263
Views
9
CrossRef citations to date
0
Altmetric
Technical Notes

Experimental investigation on cyclic deformation behavior of soft marine clay involved principal stress rotation

, , &
Pages 571-577 | Received 17 Apr 2016, Accepted 21 May 2016, Published online: 25 Jul 2016

References

  • Cai, Y., C. Gu, J. Wang, C. H. Juang, C. Xu, and X. Hu. 2013. One-way cyclic triaxial behavior of saturated clay: comparison between constant and variable confining pressure. Journal of Geotechnical and Geoenvironmental Engineering 139 (5): 797–809. doi:10.1061/(asce)gt.1943-5606.0000760
  • Gu, C., J. Wang, Y. Cai, Z. Yang, and Y. Gao. 2012. Undrained cyclic triaxial behavior of saturated clays under variable confining pressure. Soil Dynamics and Earthquake Engineering 40: 118–28. doi:10.1016/j.soildyn.2012.03.011
  • Guo, L., J. Wang, Y. Q. Cai, H. L. Liu, Y. F. Gao, and H. L. Sun. 2013. Undrained deformation behavior of saturated soft clay under long-term cyclic loading. Soil Dynamics and Earthquake Engineering 50: 28–37. doi:10.1016/j.soildyn.2013.01.029
  • Hight, D. W., A. Gens, and M. J. Symes. 1983. The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils. Geotechnique 33 (4): 355–83. doi:10.1680/geot.1983.33.4.355
  • Ishihara, K., and I. Towhata. 1983. Sand response to cyclic rotation of principal stress directions as induced by wave loads. Soils and Foundations 23 (4): 11–26. doi:10.3208/sandf1972.23.4_11
  • Kirkgard, M. M., and P. V. Lade. 1991. Anisotropy of normally consolidated San Francisco bay mud. Geotechnical Testing Journal 14 (3): 231–46. doi:10.1520/gtj10568j
  • Lade, P. V., and J. M. Duncan. 1976. Stress-path dependent behavior of cohesionless soil. Journal of the Geotechnical Engineering Division, ASCE 102 (GT1): 42–48.
  • Lambe, W. T. 1967. Stress path method. Journal of the Soil Mechanics and Foundations Division 93 (6): 309–31.
  • Li, L. L., H. B. Dan, and L. Z. Wang. 2011. Undrained behavior of natural marine clay under cyclic loading. Ocean Engineering 38 (16): 1792–805. doi:10.1016/j.oceaneng.2011.09.004
  • Miura, K., S. Miura, and S. Toki. 1986. Deformation behavior of anisotropic dense sand under principal stress rotation. Soils and Foundations 26 (1): 36–52. doi:10.3208/sandf1972.26.36
  • Nagaraj, T. S., M. K. Murthy, and A. Sridharan. 1981. Incremental loading device for stress path and strength testing of soils. Geotechnical Testing Journal 4 (2): 74–78. doi:10.1520/gtj10769j
  • Nakata, K., M. Hyodo, H. Murata, and N. Yasufuku. 1998. Flow deformation of sands subjected to principal stress rotation. Soils and Foundations 38 (2): 115–28. doi:10.3208/sandf.38.2_115
  • Robert Lo S. C., and I. Kenneth Lee. 1990. Response of granular soil along constant stress increment ratio path. Journal of Geotechnical Engineering 116 (3): 355–76. doi:10.1061/(asce)0733-9410(1990)116:3(355)
  • Shen, Y., J. Zhou, X. N. Gong, and H. L. Liu. 2008. Intact soft clay’s critical response to dynamic stress paths on different combinations of principal stress orientation. Journal of Central South University of Technology 15: 147–54. doi:10.1007/s11771-008-0450-8
  • Tong, Z. X., J. M. Zhang, Y. L. Yu, and G. Zhang. 2010. Drained deformation behavior of anisotropic sands during cyclic rotation of principal stress axes. Journal of Geotechnical and Geoenvironmental Engineering 136 (11): 1509–18. doi:10.1061/(asce)gt.1943-5606.0000378
  • Towhata, I., and K. Ishihara. 1985. Undrained strength of sand undergoing cyclic rotation of principal stress axes. Soils and Foundations 25: 135–47. doi:10.3208/sandf1972.25.2_135
  • Wang, J., Y. Cai, and F. Yang. 2013. Effects of initial shear stress on dynamic behavior of saturated soft clay. Marine Georesources & Geotechnology 31: 86–106.
  • Wang, J., L. Guo, Y. Cai, C. Xu, and C. Gu. 2013. Strain and pore pressure development on soft marine clay in triaxial tests with a large number of cycles. Ocean Engineering 74: 125–32. doi:10.1016/j.oceaneng.2013.10.005
  • Wang, Y. K., L. Guo, Y. F. Gao, Y. Qiu, X. Q. Hu, and Y. Zhang. 2016. Anisotropic drained deformation behavior and shear strength of natural soft marine clay. Marine Georesources & Geotechnology 34(5): 493–502. doi:10.1080/1064119x.2015.1081653
  • Xiao, J., C. H. Juang, K. Wei, K. Wei, and S. Q. Xu. 2013. Effects of principal stress rotation on the cumulative deformation of normally consolidated soft clay under subway traffic loading. Journal of Geotechnical and Geoenvironmental Engineering 140 (4): 04013046. doi:10.1061/(asce)gt.1943-5606.0001069
  • Yang, Z. X., X. S. Li, and J. Yang. 2007. Undrained anisotropy and rotational shear in granular soil. Geotechnique 57 (4): 371–84. doi:10.1680/geot.2007.57.4.371
  • Zhou, J., and C. J. Xu. 2014. Impact of shear stress on strain and pore water pressure behavior of intact soft clay under principal stress rotation. Geotechnical Testing Journal 37 (3): 20120189. doi:10.1520/gtj20120189

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.