390
Views
41
CrossRef citations to date
0
Altmetric
Technical Note

Effect of nano-MgO on mechanical performance of cement stabilized silty clay

ORCID Icon, , , , &
Pages 250-255 | Received 13 Sep 2018, Accepted 21 Dec 2018, Published online: 29 Jan 2019

References

  • ASTM D 3080-90. 1994. Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. Annual Book of ASTM Standards, 4:290–295.
  • Bahmani, S. H., B. B. Huat, A. Asadi, and N. Farzadnia. 2014. Stabilization of Residual Soil Using SiO2 Nanoparticles and Cement. Construction and Building Materials 64 :350–359. doi:10.1016/j.conbuildmat.2014.04.086
  • Barcelo, L., J. Kline, G. Walenta, and E. Gartner. 2014. Cement and Carbon Emissions. Materials and Structures 47 (6):1055–1065. doi:10.1617/s11527-013-0114-5
  • Consoli, N. C., D. A. Rosa, R. C. Cruz, and A. Dalla Rosa. 2011. Water Content, Porosity and Cement Content as Parameters Controlling Strength of Artificially Cemented Silty Soil. Engineering Geology 122 (3/4):328–333. doi:10.1016/j.enggeo.2011.05.017
  • Craig, R. F. 1983. Soil mechanics. Wokingham: Van Nostrand Reinhold.
  • Davydov, D.,. M. Jirásek, and L. Kopecký. 2011. Critical Aspects of Nano-indentation Technique in Application to Hardened Cement Paste. Cement and Concrete Research 41 (1),20–29. doi:10.1016/j.cemconres.2010.09.001
  • Ghasabkolaei, N., A. J. Choobbasti, N. Roshan, and S. E. Ghasemi. 2017. Geotechnical Properties of the Soils Modified with Nanomaterials: A Comprehensive Review. Archives of Civil and Mechanical Engineering 17 (3):639–650. doi:10.1016/j.acme.2017.01.010
  • Horpibulsuk, S., N. Miura, and T. S. Nagaraj. 2003. Assessment of Strength Development in Cement-admixed High Water Content Clays with Abrams' Law as a Basis. Géotechnique 53 (4):439–444. doi:10.1680/geot.53.4.439.37319
  • Lee, F. H., Y. Lee, S. H. Chew, and K. Y. Yong. 2005. Strength and Modulus of Marine Clay-Cement Mixes. Journal of Geotechnical and Geoenvironmental Engineering 131 (2):178–186. doi:10.1061/(ASCE)1090-0241(2005)131:2(178)
  • Liu, Y., L. Q. He, Y. J. Jiang, M. M. Sun, E. J. Chen, and F. H. Lee. 2018. Effect of In Situ Water Content Variation on the Spatial Variation of Strength of Deep Cement-mixed Clay. Géotechnique1–15. doi:10.1680/jgeot.17.P.149
  • Miura, N., S. Horpibulsuk, and T. S. Nagaraj. 2001. Engineering Behavior of Cement Stabilized Clay at High Water Content. Soils and Foundations 41 (5):33–45. doi:10.3208/sandf.41.5_33
  • Moradpour, R., E. Taheri-Nassaj, T. Parhizkar, and M. Ghodsian. 2013. The Effects of Nanoscale Expansive Agents on the Mechanical Properties of Non-shrink Cement-based Composites: The Influence of Nano-MgO Addition. Composites Part B: Engineering 55:193–202. doi:10.1016/j.compositesb.2013.06.033
  • Naseri, F., M. Irani, and M. Dehkhodarajabi. 2016. Effect of Graphene Oxide Nanosheets on the Geotechnical Properties of Cemented Silty Soil. Archives of Civil and Mechanical Engineering 16 (4):695–701. doi:10.1016/j.acme.2016.04.008
  • Park, C. G., S. W. Yun, P. C. Baveye, and C. Yu. 2015. Effect of Industrial by-Products on Unconfined Compressive Strength of Solidified Organic Marine Clayey Soils. Materials 8 (8):5098–5111. doi:10.3390/ma8085098
  • Polat, R., R. Demirboğa, and F. Karagöl. 2017. The Effect of Nano-MgO on the Setting Time, Autogenous Shrinkage, Microstructure and Mechanical Properties of High Performance Cement Paste and Mortar. Construction and Building Materials 156 :208–218. doi:10.1016/j.conbuildmat.2017.08.168
  • Polat, R., R. Demirboğa, and W. H. Khushefati. 2015. Effects of Nano and Micro Size of CaO and MgO, Nano-clay and Expanded Perlite Aggregate on the Autogenous Shrinkage of Mortar. Construction and Building Materials 81:268–275. doi:10.1016/j.conbuildmat.2015.02.032
  • Razi, P. Z., H. Abdul Razak, and N. H. A. Khalid. 2016. Sustainability, Eco-Point and Engineering Performance of Different Workability OPC Fly-Ash Mortar Mixes. Materials 9 (5):341. doi:10.3390/ma9050341
  • Soutsos, M., A. Hatzitheodorou, F. Kanavaris, and J. Kwasny. 2017. Effect of Temperature on the Strength Development of Mortar Mixes with GGBS and Fly Ash. Magazine of Concrete Research 69 (15):787–801. doi:10.1680/jmacr.16.00268
  • Sun, J., Z. Xu, W. Li, and X. Shen. 2017. Effect of Nano-SiO2 on the Early Hydration of Alite-Sulphoaluminate Cement. Nanomaterials 7 (5):102. doi:10.3390/nano7050102
  • Tan, T. S., T. L. Goh, and K. Y. Yong. 2002. Properties of Singapore Marine Clays Improved By Cement Mixing. Geotechnical Testing Journal 25 (4):422–433.
  • Tang, C., B. Shi, W. Gao, F. Chen, and Y. Cai. 2007. Strength and Mechanical Behavior of Short Polypropylene Fiber Reinforced and Cement Stabilized Clayey Soil. Geotextiles and Geomembranes 25 (3):194–202. doi:10.1016/j.geotexmem.2006.11.002
  • Wang, Z. F., W. C. Cheng, and Y. Q. Wang. 2018. Investigation into Geohazards During Urbanization Process of xi’an, China. Natural Hazards 92: 1937–1953. doi:10.1007/s11069-018-3280-5.
  • Wang, Z. F., W. C. Cheng, Y. Q. Wang, and J. Q. Du. 2018. Simple Method to Predict Settlement of Composite Foundation Under Embankment. International Journal of Geomechanics 18 (12):04018158. doi:10.1061/(ASCE)GM.1943-5622.0001293
  • Wang, W., N. Li, F. Zhang, A. Zhou, and S. Chi. 2016. Experimental and Mathematical Investigations on Unconfined Compressive Behaviour of Costal Soft Soil Under Complicated Freezing Processes. Polish Maritime Research 23 (4):112–116. doi:10.1515/pomr-2016-0077
  • Wang, Z., and G. Mei. 2012. Dynamic Properties of Rubber Cement Stabilized Soil Based on Resonant Column Tests. Marine Georesources & Geotechnology 30 (4):333–346. doi:10.1080/1064119X.2011.631693
  • Wang, Z. F., J. S. Shen, and W. C. Cheng. 2018. Simple Method to Predict Ground Displacements Caused by Installing Horizontal Jet-Grouting Columns. Mathematical Problems in Engineering 2018 doi:10.1155/2018/1897394
  • Wang, D., H. Wang, and X. Wang. 2017. Compressibility and Strength Behavior of Marine Soils Solidified with MgO – A Green and Low Carbon Binder. Marine Georesources & Geotechnology 35 (6):878–886. doi:10.1080/1064119X.2016.1258095
  • Wang, W., C. Zhang, N. Li, F. Tao, and K. Yao. 2018. Characterisation of Nano Magnesia-Cement-Reinforced Seashore Soft Soil by Direct Shear Test. Marine Georesources & Geotechnology doi:10.1080/1064119X.2018.1515283
  • Wang, L., D. Zheng, S. Zhang, H. Cui, and D. Li. 2016. Effect of Nano-SiO2 on the Hydration and Microstructure of Portland Cement. Nanomaterials. 6 (12):241. doi:10.3390/nano6120241
  • Xiao, H., F. H. Lee, and K. G. Chin. 2014. Yielding of Cement-Treated Marine Clay. Soils and Foundations 54 (3):488–501. doi:10.1016/j.sandf.2014.04.021
  • Yao, K., Q. Chen, J. Ho, H. Xiao, and F. H. Lee. 2018. Strain-Dependent Shear Stiffness of Cement-Treated Marine Clay. Journal of Materials in Civil Engineering 30 (10):04018255. doi:10.1061/(ASCE)MT.1943-5533.0002460
  • Yao, K., H. Xiao, D. H. Chen, and Y. Liu. 2018. A Direct Assessment for the Stiffness Development of Artificially Cemented Clay. Géotechnique1–7. doi:10.1680/jgeot.18.T.010
  • Zhou, H., W. Chen, X. Zhang, and D. Shi. 2014. Preparation of Nanometer Magnesia and Its Properties for Fluoride Removal. Frontier of Environmental Science 3 (3): 97–108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.