236
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of compression index of marine fine-grained soils by the use of index tests

&
Pages 548-570 | Received 02 Mar 2016, Accepted 11 Jun 2016, Published online: 20 Sep 2016

References

  • Abdel-Gawad, S. T. 1980. Correlation between geotechnical and acoustic properties of marine sediments – Outer Placentia Bay, Newfoundland. MSc. thesis, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, Canada.
  • Adams, A. L. 2011. Laboratory evaluation of constant rate of strain and constant head techniques for measurement of the hydraulic conductivity of fine grained soils. MSc. thesis, Department of Civil and Environmental Engineering, MIT, Cambridge, MA.
  • Ag, A., and A. Silva. 1998. Consolidation and permeability behavior of high porosity Baltic seabed sediments. Geotechnical Testing Journal 21 (3):185–94. doi:10.1520/gtj10892j
  • Al-Khafaji, A. W. N., and O. B. Andersland. 1992. Equations for compression index approximation. Journal of Geotechnical and Geoenvironmental Engineering 118 (1):148–53. doi:10.1061/(asce)0733-9410(1992)118:1(148)
  • Ali, F., and E. A. S. Al-Samaraee. 2013. Field behavior and numerical simulation of coastal bund on soft marine clay loaded to failure. Electronic Journal of Geotechnical Engineering 18:4027–42.
  • Ali, K. 2013. The role of the Tyrrell Sea aquitard and bioherms in the hydrogeology of the James Bay lowlands under dewatering conditions. MSc. thesis, Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, ON, Canada.
  • Almeida, M. S. S., M. M. Futai, and W. A. Lacer. 2008. Laboratory behaviour of Rio de Janeiro soft clays. Part 1: Index and compression properties. Soils and Rocks, São Paulo 31 (2):69–75.
  • Almeida, M. S. S., P. E. L. Santa Maria, I. S. M. Martins, A. P. Spotti, and L. B. M. Coelho 2000. Consolidation of a very soft clay with vertical drains. Géotechnique 50 (6):633–43. doi:10.1680/geot.2000.50.6.633
  • Alshawmar, F. 2014. Evaluation of compressibility, anisotropy and at-rest lateral earth pressure in Champlain Sea clays. MSc. thesis, Department of Civil and Environmental Engineering, Carleton University, Ottawa, ON, Canada.
  • Altman, N., and M. Krzywinski. 2016. Points of significance: Regression diagnostics. Nature Methods 13 (5):385–86. doi:10.1038/nmeth.3854
  • ASTM 2005. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. D4318-05, American Society for Testing and Materials, West Conshohocken, PA.
  • Amin, J. M., M. R. Yaha, J. Ahmed, A. A. Kassim, A. Jamaludin, and J. Jaadil. 1997. Prediction and determination of undrained shear strength of soft clay at Bukit Raja. Pertanika Journal of Science and Technology 5 (1):111–26.
  • Ayan, K. D. J. 1985. Undrained triaxial strength-deformation behavior of Harrison Bay Arctic silts. MSc. thesis, Department of Civil and Environmental Engineering, MIT, Cambridge, MA.
  • Azzouz, A. S., R. J. Krizek, and R. B. Corotis. 1976. Regression analysis of soil compressibility. Soils & Foundations 16 (2):19–29.
  • Bay, J. A., L. R. Anderson, T. M. Colocino, and A. S. Budge. 2005. Evaluation SHANSEP parameters for soft Bonneville clays. Report No. UT-03.13, Utah Department of Transportation Research and Development Division, Utah.
  • Bergado, D. T., P. V. Long, and A. S. Balasubramaniam. 1996. Compressibility and flow parameters from PVD improved soft Bangkok clay. Geotechnical Engineering Journal 27 (1):1–20.
  • Bertok, J. 1987. Settlement of embankments and structures at Vancouver International Airport. Canadian Geotechnical Journal 24 (1):72–80. doi:10.1139/t87-007
  • Bhat, S. T., B. U. Nayak, and R. L. Nail. 1991. Geotechnical properties of Karwar marine clay. Indian Geotechnical Journal 21 (3):249–55.
  • Biscontin, G., S. Cola, J. M. Pestana, and P. Simonini. 2007. Unified compression model for Venice Lagoon natural silts. Journal of Geotechnical and Geoenvironmental Engineering 133 (8):932–42. doi:10.1061/(asce)1090-0241(2007)133:8(932)
  • Bjerrum, L. 1967. Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings. Géotechnique 17 (2):81–118. doi:10.1680/geot.1967.17.2.83
  • Blasco, S., R. Bennett, T. Brent, M. Burton, P. Campbell, E. Carr, R. Covill, S. Dallimore, E. Davies, J. Hughes-Clarke, D. Issler, L. Leonard, K. MacKillop, S. Mazzotti, E. Patton, G. Rogers, J. Shearer, and M. White. 2013. 2010 State of knowledge: Beaufort Sea seabed geohazards associated with offshore hydrocarbon development. Geological Survey of Canada, Ottawa, 340 (Open File 6989).
  • Bonaparte, R., and J. K. Mitchell. 1979. The properties of San Francisco bay mud at Hamilton Air Force Base. Geotechnical Engineering Research Report, Department of Civil Engineering, University of California, Berkeley, CA.
  • Bowles, J. E. 1996. Foundation analysis and design, 5th ed. New York: McGraw-Hill.
  • Bryant, W., A. Wetzel, and W. Sweet 1986. Geotechnical properties of intraslope basin sediments, Gulf of Mexico, deep sea drilling project leg 96, site 619. Interim Report, Deep Sea Drilling Project 96:819–24.
  • Busch, W. H. 1981. The physical properties, consolidation behavior, stability of the sediments of the Peru-Chile continental margin. PhD. thesis, School of Oceanography, Oregon State University, Corvallis.
  • Chai, J., and J. P. Carter. 2011. Deformation analysis in soft ground improvement, 247. London: Springer.
  • Chai, J. C., P. M. A. Agung, H. Hino, T. Igaya, and J. P. Carter. 2011. Estimating hydraulic conductivity from piezocone soundings. Géotechnique 61 (8):699–708. doi:10.1680/geot.10.p.009
  • Chai, J.-C., S.-L. Shen, H.-H. Zhu, and Zhang, X.-L. 2004. Land subsidence due to groundwater drawdown in Shanghai. Géotechnique 54 (2):143–47. doi:10.1680/geot.2004.54.2.143
  • Chen, M.-P. 1981. Geotechical properties of sediments of the coast of Hsinchu-Northwest Taiwan related to sedimentary environment. Acta Oceanographica Taiwanica 12:28–53.
  • Chu, J., M. W. Bo, M. F. Chang, and V. Choa. 2002. Consolidation and permeability properties of Singapore marine clay. Journal of Geotechnical and Geoenvironmental Engineering 128 (9):724–32. doi:10.1061/(asce)1090-0241(2002)128:9(724)
  • Chung, S. G., P. H. Giao, G. J. Kim, and S. Leroueil. 2002. Geotechnical properties of Pusan clays. Canadian Geotechnical Journal 39 (5):1050–60. doi:10.1139/t02-055
  • Clarke, S. 2014. Submarine landslides of the eastern Australian upper continental margin. PhD. thesis, The University of Sydney, Sydney.
  • Coutinho, R. Q., and M. I. M. C. V. Bello. 2011. Analysis and control of the stability of embankments on soft soils Juturnaíba and others experiences in Brazil. Soils and Rocks, São Paulo 34 (4):331–51.
  • Coutinho, R. Q., J. T. R. Oliveira, and A. T. J. Oliveira. 1998. Geotechnical site characterization of Recife soft clays. 1st International Symposium on Site Characterization, Atlanta, USA, 2, 1001–06.
  • Davies, J. A., and C. Humpheson. 1981. A comparison between the performance of two types of vertical drain beneath a trial embankment in Belfast. Géotechnique 31 (1):19–31. doi:10.1680/geot.1981.31.1.19
  • Devin, S. C., and T. C. Sandford. 1990. Stability of natural slopes in the Presumpscot formation. Open File Report No. 90–24, Marine Geological Survey (Department of Conservation), Augusta, 75.
  • Dittrich, J. P. 2000. Slope behavior during excavation of the Sarnia approach to the St. Clair tunnel. PhD. thesis, University of Western Ontario, London, ON, Canada.
  • Garga, V. K., M. A. Khan, and S. K. Vanapalli. 2006. Stress-path dependent behavior of a weathered clay crust. Journal of Geotechnical and Geological Engineering 24 (6):1481–509. doi:10.1007/s10706-005-2635-3
  • Geotechnical Consortium. 1984. Geotechnical properties of sediments from Walvis Ridge, deep sea drilling project, leg 75, hole 532A. Initial Reports of the Deep Sea Drilling Project 75 (2):1109–27. doi:10.2973/dsdp.proc.75.141.1984 (In W. W. Hay, J.-C. Sibuet et al.).
  • Giao, P. H., N. Ohien-wej, and H. Tanaka. 2004. An assessment on soil disturbance of Bangkok clay samples in relation with intrinsic compression behavior. Lowland Technology International 6 (2):21–31.
  • Hampton, M. A. 1983. Geotechnical framework study of the Kodiak Shelf, Alaska. USGS Open-File Report 83–171, U.S. Geological Survey, Anchorage, 86.
  • Hanzawa, H., T. Fukaya, and K. Suzuki. 1990. Evaluation of engineering properties of an Ariake Clay. Soils & Foundations 30 (4):11–24. doi:10.3208/sandf1972.30.4_11
  • Harrell, F. E., K. L. Lee, and D. B. Mark. 1996. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine 15:361–87. doi:10.1002/(sici)1097-0258(19960229)15:4<361::aid-sim168>3.0.co;2-4
  • Hassan, M. D. M. 2006. Deformation behaviour and permeability of soft finnish clay. MSc. thesis, Department of Civil and Environmental Engineering, Helsinki University of Technology, Helsinki.
  • Heath, G. R., L. H. Burckle, A. E. D’Agostino, U. Bleil, K. Horai, R. D. Jacobi, T. R. Janecek, I. Koizumi, L. A. Krissek, S. Monechi, N. Lenotre, J. J. Morley, P. J. Schultheiss, and W. A. A. K. L. Turner. 1986. Geotechnical properties of Northwest Pacific Pelagic clays – Deep sea drilling project Leg 86, Hole 576A. Interim Report, Deep Sea Drilling Project 86:723–58.
  • Hino, T., J. C. Chai, T. Negami, D. T. Bergado, and R. Jia. 2014. Assessment of the effects of sea-level change on the geoenvironment – The case of the Ariake sea coastal lowlands. Special Lecture, 9th International Symposium on Lowland Technology, Saga, Japan, 21–30.
  • Holler, P. R. 1992. Consolidation characteristics and permeabilities of sediments from the Japan Sea (sites 798 and 799). Proceedings of the Ocean Drilling Program, Scientific Results 127/128:1123–33 (In: Tamaki, K., Suyehiro, K., Allan, J., McWilliams, M., et al.).
  • Hong, S.-J., D.-H. Kim, Y.-M. Choi, and W.-J. Lee. 2011. Prediction of compression index of Busan and Inchon clays considering sedimentation state. Journal of Korean Geotechnical Society 27 (9):37–46.
  • Hou, Y. M., J. H. Wang, and D.-S. Jeng. 2011. Three-dimensional deformation behavior of an over-sized excavation in Shanghai clay. Geotechnical Engineering Journal of the SEAGS & AGSSEA 42 (3):22–29.
  • Hough, B. K. 1957. Basic soils engineering. New York, NY: The Ronald Press Company.
  • Huang, W., S. Fityus, D. Bishop, D. Smith, and D. Sheng. 2004. Finite-element parametric study of the consolidation behavior of a trial embankment on soft clay. International Journal of Geomechanics 6 (5):328–41. doi:10.1061/(asce)1532-3641(2006)6:5(328)
  • Huat, B. B. K., K. Othman, and A. A. Jaffar. 1995. Geotechnical properties of Malaysian marine clays. Journal of Institute of Engineers Malaysia 56:23–33.
  • Hunt, C. E., J. M. Pestana, J. D. Bray, and M. Riemer. 2002. Effect of pile driving on static and dynamic properties of soft clay. Journal of Geotechnical and Geoenvironmental Engineering 128 (1):13–24. doi:10.1061/(asce)1090-0241(2002)128:1(13)
  • Jeon, J. S., and J. K. Koo. 2011. Assessment on consolidation material function and initial stress for soft ground by hydraulic fill the at Southern Coast of Korea. Journal of the Korea Institute for Structural Maintenance and Inspection 15 (4):136–45.
  • Johnson, A. I., R. P. Moston, and D. A. Morris. 1968. Physical and hydrologic properties of water-bearing deposits in subsiding areas in Central California. Geological Survey Professional Paper 497-A, U.S. Department of the Interior, Washington.
  • Kelly, R. B. 2008. Back analysis of the Cumbalum Trial Embankment. Australian Geomechanics 43 (1):47–54.
  • Khamehchiyan, M., and Y. Iwao. 1994. Geotechnical properties of Ariake clay in Saga Plain-Japan. Journal of Geotechnical Engineering, JSCE 505 (III-29):11–18.
  • Kim, J.-S., Y.-C. Chang, and S.-S. Park. 2013. A development of embankment stability evaluation method on soft foundation. Journal of the Korean Geotechnical Society 29 (9):43–54.
  • Kootahi, K., and P. W. Mayne. 2016. Index test method for estimating the effective preconsolidation stress in clay deposits. Journal of Geotechnical and Geoenvironmental Engineering 142. doi:10.1061/(ASCE)GT.1943-5606.0001519
  • Koppula, S. D. 1981. Statistical estimation of compression index. Geotechnical Testing Journal 4 (2):68–73. doi:10.1520/gtj10768j
  • Krause, P., D. P. Boyle, and F. Base. 2005. Comparison of different efficiency criteria for hydrological model assessment. Journal of Advances in Geosciences 5:89–97.
  • Krishnan, S., T. Nakanishi, and A. H. Goh. 2008. Performance of PVD and surcharging in reclamation works for a power plant in Negeri Sembilan, Malaysia. Geotechnical Engineering Journal of the SEAGS & AGSSEA 39 (2):63–75.
  • Kulhawy, F. H., and P. W. Mayne. 1990. Manual on estimating soil properties for foundation design. Report EL-6800, EPRI, Palo Alto, CA, 306.
  • Kwon, T.-H., K.-R. Lee, G.-C. Cho, and J. Y. Lee. 2011. Geotechnical properties of deep oceanic sediments recovered from the hydrate occurrence regions in the Ulleung Basin, East Sea, offshore Korea. Marine and Petroleum Geology 28 (10):1870–83. doi:10.1016/j.marpetgeo.2011.02.003
  • Lav, M. A., and A. M. Ansal. 2001. Regression analysis of soil compressibility. Turkish Journal of Environmental Science 2 (25):101–09.
  • Lee, C., S.-J. Hong, D. Kim, and W. Lee. 2015. Assessment of compression index of Busan and Incheon clays with sedimentation state. Marine Georesource & Geotechnology 33 (1):23–32. doi:10.1080/1064119x.2013.764947
  • Lee, H. J., R. E. Kayen, and W. G. McArthur. 1990. Consolidation, triaxial shear-strength, and index-property characteristics of organic-rich sediment from Peru Continental Margin: Results from leg 112. Scientific Results, Deep Sea Drilling Project 112:639–51. doi:10.2973/odp.proc.sr.112.169.1990
  • Legates, D. R., and G. J. McCabe. 1999. Evaluating the use of “goodness of-fit” measures in hydrologic and hydroclimatic model validation. Journal of Water Resources Research 35 (1):233–41. doi:10.1029/1998wr900018
  • Leroueil, S., F. Tavenas, and J.-P. Le Bihan. 1983. Propriétés caractéristiques des argiles de l’est du Canada. Canadian Geotechnical Journal 20 (4):681–705. doi:10.1139/t83-076
  • Locat, J., and S. Leroueil. 1988. Physicochemical and geotechnical characteristics of recent Saguenay Fjord sediments. Canadian Geotechnical Journal 25 (2):382–88. doi:10.1139/t88-039
  • Long, P. V., D. T. Bergado, L. V. Nguyen, and A. S. Balasubramaniam. 2013. Design and performance of soft ground improvement using PVD with and without vacuum consolidation. Geotechnical Engineering Journal of the SEAGS & AGSSEA 44 (4):36–51.
  • Mitchell, J. K., and K. Soga. 2005. Fundamentals of soil behavior, 3rd ed. John Wiley & Sons, New York.
  • Nagaraj, T. S., and B. R. S. Murthy. 1986. A critical reappraisal of compression index equations. Géotechnique 36 (1):27–32. doi:10.1680/geot.1986.36.1.27
  • Nakase, A., T. Kamei, and O. Kusakabe. 1988. Constitutive parameters estimated by plasticity index. Journal of Geotechnical Engineering 114 (7):844–58. doi:10.1061/(asce)0733-9410(1988)114:7(844)
  • Nash, D. F. T., G. C. Sills, and L. R. Davison. 1992. One-dimensional consolidation testing of soft clay from Bothkennar. Géotechnique 42 (2):241–56. doi:10.1680/geot.1992.42.2.241
  • Nash, J. E., and J. V. Sutcliffe. 1970. River flow forecasting through conceptual models. Part I – A discussion of principles. Journal of Hydrology 10 (3):282–90. doi:10.1016/0022-1694(70)90255-6
  • Nishida, Y. 1956. A brief note on compression index of soil. Journal of Soil Mechanics and Foundation Engineering Division 82 (3):1–14.
  • Ogawa, F., and K. Matsumoto. 1978. Correlation of the mechanical and index properties of soils in harbour districts. Report Port and Harbour Research Institute 17 (3):3–89 (in Japanese).
  • Oh, E. Y. N. 2007. Geotechnical and ground improvement aspects of motorway embankments in soft clay, Southeast Queensland. PhD. thesis, School of Engineering, Griffith University, Gold Coast.
  • Oh, E. Y. N., and G. W. K. Chai. 2006. Characterization of marine clay for road embankment design in coastal area. Proceedings of Sixth International Offshore and Polar Engineering Conference, San Francisco, 2, 560–63.
  • Ohtsubo, M., T. Higashi, M. Kanayama, and M. Takayama. 2007. Depositional geochemistry and geotechnical properties of marine clays in the Ariake bay area, Japan. In Characterisation and engineering properties of natural soils, ed. by K. K. Phoon, D. W. Hight, S. Leroueil, and T. S. Tan. vol. 2, 1893–938. Taylor & Francis, London.
  • Oommen, T., and L. G. Baise. 2010. Model development and validation for intelligent data collection for lateral spread displacements. Journal of Computing in Civil Engineering 24 (6):467–77. doi:10.1061/(asce)cp.1943-5487.0000050
  • Park, J. H., and T. Koumoto. 2004. New compression index equation. Journal of Geotechnical and Geoenvironmental Engineering 130 (2):223–26. doi:10.1061/(asce)1090-0241(2004)130:2(223)
  • Quigley, R. M., J. E. Haynes, A. Bohdanowicz, and Q. H. J. Gwyn. 1981. Geology, geotechnique, mineralogy and geochemistry, Leda clay from deep boreholes, Hawkesbury, Ontario. Open File Report 5357, Ontario Geological Survey, Toronto.
  • Rankine, B. R. 2007. Assessment and analysis of Queensland clay behaviour. PhD. thesis, School of Engineering, James Cook University, Townsville, Australia.
  • Rashwan, M. A., and T. Koumoto. 2007. Undrained shear strength of Ariake clay by electronic cone penetration testing. Lowland Technology International 9 (1):28–40.
  • Rasmussen, K. K. 2012. An investigation of monotonic and cyclic behaviour of Leda clay. MSc. thesis, Department of Civil and Environmental Engineering, University of Western Ontario, London, Canada.
  • Rendon-Herrero, O. 1983. Universal compression index equation; Closure. Journal of Geotechnical Engineering 109 (5):755–61.
  • Riggins, M. 1992. Consolidation and strength assessment of deep-ocean sediments from the Argo and Gascoyne Abyssal Plains, Indian Ocean. Proceedings of the Ocean Drilling Program, Scientific Results 123:493–501 (In: Gradstein F. M., Ludden, J. N., et al.).
  • Salem, M., and El-Sherbiny, R. 2014. Comparison of measured and calculated consolidation settlements of thick underconsolidated clay. Alexandria Engineering Journal 53 (1):107–117. doi:10.1016/j.aej.2013.11.002
  • Samang, L., N. Miura, and A. Sakai. 2005. Geotechnical properties of soft cohesive lowland soils deposits in Saga airport highway, Japan. Journal of Civil Engineering Communication Media, Diponegoro University, Indonesia 13 (3):19–35.
  • Samson, L., and R. Garneau. 1973. Settlement performance of two embankments on deep compressible soils. Canadian Geotechnical Journal 10 (2):211–26. doi:10.1139/t73-020
  • Satyanarayana, B., and R. C. N. V. Satyanarayana. 2010. Development of empirical Equation for compressibility of marine clays. Proceedings of the Indian Geotechnical Conference, IGC-2010, Mumbai, 885–86.
  • Shen, S.-L., J.-C. Chai, Z.-S. Hong, and F.-X. Cai. 2005. Analysis of field performance of embankments on soft clay deposit with and without PVD-improvement. Geotextiles and Geomembranes 23 (6):463–85. doi:10.1016/j.geotexmem.2005.05.002
  • Simons, N., B. Menzies, and M. Matthews. 2002. A short course in geotechnical site investigation. London: Thomas Telford Ltd.
  • Skempton, A. W. 1944. Notes on the compressibility of clays. Journal of Geological Society London 100 (1–2):119–35.
  • Snee, R. D. 1977. Validation of regression models: Methods and examples. Technometrics 19 (2):415–28. doi:10.1080/00401706.1977.10489581
  • Sridharan, A. 1999. Engineering behaviour of marine clays. Proceedings of International Conference on Offshore and Nearshore Geotechnical Engineering, Bombay, 49–64.
  • Sultan, N., A. Cattaneo, R. Urgeles, R. Lee, J. Locat, F. Trincardi, S. Berne, M. Canals, and S. Lafuerza. 2008. A geomechanical approach for the genesis of sediment undulations on the Adriatic shelf. Geochemistry, Geophysics, Geosystems 9 (4):1–25. doi:10.1029/2007gc001822
  • Suneel, M., L. K. Park, and J. C. Im. 2008. Compressibility characteristics of Korean marine clay. Marine Georesource & Geotechnology 26 (2):111–27. doi:10.1080/10641190802022478
  • Tan, B. B. 2004. Geotechnical characterization of sediments from Hydrate Ridge, Cascadia Continental Margin. MSc. thesis, Department of Civil and Environmental Engineering, MIT, Cambridge, MA.
  • Tan, S. L. 1983. Geotechnical properties and laboratory testing of soft soils in Singapore. Proceedings of 1st International Seminar on Construction Problems in Soft Soils, Singapore, 1–47.
  • Tan, T. S., K. K. Phoon, F. H. Lee, H. Tanaka, L. Locat, and P. T. Chong. 2003. A characterisation study of Singapore lower marine clay. Characterisation and Engineering Properties of Natural Soils, Balkema 1:429–54.
  • Tanaka, H. 2002. A comparative study on geotechnical characteristics of marine soil deposits worldwide. International Journal of Offshore and Polar Engineering 12 (2):81–88.
  • Tian, W.-M., A. J. Silva, G. E. Veyera, and M. H. Sadd. 1994. Drained creep of undisturbed cohesive marine sediments. Canadian Geotechnical Journal 31 (6):841–55. doi:10.1139/t94-101
  • Terzaghi, K., and R. B. Peck. 1967. Soil mechanics in engineering practice, 2nd ed. New York, NY: John Wiley and Sons.
  • Terzaghi, K., R. B. Peck, and G. Mesri. 1996. Soil mechanics in engineering practice, 3rd ed. New York, NY: John Wiley and Sons.
  • Ting, W. H., T. F. Wong, and C. T. Toh. 1988. Design parameters for soft ground in Malaysia. Geotechnical Engineering Journal of the SEAGS & AGSSEA 19 (1):95–126.
  • Tsuboi, H., Y. Yanase, S. Hamamoto, K. Kawamoto, T. Takemura, and M. Oda. 2012. Characterization of geotechnical properties as affected by sediment environment in Kanto lowland clays in Japan. Proceedings of the International Symposium on Advances in Civil and Environmental Engineering Practices for Sustainable Development (ACEPS-2012), University of Ruhuna, Galle, Sri Lanka, 71–78.
  • Walton, W. H., D. A. Sangrey, and S. A. Miller. 1983. Geotechnical engineering characterization of hydraulically piston-cored deep ocean sediments. Initial Report, Deep Sea Drilling Project 72:537–49. doi:10.2973/dsdp.proc.72.122.1983
  • Whittle, J. F. Jr. 1974. Consolidation behavior of an embankment on Boston Blue clay. MSc. thesis, Department of Civil and Environmental Engineering, MIT, Cambridge, MA.
  • Willmott, C. J. 1982. Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society 63 (11):1309–13. doi:10.1175/1520-0477(1982)063<1309:scoteo>2.0.co;2
  • Winters, W. J. 2000. Stress history and geotechnical properties of sediments from the Cape Fear Diapir, Blake Ridge Diapir, and Blake Ridge. Proceedings of the Ocean Drilling Program, Scientific Results 164:421–29 (In Paull, C. K., Matsumoto, R., Wallace, P. J., and Dillon, W. P., eds.).
  • Winters, W. J., R. W. Wilcox-Cline, P. Long, S. K. Dewri, P. Kumar, L. Stern, and L. Kerr. 2014. Comparison of the physical and geotechnical properties of gas-hydrate-bearing sediments from offshore India and other gas-hydrate-reservoir systems. Marine and Petroleum Geology 58:139–67. doi:10.1016/j.marpetgeo.2014.07.024
  • Yan, M. M., K.-V. Yuen, and G. L. Yoon. 2009. Bayesian probabilistic approach for the correlations of compression index for marine clays. Journal of Geotechnical and Geoenvironmental Engineering 135 (12):1932–40. doi:10.1061/(asce)gt.1943-5606.0000157
  • Yan, W. M., and Y. Ma. 2010. Geotechnical characterization of Macau marine deposits. Engineering Geology 113 (1):62–69. doi:10.1016/j.enggeo.2010.03.001
  • Yasuhara, K., and S. Ue. 1983. Increase in undrained shear strength due to secondary compression. Soils & Foundations 23 (3):50–64. doi:10.3208/sandf1972.23.3_50
  • Yoon, G. L., B. T. Kim, and S. S. Jeon. 2004. Empirical correlations of compression index for marine clay from regression analysis. Canadian Geotechnical Journal 41 (6):1213–21. doi:10.1139/t04-057
  • Yu, S.-J., Y.-S. Chae, J.-K. Kim, and W.-S. Yoon. 2007. Effect of disturbance on the compressibility characteristics of marine clay. Journal of Korean Geotechnical Society 23 (12):95–107.
  • Zhang, L., W. H. Tang, L. Zhang, and J. Zheng. 2004. Reducing uncertainty of prediction from empirical correlations. Journal of Geotechnical and Geoenvironmental Engineering 130 (5):526–34. doi:10.1061/(asce)1090-0241(2004)130:5(526)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.