234
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Dynamic interaction between two parallel submarine pipelines considered vortex-induced vibration and local scour

, , &
Pages 609-621 | Received 12 Jan 2018, Accepted 17 Apr 2018, Published online: 25 Oct 2018

References

  • Barkhudarov, M., and G. Wei. 2006.. Modeling of the Coupled Motion of Rigid Bodies in Liquid Metal. Modeling of Casting, Welding, and Advanced Solidification Processes-XI, 71–78. Opio, France: TMS (The Minerals, Metals & Materials Society).
  • Blevins, R. D., and C. S. Coughran. 2009. Experimental Investigation of Vortex-Induced Vibration in One and Two Dimensions with Variable Mass, Damping, and Reynolds Number. Journal of Fluids Engineering 131 (10): 101202. doi:10.1115/1.3222904.
  • Brørs, B. 1999. Numerical Modeling of Flow and Scour at Pipelines. Journal of Hydraulic Engineering 125 (5): 511. doi:10.1061/(ASCE)0733-9429(1999)125:5(511).
  • Cheng, L., and M. Zhao. 2015. Numerical Model for Three-Dimensional Scour below a Pipeline in Steady Currents. In Geotechnical Special Publication 18 (210): 482–490 doi: 10.1061/41147(392)46.
  • Fuhrman, D. R., C. Baykal, B. Mutlu Sumer, N. G. Jacobsen, and J. Fredsøe. 2014. Numerical Simulation of Wave-Induced Scour and Backfilling Processes Beneath Submarine Pipelines. Coastal Engineering 94 (Supplement C): 10–22. doi:10.1016/j.coastaleng.2014.08.009.
  • Gao, F. P., X. Y. Gu, D. S. Jeng, and H. T. Teo. 2002. An Experimental Study for Wave-Induced Instability of Pipelines: The Breakout of Pipelines. Applied Ocean Research 24 (2): 83–90. doi:10.1016/S0141-1187(02)00012-3.
  • Gao, F., D.-S. Jeng, and Y. Wu. 2006. Improved Analysis Method for Wave-Induced Pipeline Stability on Sandy Seabed. Journal of Transportation Engineering 132 (7): 590–596. doi:10.1061/(ASCE)0733-947X(2006)132:7(590).
  • Gao, F.-P., B. Yang, Y.-X. Wu, and S.-M. Yan. 2006. Steady Current Induced Seabed Scour Around a Vibrating Pipeline. Applied Ocean Research 28 (5): 291–298. doi:10.1016/j.apor.2007.01.004.
  • Guilmineau, E., and P. Queutey. 2004. Numerical Simulation of Vortex-Induced Vibration of a Circular Cylinder with Low Mass-Damping in a Turbulent Flow. Journal of Fluids and Structures 19 (4): 449–466. doi:10.1016/j.jfluidstructs.2004.02.004.
  • Hirt, C. W., and B. D. Nichols. 1981. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. Journal of Computational Physics 39 (1): 201–225. doi:10.1016/0021-9991(81)90145-5.
  • Hirt, C. W., and J. M. Sicilian. 1985. A Porosity Technique for the Definition of Obstacles in Rectangular Cell Meshes. In Fourth International Conference on Numerical Ship Hydrodynamics, 1–19. Washington, D.C: National Academy of Science.
  • Jeng, D.-S. 2013. Porous Models for Wave-Seabed Interactions. China: Shanghai Jiaotong University Press and Springer.
  • Jeng, D.-S., and L. Cheng. 2000. Wave-Induced Seabed Instability Around a Buried Pipeline in a Poro-Elastic Seabed. Ocean Engineering 27 (2): 127–146. doi:10.1016/S0029-8018(98)00046-8.
  • Larsen, B. E., D. R. Fuhrman, and B. M. Sumer. 2016. Simulation of Wave-Plus-Current Scour Beneath Submarine Pipelines. Journal of Waterway, Port, Coastal, and Ocean Engineering 142 (5): 04016003. doi:10.1061/(ASCE)WW.1943-5460.0000338.
  • Li, F., and L. Cheng. 1999. Numerical Model for Local Scour under Offshore Pipelines. Journal of Hydraulic Engineering 125 (4): 400–406. doi:10.1061/(ASCE)0733-9429(1999)125:4(400).
  • Liang, D., L. Cheng, and F. Li. 2005. Numerical Modeling of Flow and Scour Below a Pipeline in Currents: Part II Scour Simulation. Coastal Engineering 52 (1): 43–62. doi:10.1016/j.coastaleng.2004.09.001.
  • Mao, Y. 1987. Series Paper Technical University of Denmark.
  • Mastbergen, D. R., and J. H. Van Den Berg. 2003. Breaching in Fine Sands and the Generation of Sustained Turbidity Currents in Submarine Canyons. Sedimentology 50 (4): 625–637. doi:10.1046/j.1365-3091.2003.00554.x.
  • Mirmohammadi, A., and M. J. Ketabdari. 2011. Numerical Simulation of Wave Scouring Beneath Marine Pipeline Using Smoothed Particle Hydrodynamics. International Journal of Sediment Research 26 (3): 331–342. doi:10.1016/S1001-6279(11)60097-8.
  • Mittal, S., and V. Kumar. 1999. Finite Element Study of Vortex-Induced Cross-Flow and In-Line Oscillations of a Circular Cylinder at Low Reynolds Numbers. International Journal for Numerical Methods in Fluids 31 (7): 1087–1120. doi:10.1002/(SICI)1097-0363(19991215)31:7<1087::AID-FLD911>3.0.CO;2-C.
  • Sanchis, A., G. Sælevik, and J. Grue. 2008. Two-Degree-of-Freedom Vortex-Induced Vibrations of a Spring-Mounted Rigid Cylinder with Low Mass Ratio. Journal of Fluids and Structures 24 (6): 907–919. doi:10.1016/j.jfluidstructs.2007.12.008.
  • Sumer, B. M. 2014. Liquefaction around Marine Structures. Advanced Series on Ocean Engineering, vol. 39. Singapore: World Scientific.
  • Sumer, B. M., and J. Fredsøe. 1990. Scour Below Pipelines in Waves. Journal of Waterway, Port, Coastal, and Ocean Engineering 116 (3): 307–323. doi:10.1061/(ASCE)0733-950X(1990)116:3(307).
  • Sumer, B. M., and J. Fredsoe. 1995. Review on Vibrations of Marine Pipelines. International Journal of Offshore and Polar Engineering 5 (2): 81–90.
  • Sumer, B. M., and J. Fredsøe. 2002. The Mechanics of Scour in the Marine Environment. New Jersey: World Scientific Publishing.
  • Sumer, B. M., Y. Mao, and J. Fredsøe. 1988. Interaction Between Vibrating Pipe and Erodible Bed. Journal of Waterway Port Coastal & Ocean Engineering 114 (1): 81–92. doi:10.1061/(ASCE)0733-950X(1988)114:1(81).
  • Sumer, B. M., H. Rene Jensen, Y. Mao, and J. Fredsøe. 1988. Effect of Lee-Wake on Scour Below Pipelines in Current. Journal of Waterway Port Coastal and Ocean Engineering 114 (5): 599–614. doi:10.1061/(ASCE)0733-950X(1988)114:5(599).
  • van Rijn, L. 1984. Sediment Transport, Part I: Bed Load Transport. Journal of Hydraulic Engineering 110 (10): 1431–1456. doi:10.1061/(ASCE)0733-9429(1984)110:10(1431).
  • Williamson, C. H. K., and R. Govardhan. 2004. Vortex-Induced Vibrations. Annual Review of Fluid Mechanics 36 (1): 413–455. doi:10.1146/annurev.fluid.36.050802.122128.
  • Yakhot, V., and S. A. Orszag. 1986. Renormalization Group Analysis of Turbulence. I. Basic Theory. Journal of Scientific Computing 1 (1): 3–51. doi:10.1007/BF01061452.
  • Yakhot, V., and L. M. Smith. 1992. The Renormalization Group, the E-Expansion and Derivation of Turbulence Models. Journal of Scientific Computing 7 (1): 35–61. doi:10.1007/BF01060210.
  • Yang, B., G. Fu Ping, J. Dong Sheng, and W. Ying Xiang. 2008. Experimental Study of Vortex-Induced Vibrations of a Pipeline Near an Erodible Sandy Seabed. Ocean Engineering 35 (3–4): 301–309. doi:10.1016/j.oceaneng.2007.11.001.
  • Zhang, Q., S. Draper, L. Cheng, and H. An. 2017a. Time Scale of Local Scour Around Pipelines in Current, Waves, and Combined Waves and Current. Journal of Hydraulic Engineering 143 (4): 04016093. doi:10.1061/(ASCE)HY.1943-7900.0001247.
  • Zhang, Q., S. Draper, L. Cheng, M. Zhao, and H. An. 2017b. Experimental Study of Local Scour Beneath Two Tandem Pipelines in Steady Current. Coastal Engineering Journal 59 (1): 1750002-1. doi:10.1142/s0578563417500024.
  • Zhang, Q., X.-L. Zhou, and J.-H. Wang. 2017. Numerical Investigation of Local Scour Around Three Adjacent Piles with Different Arrangements under Current. Ocean Engineering 142: 625–638. doi:10.1016/j.oceaneng.2017.07.045.
  • Zhao, M., and L. Cheng. 2010. Numerical Investigation of Local Scour below a Vibrating Pipeline under Steady Currents. Coastal Engineering 57 (4): 397–406. doi:10.1016/j.coastaleng.2009.11.008.
  • Zhao, M., and L. Cheng. 2011. Numerical Simulation of Two-Degree-of-Freedom Vortex-Induced Vibration of a Circular Cylinder Close to a Plane Boundary. Journal of Fluids and Structures 27 (7): 1097–1110. doi:10.1016/j.jfluidstructs.2011.07.001.
  • Zhao, M., K. Kaja, Y. Xiang, and G. Yan. 2013. Vortex-Induced Vibration (VIV) of a Circular Cylinder in Combined Steady and Oscillatory Flow. Ocean Engineering 73: 83–95. doi:10.1016/j.oceaneng.2013.08.006.
  • Zhao, M., S. Vaidya, Q. Zhang, and L. Cheng. 2015. Local Scour Around Two Pipelines in Tandem in Steady Current. Coastal Engineering 98: 1–15. doi:10.1016/j.coastaleng.2015.01.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.