated from Alpinia officinarum hance rhizomes: computational studies and in vitro validation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 391-410 | Received 28 Feb 2024, Accepted 03 May 2024, Published online: 21 May 2024

References

  • N.G. Attallah, S.A. El-Sherbeni, A.H. El-Kadem, E. Elekhnawy, T.A. El-Masry, E.I. Elmongy, N. Altwaijry, and W.A. Negm, Elucidation of the metabolite profile of Yucca gigantea and assessment of its cytotoxic, antimicrobial, and anti-inflammatory activities, Molecules 27 (2022), pp. 1329. doi:10.3390/molecules27041329.
  • B. Sultana, Z. Hussain, M. Hameed, and M. Mushtaq, Antioxidant activity among different parts of aubergine (Solanum melongena L.), Pak. J. Bot. 45 (2013), pp. 1443–1448.
  • M. Vaz, V. Silva, C. Monteiro, and S. Silvestre, Role of aducanumab in the treatment of Alzheimer’s disease: Challenges and opportunities, Clin. Interv. Aging 17 (2022), pp. 797–810. doi:10.2147/CIA.S325026.
  • A. Haake, K. Nguyen, L. Friedman, B. Chakkamparambil, and G.T. Grossberg, An update on the utility and safety of cholinesterase inhibitors for the treatment of Alzheimer’s disease, Expert Opin. Drug Saf. 19 (2020), pp. 147–157. doi:10.1080/14740338.2020.1721456.
  • F. Fernandes, M.F. Barroso, A.D. Simone, E. Emriková, M. Dias-Teixeira, J.P. Pereira, J. Chlebek, V.C. Fernandes, F. Rodrigues, and V. Andrisano, Multi-target neuroprotective effects of herbal medicines for Alzheimer’s disease, J. Ethnopharmacol. 290 (2022), pp. 115107. doi:10.1016/j.jep.2022.115107.
  • S. Kumar, A. Mittal, D. Babu, and A. Mittal, Herbal medicines for diabetes management and its secondary complications, Curr. Diabetes Rev. 17 (2021), pp. 437–456. doi:10.2174/18756417MTExfMTQ1z.
  • U. Hossain, A.K. Das, S. Ghosh, and P.C. Sil, An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications, Food Chem. Toxicol. 145 (2020), pp. 111738. doi:10.1016/j.fct.2020.111738.
  • H. Kashtoh and K.-H. Baek, Recent updates on phytoconstituent alpha-glucosidase inhibitors: An approach towards the treatment of type two diabetes, Plants 11 (2022), pp. 2722. doi:10.3390/plants11202722.
  • M.T. Khayat, H.A. Abbas, T.S. Ibrahim, A.N. Khayyat, M. Alharbi, K.M. Darwish, S.S. Elhady, E.-S. Khafagy, M.K. Safo, and W.A. Hegazy, Anti-Quorum Sensing activities of Gliptins against Pseudomonas aeruginosa and Staphylococcus aureus, Biomedicines 10 (2022), pp. 1169. doi:10.3390/biomedicines10051169.
  • S.-W. Lim, H.-S. Loh, K.-N. Ting, T.D. Bradshaw, and Z.N. Allaudin, Reduction of MTT to purple formazan by vitamin E isomers in the absence of cells, Trop. Life Sci. Res. 26 (2015), pp. 111.
  • I.B. Abubakar, I. Malami, Y. Yahaya, and S.M. Sule, A review on the ethnomedicinal uses, phytochemistry and pharmacology of Alpinia officinarum Hance, J. Ethnopharmacol. 224 (2018), pp. 45–62. doi:10.1016/j.jep.2018.05.027.
  • D. Liu, J. Liang, and Y. Liu, A new diarylheptanoid from the rhizomes of, Chem. Nat. Compd. 52 (2016), pp. 824–826. doi:10.1007/s10600-016-1787-0.
  • M.H. Baig, K. Ahmad, G. Rabbani, M. Danishuddin, and I. Choi, Computer aided drug design and its application to the development of potential drugs for neurodegenerative disorders, Curr. Neuropharmacol. 16 (2018), pp. 740–748. doi:10.2174/1570159X15666171016163510.
  • R.K. Pathak, D.B. Singh, M. Sagar, M. Baunthiyal, and A. Kumar, Computational approaches in drug discovery and design, in Computer-Aided Drug Design, Springer, D.B. Singh, Springer, Singapore, (2020), pp. 1–21.
  • M.B. Arnao, A. Cano, and M. Acosta, The hydrophilic and lipophilic contribution to total antioxidant activity, Food Chem. 73 (2001), pp. 239–244. doi:10.1016/S0308-8146(00)00324-1.
  • Z. Liang, L. Cheng, G.-Y. Zhong, R.H. Liu, and G. Pintus, Antioxidant and antiproliferative activities of twenty-four Vitis vinifera grapes, PLOS ONE 9 (2014), pp. e105146. doi:10.1371/journal.pone.0105146.
  • J.S. Santos, V.R.A. Brizola, and D. Granato, High-throughput assay comparison and standardization for metal chelating capacity screening: A proposal and application, Food Chem. 214 (2017), pp. 515–522. doi:10.1016/j.foodchem.2016.07.091.
  • N.S. Elkholy, M.L.M. Hariri, H.S. Mohammed, and M.W. Shafaa, Lutein and β-carotene characterization in free and nanodispersion forms in terms of antioxidant activity and cytotoxicity, J. Pharm. Innov. 18 (2023), pp. 1–18.
  • H.M. Abdallah, A.T. Kashegari, A.A. Shalabi, K.M. Darwish, A.M. El-Halawany, M.M. Algandaby, S.R. Ibrahim, G.A. Mohamed, A.B. Abdel-Naim, and A.E. Koshak, Phenolics from Chrozophora oblongifolia aerial parts as inhibitors of α-glucosidases and advanced glycation end products: In-vitro assessment, Molec. Docking Dyn. Stud. Biol. 11 (2022), pp. 762. doi:10.3390/biology11050762.
  • H. Osman, R.S. Kumar, A. Basiri, and V. Murugaiyah, Ionic liquid mediated synthesis of mono-and bis-spirooxindole-hexahydropyrrolidines as cholinesterase inhibitors and their molecular docking studies, Biorg. Med. Chem. 22 (2014), pp. 1318–1328. doi:10.1016/j.bmc.2014.01.002.
  • G.L. Ellman, K.D. Courtney, V. Andres Jr, and R.M. Featherstone, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol. 7 (1961), pp. 88–95. doi:10.1016/0006-2952(61)90145-9.
  • G.-Z. Dong, S.Y. Lee, H.-Y. Zhao, Y.-I. Lee, J.H. Jeong, R. Jeon, H.J. Lee, and J.-H. Ryu, Diarylheptanoids from lesser galangal suppress human colon cancer cell growth through modulating Wnt/β-catenin pathway, J. Funct. Foods 18 (2015), pp. 47–57. doi:10.1016/j.jff.2015.06.059.
  • G. Tang, X. Dong, X. Huang, X.-J. Huang, H. Liu, Y. Wang, W.-C. Ye, and L. Shi, A natural diarylheptanoid promotes neuronal differentiation via activating ERK and PI3K-Akt dependent pathways, Neuroscience 303 (2015), pp. 389–401. doi:10.1016/j.neuroscience.2015.07.019.
  • H. Hongrui, H. Jidong, C. Ling, H. Yanran, and W. Chunxiao, Isolation and purification of galangin and kaempferide from Alpinia officinarum Hance by preparative high-performance liquid chromatography, Chin. J. Chromatogr. 34 (2016), pp. 591. doi:10.3724/SP.J.1123.2016.03009.
  • K.V. Peter, Handbook of Herbs and Spices, Woodhead Publishing Series in Food Science, Technology and Nutrition 3 (2006), pp. 357–364. doi:10.1533/9781845691717.3.357.
  • C. Albano, C. Negro, N. Tommasi, C. Gerardi, G. Mita, A. Miceli, L.D. Bellis, and F. Blando, Betalains, phenols and antioxidant capacity in cactus pear [Opuntia ficus-indica (L.) mill.] fruits from Apulia (South Italy) genotypes, Antioxidants 4 (2015), pp. 269–280. doi:10.3390/antiox4020269.
  • S.E. Opitz, S. Smrke, B.A. Goodman, M. Keller, S. Schenker, and C. Yeretzian, Antioxidant generation during coffee roasting: A comparison and interpretation from three complementary assays, Foods 3 (2014), pp. 586–604. doi:10.3390/foods3040586.
  • H.A. Suleria, C.J. Barrow, and F.R. Dunshea, Screening and characterization of phenolic compounds and their antioxidant capacity in different fruit peels, Foods 9 (2020), pp. 1206. doi:10.3390/foods9091206.
  • X. Zhang, X. Li, H. Li, M. Zhou, Y. Zhang, W. Lai, X. Zheng, F. Bai, and J. Zhang, Investigation of the potential mechanism of Alpinia officinarum hance in improving type 2 diabetes mellitus based on network pharmacology and molecular docking, Evid.-Based Complement. Altern. Med. (2023). doi:10.1155/2023/4934711.
  • W.E. Putra, A. Hidayatullah, D. Widiastuti, M.F. Heikal, and W.O. Salma, Virtual screening of natural ⍺-glucosidase inhibitors from Alpinia galangal bioactive copounds as anti-diabetic candidate, J. Microbiol. Biotechnol. Food Sci. (2023), pp. e4353–e4353. doi:10.55251/jmbfs.4353.
  • K. Chiba, H. Ichizawa, S. Kawai, and T. Nishida, α-Glucosidase inhibition activity by cyclic diarylheptanoids from Alnus sieboldiana, J. Wood Chem. Technol. 33 (2013), pp. 44–51. doi:10.1080/02773813.2012.723778.
  • X.-F. He, H.-M. Wang, C.-A. Geng, J. Hu, X.-M. Zhang, Y.-Q. Guo, and J.-J. Chen, Amomutsaokols A–K, diarylheptanoids from amomum tsao-ko and their α-glucosidase inhibitory activity, Phytochemistry 177 (2020), pp. 112418. doi:10.1016/j.phytochem.2020.112418.
  • T. Tuzimski, A. Petruczynik, M. Szultka-Młyńska, M. Sugajski, and B. Buszewski, Isoquinoline alkaloid contents in Macleaya cordata extracts and their acetylcholinesterase and butyrylcholinesterase inhibition, Molecules 27 (2022), pp. 3606. doi:10.3390/molecules27113606.
  • F. Nachon, E. Carletti, C. Ronco, M. Trovaslet, Y. Nicolet, L. Jean, and P.-Y. Renard, Crystal structures of human cholinesterases in complex with huprine W and tacrine: Elements of specificity for anti-Alzheimer’s drugs targeting acetyl-and butyryl-cholinesterase, Biochem. J. 453 (2013), pp. 393–399. doi:10.1042/BJ20130013.
  • A.J. Guo, H.Q. Xie, R.C. Choi, K.Y. Zheng, C.W. Bi, S.L. Xu, T.T. Dong, and K.W. Tsim, Galangin, a flavonol derived from rhizoma Alpiniae officinarum, inhibits acetylcholinesterase activity in vitro, Chem.-Biol. Interact. 187 (2010), pp. 246–248. doi:10.1016/j.cbi.2010.05.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.