274
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Surcharge preloading consolidation of reclaimed land with distributed sand caps

, &
Pages 671-682 | Received 26 Feb 2018, Accepted 25 May 2018, Published online: 21 Aug 2018

References

  • Bo, M. W., A. Arulrajah, and H. Nikraz. 2007. Preloading and Prefabricated Vertical Drains Design for Foreshore Land Reclamation Projects: A Case Study. Proceedings of the Institution of Civil Engineers-Ground Improvement 11 (2): 67–76. doi:10.1680/grim.2007.11.2.67.
  • Bo, M. W., V. Choa, and K. S. Wong. 2005. Reclamation and Soil Improvement on Ultra-soft Soil. Proceedings of the Institution of Civil Engineers-Ground Improvement 9 (1): 23–31. doi:10.1680/grim.2005.9.1.23.
  • Chai, J., N. Miura, and D. Bergado. 2008. Preloading Clayey Deposit by Vacuum Pressure with Cap-drain: Analyses versus Performance. Geotextiles and Geomembranes 26 (3): 220–230. doi:10.1016/j.geotexmem.2007.10.004.
  • Chen, Z., P. Ni, Y. Chen, and G. Mei. 2018. Plane-strain Consolidation Theory with Distributed Drainage Boundary. Acta Geotechnica.
  • Chu, J., M. Bo, and V. Choa. 2004. Practical Considerations for using vertical drains in soil improvement projects. Geotextiles and Geomembranes 22 (1-2): 101–117. doi:10.1016/S0266-1144(03)00054-2.
  • Chu, J., M. W. Bo, and A. Arulrajah. 2009. Soil Improvement Works for an Offshore Land Reclamation. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering 162 (1): 21–32. doi:10.1680/geng.2009.162.1.21.
  • Chu, J., and W. Guo. 2016. Land Reclamation using Clay Slurry or in Deep Water: Challenges and Solutions. Japanese Geotechnical Society Special Publication 2 (51): 1790–1793. doi:10.3208/jgssp.TC217-02.
  • Chu, J., B. Indraratna, S. Yan, and C. Rujikiatkamjorn. 2014. Overview of Preloading Methods for Soil Improvement. Proceedings of the Institution of Civil Engineers-Ground Improvement 167 (3): 173–185. doi:10.1680/grim.13.00022.
  • Federico, A., C. Vitone, and A. Murianni. 2015. On the Mechanical Behaviour of Dredged Submarine Clayey Sediments Stabilized with Lime or Cement. Canadian Geotechnical Journal 52 (12): 2030–2040. doi:10.1139/cgj-2015-0086.
  • Hawlader, B. C., G. Imai, and B. Muhunthan. 2002. Numerical Study of the Factors Affecting the Consolidation of Clay with Vertical Drains. Geotextiles and Geomembranes 20 (4): 213–239. doi:10.1016/S0266-1144(02)00012-2.
  • Hu, L., W. Wu, and H. Wu. 2012. Numerical Model of Electro-osmotic Consolidation in Clay. Géotechnique 62 (6): 537. doi:10.1680/geot.11.T.008.
  • Huang, C.-Z., and Y. Xiao. 1996. Analytic Solution of a Two Dimensional Consolidation Problem. Chinese Journal of Geotechnical Engineering 18 (3): 47–54.
  • Huang, J., and D. Griffiths. 2010. One-dimensional Consolidation Theories for Layered Soil and Coupled and Uncoupled Solutions by the Finite-element Method. Géotechnique 60 (9): 709–713. doi:10.1680/geot.08.P.038.
  • Hughes, P. N., S. Glendinning, D. A. Manning, and M. L. White. 2011. Use of Red Gypsum in Soil Mixing Engineering Applications. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering 164 (3): 223–234. doi:10.1680/geng.10.00061.
  • Jeyakanthan, V., and C. Gnanendran. 2013. Elastoplastic Numerical Approach for Predicting the Electro-osmotic Consolidation Behaviour of Soft Clays. Canadian Geotechnical Journal 50 (12): 1219–1235. doi:10.1139/cgj-2013-0075.
  • Jiang, Y., J. Han, and G. Zheng. 2013. Numerical Analysis of Consolidation of Soft Soils Fully-penetrated by Deep-mixed Columns. KSCE Journal of Civil Engineering 17 (1): 96–105. doi:10.1007/s12205-013-1641-x.
  • Kang, X., L. Ge, G.-C. Kang, and C. Mathews. 2015. Laboratory Investigation of the Strength, Stiffness, and Thermal Conductivity of Fly Ash and Lime Kiln Dust Stabilised Clay Subgrade Materials. Road Materials and Pavement Design 16 (4): 928–945. doi:10.1080/14680629.2015.1028970.
  • Karthikeyan, M., G. R. Dasari, and T.-S. Tan. 2004. In situ Characterization of Land Reclaimed Using Big Clay Lumps. Canadian Geotechnical Journal 41 (2): 242–256. doi:10.1139/t03-087.
  • Leung, C. F., J. C. Wong, R. Manivanann, and S. A. Tan. 2001. Experimental Evaluation of Consolidation Behavior of Stiff Clay Lumps in Reclamation Fill. Geotechnical Testing Journal 24 (2): 145–156. doi:10.1520/GTJ11334J.
  • Mei, G.-X., T. M. Lok, J. Xia, and S. S. Wu. 2014. One-dimensional Consolidation with Asymmetrical Exponential Drainage Boundary. Geomechanics and Engineering 6 (1): 47–63. doi:10.12989/gae.2014.6.1.047.
  • Mei, G. X., J. H. Yin, J. M. Zai, Z. Z. Yin, X. L. Ding, G. F. Zhu, and L. M. Chu. 2004. Consolidation Analysis of a Cross‐anisotropic Homogeneous Elastic Soil Using a Finite Layer Numerical Method. International Journal for Numerical and Analytical Methods in Geomechanics 28 (2): 111–129. doi:10.1002/nag.324.
  • Ni, P., S. Mangalathu, G. Mei, and Y. Zhao. 2017a. Laboratory Investigation of Pore Pressure Dissipation in Clay around Permeable Piles. Canadian Geotechnical Journal. doi:10.1139/cgj-2017-0180.
  • Ni, P., S. Mangalathu, G. Mei, and Y. Zhao. 2017b. Permeable Piles: An Alternative to Improve the Performance of Driven Piles. Computers and Geotechnics 84: 78–87. doi:10.1016/j.compgeo.2016.11.021.
  • Robinson, R., T. Tan, G. Dasari, C. Leung, and A. Vijayakumar. 2005. Experimental Study of the Behavior of a Lumpy Fill of Soft Clay. International Journal of Geomechanics 5 (2): 125–137. doi:10.1061/(ASCE)1532-3641(2005)5:2(125).
  • Shang, J., M. Tang, and Z. Miao. 1998. Vacuum Preloading Consolidation of Reclaimed Land: A Case Study. Canadian Geotechnical Journal 35 (5): 740–749. doi:10.1139/t98-039.
  • Subramaniam, P., M. M. Sreenadh, and S. Banerjee. 2016. Critical State Parameters of Dredged Chennai Marine Clay Treated with Low Cement Content. Marine Georesources & Geotechnology 34 (7): 603–616. doi:10.1080/1064119X.2015.1053641.
  • Suleiman, M. T., L. Ni, and A. Raich. 2014. Development of Pervious Concrete Pile Ground-Improvement Alternative and Behavior under Vertical Loading. Journal of Geotechnical and Geoenvironmental Engineering 140 (7): 04014035. doi:10.1061/(ASCE)GT.1943-5606.0001135.
  • Tang, X. W., and K. Onitsuka. 2000. Consolidation by Vertical Drains under Time‐dependent Loading. International Journal for Numerical and Analytical Methods in Geomechanics 24 (9): 739–751. doi:10.1002/1096-9853(20000810)24:9<739::AID-NAG94>3.0.CO;2-B.
  • Toorman, E. 1999. Sedimentation and Self-weight Consolidation: Constitutive Equations and Numerical Modelling. Géotechnique 49 (6): 709–726. doi:10.1680/geot.1999.49.6.709.
  • Van Helden, M. J., J. A. Blatz, N. J. Ferreira, and K. Skaftfeld. 2008. Numerical Modeling of Sand Drain Performance—A Case Study of the Salter Street Bridge Construction. Canadian Geotechnical Journal 45 (6): 751–767. doi:10.1139/T08-008.
  • Walker, R., and B. Indraratna. 2006. Vertical Drain Consolidation with Parabolic Distribution of Permeability in Smear Zone. Journal of Geotechnical and Geoenvironmental Engineering 132 (7): 937–941. doi:10.1061/(ASCE)1090-0241(2006)132:7(937).
  • Wang, D., and N. E. Abriak. 2015. Compressibility Behavior of Dunkirk Structured and Reconstituted Marine Soils. Marine Georesources & Geotechnology 33 (5): 419–428. doi:10.1080/1064119X.2014.950798.
  • Wang, D., N. E. Abriak, and R. Zentar. 2017. Dredged Marine Sediments used as Novel Supply of Filling Materials for Road Construction. Marine Georesources and Geotechnology 35 (4): 472–480. doi:10.1080/1064119X.2016.1198945.
  • Wang, J., Y. Cai, J. Ma, J. Chu, H. Fu, P. Wang, and Y. Jin. 2016. Improved Vacuum Preloading Method for Consolidation of Dredged Clay-Slurry Fill. Journal of Geotechnical and Geoenvironmental Engineering 142 (11): 06016012. doi:10.1061/(ASCE)GT.1943-5606.0001516.
  • Wang, J., Y. Cai, J. Ni, X. Geng, and F. Xu. 2018. Effect of Sand on the Vacuum Consolidation of Dredged Slurry. Marine Georesources & Geotechnology 36 (2): 238–244. doi:10.1080/1064119X.2017.1304473.
  • Wild, S., J. Kinuthia, G. Jones, and D. Higgins. 1999. Suppression of Swelling Associated with Ettringite Formation in Lime Stabilized Sulphate Bearing Clay Soils by Partial Substitution of Lime with Ground Granulated Blastfurnace Slag (GGBS). Engineering Geology 51 (4): 257–277. doi:10.1016/S0013-7952(98)00069-6.
  • Xie, K.-H., X.-Y. Xie, and X. Gao. 1994. Theory of One Dimensional Consolidation of Double-layered Ground and Its Applications. Chinese Journal of Geotechnical Engineering 24 (4): 265–235. doi:10.1016/S0266-352X(99)00012-9.
  • Xie, K.-H., X.-Y. Xie, and W. Jiang. 2002. A Study on One-dimensional Nonlinear Consolidation of Double-layered Soil. Computers and Geotechnics 29 (2): 151–168. doi:10.1016/S0266-352X(01)00017-9.
  • Xie, K. H., M. M. Lu, A. F. Hu, and G. H. Chen. 2009. A General Theoretical Solution for the Consolidation of a Composite Foundation. Computers and Geotechnics 36 (1–2): 24–30. doi:10.1016/j.compgeo.2008.02.012.
  • Yan, S.-W., and J. Chu. 2005. Soil Improvement for a Storage Yard Using the Combined Vacuum and Fill Preloading Method. Canadian Geotechnical Journal 42 (4): 1094–1104. doi:https://doi.org/10.1139/t05-042. doi:10.1139/t05-042.
  • Yildiz, A. 2009. Numerical Modeling of Vertical Drains with Advanced Constitutive Models. Computers and Geotechnics 36 (6): 1072–1083. doi:10.1016/j.compgeo.2009.04.001.
  • Yin, J. H., and Z. Fang. 2006. Physical Modelling of Consolidation Behaviour of a Composite Foundation Consisting of a Cement-mixed Soil Column and Untreated Soft Marine Clay. Geotechnique 56 (1): 63–68. doi:10.1680/geot.2006.56.1.63.
  • Yuan, J., and M. A. Hicks. 2016. Numerical Simulation of Elasto-plastic Electro-osmosis Consolidation at Large Strain. Acta Geotechnica 11 (1): 127–143. doi:10.1007/s11440-015-0366-z.
  • Zhang, Y., D. Chan, and Y. Wang. 2012. Consolidation of Composite Foundation Improved by Geosynthetic-encased Stone Columns. Geotextiles and Geomembranes 32: 10–17. doi:10.1016/j.geotexmem.2011.10.006.
  • Zhu, G., and J.-H. Yin. 2004. Consolidation Analysis of Soil with Vertical and Horizontal Drainage under Ramp Loading Considering Smear Effects. Geotextiles and Geomembranes 22 (1–2): 63–74. doi:10.1016/S0266-1144(03)00052-9.
  • Zhu, H.-H., C.-C. Zhang, G.-X. Mei, B. Shi, and L. Gao. 2017. Prediction of One-dimensional Compression Behavior of Nansha Clay using Fractional Derivatives. Marine Georesources & Geotechnology 35 (5): 688–697. doi:10.1080/1064119X.2016.1217958.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.