428
Views
11
CrossRef citations to date
0
Altmetric
Note

Enhancing the mechanical properties of marine clay using cement solidification

ORCID Icon, , &
Pages 755-764 | Received 12 Jan 2018, Accepted 11 May 2018, Published online: 21 Aug 2018

References

  • Asaoka, A., M. Nakano, and T. Noda. 2000. Superloading Yield Surface Concept for Highly Structured Soil Behavior. Soils and Foundations 40 (2): 99–110. doi:10.3208/sandf.40.2_99.
  • ASTM. 2013. Standard Test Method for Unconfined Compressive Strength of Cohesive Soil 1. ASTM International, 1–7. doi:10.1520/D2166.
  • ASTM. 2015. Standard Test Method for Unconsolidated-undrained Triaxial Compression Test on Cohesive Soils. ASTM International D2850 15 (2015): 1–6. doi:10.1520/D2850-15.2.
  • Babasaki, R., K. Suzuki, S. S. Y. Saitoh, and K. Tokitoh. 1991. Construction and Testing of Deep Foundation Improvement Using the Deep Cement Mixing Method. Deep Foundation Improvements: Design, Construction and Testing ASTMSTP 10: 24–233.
  • Balasubramaniam, A. S., A. H. M. Kamruzzaman, D. G. Uddin, K. Lin, N. Phienwij, and D. T. Bergado. 1998. Chemical Stabilization of Bangkok Clay with Cement, Lime and Flyash Additives. Paper presented at 13th SEAGC, Taipei, Taiwan, 253–258.
  • Baudet, B., and S. Stallebrass. 2004. A constitutive model for structured clays. Geotechnique 54 (4): 269. doi:10.1680/geot.2004.54.4.269.
  • Broms, B. 1984. Stablisation of Soft Clay with Lime Columns. Nan Yang Technological Institute: Singapore.
  • Carter, J. P., M. D. Liu, 2009. Modelling Natural Soils Using Structured Cam Clay. Paper presented at Proceedings, the 14th National Convention on Civil Engineering, Thailand, 1–24.
  • Chia, B. H., and T. S. Tan. 1993. The Use of Jet Grouting in the Construction of Drains in Soft Soils. Paper presented at Proceedings, 11th Conference of ASEAN Federation of Engneering Organisations, 20–26.
  • Dafalias, Y. F. 1986. Bounding surface plasticity. I: Mathematical foundation and hypoplasticity. Journal of Engineering Mechanics 112(9): 966. doi:10.1061/(ASCE)0733-9399(1986)112:9(966).
  • Dahal, B. K., and J. J. Zheng. 2018. Compression Behavior of Reconstituted Clay: A Study on Black Clay. Journal of Nepal Geological Society 55: 151–156.
  • Dahal, B. K., J. J. Zheng, and R. J. Zhang. 2017. Experimental Investigation on Physical and Mechanical Behavior of Kathmandu Clay. Paper presented at 3rd International Conference on Advanced Material and Engineering Structural Technology, 17–17, Nanjing, China. doi:10.4028/www.scientific.net/AMR.1145.112.
  • Duan, J. W., X. N. Gong, and G. X. Zheng. 1994. Load Transfer Behavior of Cement Treated Soil Coulmn. Chinese Journal of Geotechnical Engneering 16 (4): 1–8.
  • Enami, A., S. Hibino, M. Takahashi, K. Akiya, and M. Yamada. 1986. Properties of Soil Cement Columns Produced by Compact Machine System for Tenocolumn Method. Paper presented at 21st Annual Meeting of JSSMFE, Tokyo, 1987–1990.
  • Endo, M. 1976. Recent Development in Dredged Material Stabilization and Deep Chemical Mixing in Japan. University of California: Berkely.
  • Gajewska, B., C. Kraszewski, and L. Rafalski. 2017. Significance of Cement-Stabilised Soil Grain Size Distribution in Determining the Relationship between Strength and Resilient Modulus. Road Materials and Pavement Design 1–10. doi:10.1080/14680629.2017.1324808.
  • Gajo, A., and D. M. Wood. 2001. A New Approach to Anisotropic, Bounding Surface Plasticity: General Formulation and Simulations of Natural and Reconstituted Clay Behaviour. International Journal for Numerical and Analytical Methods in Geomechanics 25 (3): 207. doi:10.1002/nag.126.
  • Gallavresi, F. 1992. Grouting Improvement of Foundation Soils. In Grouting, soil improvement and geosynthetics 1–38. ASCE: New York, vol1.
  • Gao, G. 1996. The Distribution and Geotechnical Properties of Loess Soils, Lateritic Soils and Clayey Soils in China. Engineering Geology 42 (1): 95–104. doi:10.1016/0013-7952(95)00056-9.
  • Gens, A., and R. Nova. 1993. Conceptual Bases for a Constitutive Model for Bonded Soils and Weak Rocks. Paper presented at Proceedings of International Symposium on Hard Soils – Soft Rocks, Athens, 485–494.
  • Hausmann, M. R. 1990. Engineering Principles of Ground Modification. McGraw-Hill International Editions.
  • Hong, Z., S. Liu, S. Shen, and T. Negami. 2006. Comparison in Undrained Shear Strength Between Undisturbed and Remolded Ariake Clays. Journal of Geotechnical and Geoenvironmental Engineering 132 (2): 272–275. (February): doi:10.1061/(ASCE)1090-0241(2006)132:2(272).
  • Horpibulsk, S., R. Rachan, A. Suddeepong, and A. Chinkulkijniwat. 2011. Strength Development in Cement Admixed Bangkok Clay: Laboratory and Field Investigations. Soils and Foundations 51 (2): 239–251. doi:10.3208/sandf.51.239.
  • Horpibulsuk, S., M. D. Liu, D. S. Liyanapathirana, and J. Suebsuk. 2010. Behaviour of Cemented Clay Simulated via the Theoretical Framework of the Structured Cam Clay Model. Computers and Geotechnics 37 (1–2): 1. doi:10.1016/j.compgeo.2009.06.007.
  • Horpibulsuk, S., N. Miura, and T. S. Nagaraj. 2003. Assessment of Strength Development in Cement-admixed High Water Content Clays with Abrams’ Law as a Basis. Geotechnique 53 (4): 439. doi:10.1680/geot.2003.53.4.439.
  • Horpibulsuk, S., R. Rachan, and A. Suddeepong. 2011. Assessment of Strength Development in Blended Cement Admixed Bangkok Clay. Construction and building materials. 25 (4). Elsevier:1521–1531. doi:10.1016/j.conbuildmat.2010.08.006.
  • Huang, J. T., and D. W. Airey. 1998. Properties of Artificially Cemented Carbonate Sand. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 124(6): 492–499. doi:10.1061/(ASCE)1090-0241(1998)124:6(492).
  • Kamruzzaman, A. H. M., S. H. Chew, and F. H. Lee. 2009. Structuration and Destructuration Behavior of Cement-treated Singapore Marine Clay. Journal of Geotechnical and Geoenvironmental Engineering 135 (4): 573. doi:10.1061/(ASCE)1090-0241(2009)135:4(573).
  • Karstunen, M., H. Krenn, S. J. Wheeler, M. Koskinen, and R. Zentar. 2005. The Effect of Anisotropy and Destructuration on the Behaviour of Murro Test Embankment. International Journal of Geomechanics 5 (2): 87–97. doi:10.1061/(ASCE)1532-3641(2005)5:2(87).
  • Karstunen, M., Z. Y. Yin, and M. Koskinen. 2008. Some Recent Developments in Constitutive Modelling of Soft Clays. Proc.12th IACMAG 12: 966–975.
  • Lee, F. H., Y. Lee, S. H. Chew, and K. Y. Yong. 2005. Strength and Modulus of Marine Clay-Cement Mixes. Journal of Geotechnical and Geoenvironmental Engineering 131 (2): 178–186. doi:10.1061/(ASCE)1090-0241(2005)131:2(178).
  • Liu, E. L., and Z. J. Shen. 2005. Binary Medium Model for Structured Soils. Journal of Hydraulic Engineering 36 (4): 1–7.
  • Liu, M. D., and J. P. Carter. 2002. A Structured Cam Clay Model. Canadian Geotechnical Journal 39 (6): 1313. doi:10.1139/t02-069.
  • Lorenzo, G. A., and D. T. Bergado. 2004. Fundamental Parameters of Cement-admixed Clay - New Approach. Journal of Geotechnical and Geoenvironmental Engineering 130 (10): 1042. doi:10.1061/(ASCE)1090-0241(2004)130:10(1042).
  • Lorenzo, G. A., and D. T. Bergado. 2006. Fundamental Characteristics of Cement-admixed Clay in Deep Mixing. Journal of Materials in Civil Engineering 18 (2): 161. doi:10.1061/(ASCE)0899-1561(2006)18:2(161).
  • Mousavi, S. E. 2017. Stabilization of Compacted Clay with Cement and/or Lime Containing Peat Ash. Road Materials and Pavement Design 18 (6): 1304–1321. doi:10.1080/14680629.2016.1212729.
  • Nguyen, L. D., B. Fatahi, and H. Khabbaz. 2014. A Constitutive Model for Cemented Clays Capturing Cementation Degradation. International Journal of Plasticity 56: 1. doi:10.1016/j.ijplas.2014.01.007.
  • Pan, Y., Y. Liu, H. Xiao, F. H. Lee, and K. K. Phoon. 2018. Effect of Spatial Variability on Short- and Long-term Behaviour of Axially-loaded Cement-admixed Marine Clay Column. Computers and Geotechnics 94: 150–168. (February). Elsevier. doi:10.1016/j.compgeo.2017.09.006.
  • Perzyna, P. 1963. The Constitutive Equations for Work-Hardening and Rate Sensitive Plastic Materials. Paper presented at Proceeding of Vibration Problems, Warsaw, 281–290.
  • Pillai, R. J., I. Bushra, and R. G. Robinson. 2013. Undrained Triaxial Behavior of Cement Treated Marine Clay. Geotechnical and Geological Engineering 31 (2): 801–8. doi:10.1007/s10706-012-9605-3.
  • Rotta, G. V., N. C. Consoli, P. D. M. Prietto, M. R. Coop, and J. Graham. 2003. Isotropic Yielding in an Artificially Cemented Soil Cured Under Stress. Geotechnique 53 (5): 493–501. doi:10.1680/geot.2003.53.5.493.
  • Rouainia, M., and D. M. Wood. 2000. A Kinematic Hardening Constitutive Model for Natural Clays with Loss of Structure. Geotechnique 50 (2): 153. doi:10.1680/geot.2000.50.2.153.
  • Saitoh, S., Y. Suzuki, 1985. Hardening of Soil Improved by Deep Mixing Method. Paper presented at 11th ICSMFE, Helsinki, 1745–1748.
  • Sasanian, S., and T. A. Newson. 2014. Basic Parameters Governing the Behaviour of Cement-Treated Clays. Soils and Foundations. 54 (2): 209–224. doi:10.1016/j.sandf.2014.02.011.
  • Schofield, A. N. 1993. Original Cam-Clay. International Conference on Soft Soil Engineering 259 (November). http://www.opengrey.eu/item/display/10068/667420.
  • Schofield, A. N., and C. P. Wroth. 1968. Critical State Soil Mechanics, McGraw Hill.
  • Sharma, L. K., N. N. Sirdesai, K. M. Sharma, and T. N. Singh. 2018. Experimental Study to Examine the Independent Roles of Lime and Cement on the Stabilization of a Mountain Soil: A Comparative Study. Applied Clay Science. 152: 183–195. doi:10.1016/j.clay.2017.11.012.
  • Stavridakis, E. I. 2006. Effect of Curing Time and Bentonite Content on the Quantitative Evaluation of Engineering Behavior of Cement Treated Clayed Mixtures Under Soaked Conditions. EJGE 11:BundleA.
  • Suebsuk, J., S. Horpibulsuk, and M. D. Liu. 2011. A Critical State Model for Overconsolidated Structured Clays. Computers and Geotechnics. 38 (5): 648–658. doi:10.1016/j.compgeo.2011.03.010.
  • Terashi, M. 1997. Theme Lecture: Deep Mixing Method – Brief State-of-art. Paper presented at 14th ICSMFE, Hamburg, 2475–2478.
  • Terashi, M., H. Tanaka, Y. Niidome, and H. Sakanoi. 1980. Permeability of Treated Soils. Paper presented at Proceedings of the 15th Japan Conference on Soil Mechanics and Foundation Engineering, Hiroshima.
  • Uddin, K., A. S. Balasubramaniam, and D. T. Bergado. 1997. Engineering Behavior of Cement-treated Bangkok Soft Clay. Geotechnical Engineering 28 (1): 89–119.
  • Vatsala, A., R. Nova, and B. R. Srinivasa Murthy. 2001. Elastoplastic Model for Cemented Soils. Journal of Geotechnical and Geoenvironmental Engineering 127 (8): 679–687. doi:10.1061/(ASCE)1090-0241(2001)127:8(679).
  • Wissa, A., C. Ladd, and T. Lambe. 1965. Effective Sress Strength Parameters of Stabilized Soils. Paper presented at 6th ICSMFE, Montreal, 1: 412–426.
  • Xiao, H., F. H. Lee, and K. G. Chin. 2014. Yielding of Cement-Treated Marine Clay. Soils and Foundations 54 (3): 488. doi:10.1016/j.sandf.2014.04.021.
  • Xiao, H. W. 2009. Yielding and Failure of Cement Treated Soil. Singapore: National Singapore University.
  • Xiao, Y., H. Liu, Y. Chen, and J. Jiang. 2014. Bounding Surface Model for Rockfill Materials Dependent on Density and Pressure Under Triaxial Stress Conditions. Journal of Engineering Mechanics 140 (4): 04014002. doi:10.1061/(ASCE)EM.1943-7889.0000702.
  • Yin, J. H., and C. K. Lai. 1998. Strength and Stiffness of Hong Kong Marine Deposits Mixed with Cement. Geotechnical Engineering 29 (1): 29–44.
  • Yin, Z. Y., and M. Karstunen. 2011. Modelling Strain-rate-dependency of Natural Soft Clays Combined with Anisotropy and Destructuration. Acta Mechanica Solida Sinica 24 (3): 216–230. doi:10.1016/S0894-9166(11)60023-2.
  • Yoshizawa, H., R. Okumura, Y. Hosoya, M. Sumi, and T. Yamada. 1996. JGS Technical Committee Report: Factors Affecting the Quality of Treated Soil during Execution of DMM. In 2nd int. Conf. on ground improvement geosystems, grouting and deep mixing., Tokyo, Vol. 2, 931–937.
  • Yu, Y., J. Pu, and K. Ugai. 1997. Study of Mechanical Properties of Soil Cement Mixture for a Cutoff Wall. Soils and Foundations 37 (4): 93–103. doi:10.3208/sandf.37.4_93.
  • Zhang, R. J., Y. T. Lu, T. S. Tan, K. K. Phoon, and A. M. Santoso. 2014. Long-term Effect of Curing Temperature on the Strength Behavior of Cement-Stabilized Clay. Journal of Geotechnical and Geoenvironmental Engineering 140 (8): 04014045. doi:10.1061/(ASCE)GT.1943-5606.0001144.
  • Zhang, R. J., A. M. Santoso, T. S. Tan, and K. K. Phoon. 2013. Strength of High Water-content Marine Clay Stabilized by Low Amount of Cement. Journal of Geotechnical and Geoenvironmental Engineering 139 (12): 2170. doi:10.1061/(ASCE)GT.1943-5606.0000951.
  • Zheng, J. J., Y. E. Lu, J. H. Yin, and J. Guo. 2010. Radial Consolidation with Variable Compressibility and Permeability Following Pile Installation. Computers and Geotechnics. 37 (3): 408–412. doi:10.1016/j.compgeo.2009.10.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.