713
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Using recycled calcium sources to solidify sandy soil through microbial induced carbonate precipitation

, , , &
Pages 393-399 | Received 24 Sep 2018, Accepted 25 Jan 2019, Published online: 01 Mar 2019

References

  • Achal, V., and X. L. Pan. 2014. Influence of Calcium Sources on Microbially Induced Calcium Carbonate Precipitation by Bacillus sp CR2. Applied Biochemistry and Biotechnology 173 (1):307–317. doi:10.1007/s12010-014-0842-1.
  • Achal, V., X. Pan, and D. Zhang. 2011. Remediation of Copper-Contaminated Soil by Kocuria flava CR1, Based on Microbially Induced Calcite Precipitation. Ecological Engineering 37 (10): 1601–1605. doi:10.1016/j.ecoleng.2011.06.008.
  • Al Qabany, A., and K. Soga. 2013. Effect of Chemical Treatment Used in MICP on Engineering Properties of Cemented Soils. Geotechnique 63 (4):331–339. doi:10.1680/geot.SIP13.P.022.
  • Al Qabany, A., K. Soga, and C. Santamarina. 2012. Factors Affecting Efficiency of Microbially Induced Calcite Precipitation. Journal of Geotechnical and Geoenvironmental Engineering 138 (8):992–1001. doi:10.1061/(ASCE)GT.1943-5606.0000666.
  • ASTM 2014. Standard Test Methods for Calcium and Magnesium in Water. ASTM standard D511-2014. West Conshohocken: American Society for Testing and Materials.
  • Bu, C., K. Wen, S. Liu, U. Ogbonnaya, and L. Li. 2018. Development of Bio-cemented Constructional Materials Through Microbial Induced Calcite Precipitation. Materials & Structures 51 (1):30–40. doi:10.1617/s11527-018-1157-4.
  • Burbank, M., T. Weaver, R. Lewis, R. Crawford, and B. Williams. 2013. Geotechnical Tests of Sands Following Bio-induced Calcite Precipitation Catalyzed by Indigenous Bacteria. Journal of Geotechnical and Geoenvironmental Engineering 139 (6):928–936. doi:10.1061/(ASCE)GT.1943-5606.0000781.
  • Cheng, L., and M. A. Shahin. 2017. Stabilisation of Oil-contaminated Soils Using Microbially Induced Calcite Crystals by Bacterial Flocs. Geotechnique Letters 7 (2):146–151. doi:10.1680/jgele.16.00178.
  • Cheng, L., M. A. Shahin, and R. Cord-Ruwisch. 2014. Bio-cementation of Sandy Soil Using Microbially Induced Carbonate Precipitation for Marine Environments. Geotechnique 64 (12):1010–1013. doi:10.1680/geot.14.T.025.
  • Choi, S. G., J. Chu, R. C. Brown, K. J. Wang, and Z. Y. Wen. 2017. Sustainable Biocement Production via Microbially Induced Calcium Carbonate Precipitation: Use of Limestone and Acetic Acid Derived from Pyrolysis of Lignocellulosic Biomass. ACS Sustainable Chemistry & Engineering 5 (8):7449. doi:10.1021/acssuschemeng.7b00521.
  • Choi, S. G., S. F. Wu, and J. Chu. 2016. Biocementation for sand using an eggshell as calcium source. Journal of Geotechnical and Geoenvironmental Engineering 142 (10):06016010. doi:10.1061/(ASCE)GT.1943-5606.0001534.
  • Combes, C., B. Miao, R. Bareille, and C. Rey. 2006. Preparation, Physical-chemical Characterisation and Cytocompatibility of Calcium Carbonate Cements. Biomaterials 27 (9):1945–1954. doi:10.1016/j.biomaterials.2005.09.026.
  • Cui, M. J., J. J. Zheng, R. J. Zhang, H. J. Lai, and J. Zhang. 2017. Influence of Cementation Level on the Strength Behaviour of Bio-cemented Sand. Acta Geotechnica 12 (5):971–986. doi:10.1007/s11440-017-0574-9.
  • De Muynck, W., N. De Belie, and W. Verstraete. 2010. Microbial Carbonate Precipitation in Construction Materials: A Review. Ecological Engineering 36 (2):118–136. doi:10.1016/j.ecoleng.2009.02.006.
  • De Muynck, W., D. Debrouwer, N. De Belie, and W. Verstraete. 2008. Bacterial Carbonate Precipitation Improves the Durability of Cementitious Materials. Cement and Concrete Research 38 (7):1005–1014. doi:10.1016/j.cemconres.2008.03.005.
  • Dejong, J. T., M. B. Fritzges, and K. Nusslein. 2006. Microbially Induced Cementation to Control Sand Response to Undrained Shear. Journal of Geotechnical and Geoenvironmental Engineering 132 (11):1381–1392. doi:10.1061/(ASCE)1090-0241(2006)132:11(1381).
  • Dejong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson. 2010. Bio-mediated Soil Improvement. Ecological Engineering 36 (2):197–210. doi:10.1016/j.ecoleng.2008.12.029.
  • Dhami, N. K., A. Mukherjee, and M. S. Reddy. 2016. Micrographical, Minerological and Nano-mechanical Characterisation of Microbial Carbonates from Urease and Carbonic Anhydrase Producing Bacteria. Ecological Engineering 94 :443–454. doi:10.1016/j.ecoleng.2016.06.013.
  • Figueiredo, M., A. Fernando, G. Martins, J. Freitas, F. Judas, and H. Figueiredo. 2010. Effect of the Calcination Temperature on the Composition and Microstructure of Hydroxyapatite Derived from Human and Animal Bone. Ceramics International 36 (8):2383–2393. doi:10.1016/j.ceramint.2010.07.016.
  • Frederik, H., B. Nico, D. V. Johan, V. Willy, and S. Steven Douglas. 2003. Strain-specific Ureolytic Microbial Calcium Carbonate Precipitation. Applied & Environmental Microbiology 69 (8):4901. doi:10.1128/AEM.69.8.4901-4909.2003.
  • Gong, X., J. G. Niu, S. H. Liang, D. L. Feng, and Q. Z. Luo. 2018. Solidification of nansha Soft Clay Using Cement-based Composite Curing Agents. Advances in Cement Research 1–12. doi:10.1680/jadcr.18.00040.
  • Gorospe, C. M., S. H. Han, S. G. Kim, J. Y. Park, C. H. Kang, J. H. Jeong, and J. S. So. 2013. Effects of Different Calcium Salts on Calcium Carbonate Crystal: Formation by Sporosarcina pasteurii KCTC 3558. Biotechnology and Bioprocess Engineering 18 (5):903–908. doi:10.1007/s12257-013-0030-0.
  • Goto, T., and K. Sasaki. 2014. Effects of Trace Elements in Fish Bones on Crystal Characteristics of Hydroxyapatite Obtained by Calcination. Ceramics International 40 (7):10777–10785. doi:10.1016/j.ceramint.2014.03.067.
  • Guo, Q., and X. Dai. 2017. Analysis on Carbon Dioxide Emission Reduction During the Anaerobic Synergetic Digestion Technology of Sludge and Kitchen Waste: Taking Kitchen Waste Synergetic Digestion Project in Zhenjiang as an Example. Waste Management 69:360–364. doi:10.1016/j.wasman.2017.08.033.
  • Jiang, N. J., and K. Soga. 2017. The Applicability of Microbially induced Calcite Precipitation (MICP) for Internal Erosion Control in Gravel-Sand Mixtures. Geotechnique 67 (1):42–55. doi:10.1680/jgeot.15.P.182.
  • Kang, C. H., S. H. Han, Y. J. Shin, S. J. Oh, and J. S. So. 2014. Bioremediation of Cd by Microbially Induced Calcite Precipitation. Applied Biochemistry and Biotechnology 172 (6):2907–2915. doi:10.1007/s12010-014-0737-1.
  • Liang, S. H., J. G. Niu, C. X. Fang, J. Dai, Y. M. Yin, and Y. J. Liu. 2018. Experimental Study on the Effect of Nutrient Solution Calcium Sources on Bio-cemented Sand. Journal of Disaster Prevention and Mitigation Engineering 38 (05):781–786.
  • Liu, L., H. Liu, Y. Xiao, J. Chu, P. Xiao, and Y. Wang. 2017. Biocementation of Calcareous Sand Using Soluble Calcium Derived from Calcareous Sand. Bulletin of Engineering Geology & the Environment 76 :1–11. doi:10.1007/s10064-017-1106-4.
  • Ma, X., X. Zhang, L. Yang, G. Wang, K. Jiang, G. Wu, W. Cui, and Z. Wei. 2016. Tunable Construction of Multi-shelled Hollow Carbonate Nanospheres and Their Potential Applications. Nanoscale 8 (16):8687–8695. doi:10.1039/C6NR00866F.
  • Montemor, M. F., A. M. P. Simões, and M. G. S. Ferreira. 2003. Chloride-induced Corrosion on Reinforcing Steel: From the Fundamentals to the Monitoring Techniques. Cement & Concrete Composites 25 (4):491–502. doi:10.1016/S0958-9465(02)00089-6.
  • Montoya, B. M., and J. T. DeJong. 2015. Stress-strain Behavior of Sands Cemented by Microbially Induced Calcite Precipitation. Journal of Geotechnical and Geoenvironmental Engineering 141 (6):04015019. doi:10.1061/(ASCE)GT.1943-5606.0001302.
  • Moravej, S., G. Habibagahi, E. Nikooee, and A. Niazi. 2018. Stabilization of Dispersive Soils by Means of Biological Calcite Precipitation. Geoderma 315:130–137. doi:10.1016/j.geoderma.2017.11.037.
  • Muller, W. E. G., M. Neufurth, U. Schlossmacher, H. C. Schroder, D. Pisignano, and X. Wang. 2014. The Sponge Silicatein-interacting Protein Silintaphin-2 Blocks Calcite Formation of Calcareous Sponge Spicules at the Vaterite Stage. RSC Advances 4(6):2577–2585. doi:10.1039/C3RA45193C.
  • Niakan, A., S. Ramesh, P. Ganesan, C. Y. Tan, J. Purbolaksono, H. Chandran, S. Ramesh, and W. D. Teng. 2015. Sintering Behaviour of Natural Porous Hydroxyapatite Derived from Bovine Bone. Ceramics International 41 (2):3024–3029. doi:10.1016/j.ceramint.2014.10.138.
  • Niakan, A., S. Ramesh, S. V. Naveen, S. Mohan, and T. Kamarul. 2017. Osteogenic Priming Potential of Bovine Hydroxyapatite Sintered at Different Temperatures for Tissue Engineering Applications. Materials Letters 197 :83–86. doi:10.1016/j.matlet.2017.03.057.
  • Niu, J. G., S. H. Liang, X. Gong, D. L. Feng, Q. Z. Luo, and J. Dai. 2018. Experimental study on the effect of grouting interval on microbial induced calcium carbonate precipitation. 2018 International Conference of Green Buildings and Environmental Management, GBEM 2018, August 23, 2018 - August 25, 2018, Qingdao City, Shandong Province, China. doi:10.1088/1755-1315/186/3/012071
  • Paassen, L. A. V., C. M. Daza, M. Staal, D. Y. Sorokin, W. V. D. Zon, M. C. M. V. Loosdrecht, H. M. Jonkers, and M. C. M. V. Loosdrecht. 2010. Potential Soil Reinforcement by Biological Denitrification. Ecological Engineering 36 (2):168–175. doi:10.1016/j.ecoleng.2009.03.026.
  • Pal, A., S. Paul, A. R. Choudhury, V. K. Balla, M. Das, and A. Sinha. 2017. Synthesis of Hydroxyapatite from Lates Calcarifer Fish Bone for Biomedical Applications. Materials Letters 203 :89–92. doi:10.1016/j.matlet.2017.05.103.
  • Park, S. J., Y. M. Park, W. Y. Chun, W. J. Kim, and S. Y. Ghim. 2010. Calcite-forming Bacteria for Compressive Strength Improvement in Mortar. Journal of Microbiology and Biotechnology 20 (4):782–788. doi:10.1128/AAC.00019-08.
  • Ramirez-Gutierrez, C. F., S. M. Londoño-Restrepo, A. D. Real, M. A. Mondragón, and M. E. Rodriguez-García. 2017. Effect of the Temperature and Sintering Time on the Thermal, Structural, Morphological, and Vibrational Properties of Hydroxyapatite Derived from Pig Bone. Ceramics International 43 (10):7552–7559. doi:10.1016/j.ceramint.2017.03.046.
  • Ren, D., M. A. Meyers, B. Zhou, and Q. Feng. 2013. Comparative Study of Carp Otolith Hardness: Lapillus and Asteriscus. Materials Science & Engineering C Materials for Biological Applications 33 (4):1876–1881. doi:10.1016/j.msec.2012.10.015.
  • Shi, X., N. Xie, K. Fortune, and J. Gong. 2012. Durability of Steel Reinforced Concrete in Chloride Environments: An Overview. Construction & Building Materials 30 (5):125–138. doi:10.1016/j.conbuildmat.2011.12.038.
  • Wei, S., H. Cui, Z. Jiang, H. Liu, H. He, and N. Fang. 2015. Biomineralization Processes of Calcite Induced by Bacteria Isolated from Marine Sediments. Brazilian Journal of Microbiology 46 (2):455–464. doi:10.1590/S1517-838246220140533.
  • Xu, J., G. Chen, R. Yan, D. Wang, M. Zhang, W. Zhang, and P. Sun. 2011. One-stage Synthesis of Cagelike Porous Polymeric Microspheres and Application as Catalyst Scaffold of Pd Nanoparticles. Macromolecules 44 (10):3730–3738. doi:10.1021/ma200320a.
  • Zhang, J., B. Yao, H. Ping, Z. Fu, Y. Li, W. Wang, H. Wang, Y. Wang, J. Zhang, and F. Zhang. 2016. Template-free Synthesis of Hierarchical Porous Calcium Carbonate Microsphere for Efficient Water Treatment. RSC Advances 6 (1):472–480. doi:10.1039/C5RA18366A.
  • Zhang, Y., H. X. Guo, and X. H. Cheng. 2014. Influences of Calcium Sources on Microbially Induced Carbonate Precipitation in Porous Media. Materials Research Innovations 18:79–84. doi:10.1179/1432891714z.000000000384.
  • Zhang, Y., H. X. Guo, and X. H. Cheng. 2015. Role of Calcium Sources in the Strength and Microstructure of Microbial Mortar. Construction and Building Materials 77:160–167. doi:10.1016/j.conbuildmat.2014.12.040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.