220
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Prediction of scour depth at piers with debris accumulation effects using linear genetic programming

&
Pages 468-479 | Received 04 Jan 2019, Accepted 13 Feb 2019, Published online: 11 May 2019

References

  • Alavi, A.,. A. Gandomi, and M. Gandomi. 2010. Comment on ‘Sivapragasam C, Maheswaran R, Venkatesh V. 2008. Genetic Programming Approach for Flood Routing in Natural Channels. Hydrological Processes 22: 623–628. Hydrological Processes 24 (6):798–799. doi:10.1002/hyp.7511.
  • Atkeson, C. G., A. W. Moore, and S. Schaal. 1997. Locally Weighted Learning for Control. Artificial Intelligence Review 11:75–113.
  • Azamathulla, H. M. 2012. Gene Expression Programming for Prediction of Scour Depth Downstream of Sills. Journal of Hydrology 460:156–159. doi:10.1016/j.jhydrol.2012.06.034.
  • Azamathulla, H. M., A. A. Ghani, and S. Y. Fei. 2012. ANFIS-Based Approach for Predicting Sediment Transport in Clean Sewer. Applied Soft Computing 12 (3):1227–1230. doi:10.1016/j.asoc.2011.12.003.
  • Azamathulla, H. M., A. Guven, and Y. K. Demir. 2011. Linear Genetic Programming to Scour below Submerged Pipeline. Ocean Engineering 38 (8-9):995–1000. doi:10.1016/j.oceaneng.2011.03.005.
  • Brameier, M., and W. Banzhaf. 2001. A Comparison of Linear Genetic Programming and Neural Networks in Medical Data Mining. IEEE Transactions on Evolutionary Computation 5 (1):17–26. doi:10.1109/4235.910462.
  • Diehl, T. H. 1997. Potential Drift Accumulation at Bridges. US Department of Transportation, Federal Highway Administration, Research and Development, Turner-Fairbank Highway Research Center.
  • Diehl, T. H., and B. A. Bryan. 1993. Supply of large woody debris in a stream channel. In Stream Stability and Scour at Highway Bridges: Compendium of Stream Stability and Scour Papers Presented at Conferences Sponsored by the Water Resources Engineering (Hydraulics) Division of the American Society of Civil Engineers, pp. 73–73.
  • Ferreira, C. 2006. Gene Expression Programming: mathematical Modeling by an Artificial Intelligence, vol. 21. Berlin: Springer.
  • Firat, M., and M. Gungor. 2009. Generalized Regression Neural Networks and Feed Forward Neural Networks for Prediction of Scour Depth around Bridge Piers. Advances in Engineering Software 40 (8):731–737. doi:10.1016/j.advengsoft.2008.12.001.
  • Foster, J. A. 2001. Discipulus: A Commercial Genetic Programming System. Genetic Programming and Evolvable Machines 2 (2):201–203. doi:10.1023/A:1011516717456.
  • Franzetti, S., E. Larcan, and P. Mignosa. 1989. Erosione Alla Base di Pile Circolari di Ponte: Verifica Sperimentale Dell’ipotesi di Esistenza di Una Situazione Finale di Equilibrio. Idrotecnica 16:135–141.
  • Gandomi, A. H., A. H. Alavi, and C. Ryan. 2015. Handbook of Genetic Programming Applications. Cham: Springer,
  • Gandomi, A. H., D. Mohammadzadeh, J. L. Pérez-Ordóñez, and A. H. Alavi. 2014. Linear Genetic Programming for Shear Strength Prediction of Reinforced Concrete Beams without Stirrups. Applied Soft Computing 19:112–120. doi:10.1016/j.asoc.2014.02.007.
  • Goyal, M. K., and C. Ojha. 2011. Estimation of Scour Downstream of a Ski-Jump Bucket Using Support Vector and M5 Model Tree. Water Resources Management 25 (9):2177–2195. doi:10.1007/s11269-011-9801-6.
  • Guven, A., H. M. Azamathulla, and N. Zakaria. 2009. Linear Genetic Programming for Prediction of Circular Pile Scour. Ocean Engineering 36 (12-13):985–991. doi:10.1016/j.oceaneng.2009.05.010.
  • Kisi, O., and C. Ozkan. 2017. A New Approach for Modeling Sediment-Discharge Relationship: Local Weighted Linear Regression. Water Resources Management 31 (1):1–23.
  • Koza, J. R. 1992. Genetic Programming: On the programming of Computers by Means of Natural Selection. Cambridge, MA: MIT Press.
  • Lagasse, P. F. 2010. Effects of Debris on Bridge Pier Scour. vol. 653. Washington, DC: Transportation Research Board.
  • Lagasse, P., L. Zevenbergen, and P. Clopper. 2010. Impacts of debris on bridge pier scour. In International Conference onScour and Erosion, 854–863.
  • Laursen, E. M., and A. Toch. 1956. Scour around Bridge Piers and Abutments, vol. 4. Ames, IA: Iowa Highway Research Board.
  • Melville, B. W., and D. Dongol. 1992. Bridge Pier Scour with Debris Accumulation. Journal of Hydraulic Engineering 118 (9):1306–1310. doi:10.1061/(ASCE)0733-9429(1992)118:9(1306).
  • Melville, B. W., and Y.-M. Chiew. 1999. Time Scale for Local Scour at Bridge Piers. Journal of Hydraulic Engineering 125 (1):59–65. doi:10.1061/(ASCE)0733-9429(1999)125:1(59).
  • Melville, B., and A. Sutherland. 1988. Design Method for Local Scour at Bridge Piers. Journal of Hydraulic Engineering 114 (10):1210–1226. doi:10.1061/(ASCE)0733-9429(1988)114:10(1210).
  • Najafzadeh, M., A. Etemad-Shahidi, and S. Y. Lim. 2016. Scour Prediction in Long Contractions Using ANFIS and SVM. Ocean Engineering 111:128–135. doi:10.1016/j.oceaneng.2015.10.053.
  • Najafzadeh, M., and F. Saberi-Movahed. 2018. GMDH-GEP to Predict Free Span Expansion Rates below Pipelines under Waves. Marine Georesources & Geotechnology 1–18. doi:10.1080/1064119X.2018.1443355.
  • Najafzadeh, M., and H. M. Azamathulla. 2013. Group Method of Data Handling to Predict Scour Depth around Bridge Piers. Neural Computing and Applications 23 (7-8):2107–2112. doi:10.1007/s00521-012-1160-6.
  • Najafzadeh, M., and H. M. Azamathulla. 2015. Neuro-Fuzzy GMDH to Predict the Scour Pile Groups Due to Waves. Journal of Computing in Civil Engineering 29 (5):04014068. doi:10.1061/(ASCE)CP.1943-5487.0000376.
  • Najafzadeh, M., F. Saberi-Movahed, and S. Sarkamaryan. 2018. NF-GMDH-Based Self-Organized Systems to Predict Bridge Pier Scour Depth under Debris Flow Effects. Marine Georesources & Geotechnology 36:589–602. doi:10.1080/1064119X.2017.1355944.
  • Najafzadeh, M., J. Shiri, and M. Rezaie-Balf. 2018. New Expression-Based Models to Estimate Scour Depth at Clear Water Conditions in Rectangular Channels. Marine Georesources & Geotechnology 36:227–235. doi:10.1080/1064119X.2017.1303009.
  • Najafzadeh, M., M. R. Balf, and E. Rashedi. 2016. Prediction of Maximum Scour Depth around Piers with Debris Accumulation Using EPR, MT, and GEP Models. Journal of Hydroinformatics 18 (5):867–884. doi:10.2166/hydro.2016.212.
  • Najafzadeh, M., M. Rezaie-Balf, and A. Tafarojnoruz. 2018. Prediction of Riprap Stone Size under Overtopping Flow Using Data-Driven Models. International Journal of River Basin Management 16:505–512.
  • Oliveto, G., and W. H. Hager. 2005. Further Results to Time-Dependent Local Scour at Bridge Elements. Journal of Hydraulic Engineering 131 (2):97–105. doi:10.1061/(ASCE)0733-9429(2005)131:2(97).
  • Pagliara, S., and I. Carnacina. 2010. Temporal Scour Evolution at Bridge Piers: Effect of Wood Debris Roughness and Porosity. Journal of Hydraulic Research 48 (1):3–13. doi:10.1080/00221680903568592.
  • Pagliara, S., and I. Carnacina. 2011a. Influence of Wood Debris Accumulation on Bridge Pier Scour. Journal of Hydraulic Engineering 137 (2):254–261. doi:10.1061/(ASCE)HY.1943-7900.0000289.
  • Pagliara, S., and I. Carnacina. 2011b. Influence of Large Woody Debris on Sediment Scour at Bridge Piers. International Journal of Sediment Research 26 (2):121–136. doi:10.1016/S1001-6279(11)60081-4.
  • Pandey, M., M. Zakwan, P. Sharma, and Z. Ahmad. 2018. Multiple Linear Regression and Genetic Algorithm Approaches to Predict Temporal Scour Depth near Circular Pier in Non-Cohesive Sediment. ISH Journal of Hydraulic Engineering 1–8. doi:10.1080/09715010.2018.1457455.
  • Park, J. H., C. Sok, C. K. Park, and Y. Do Kim. 2016. A Study on the Effects of Debris Accumulation at Sacrificial Piles on Bridge Pier Scour: I. Experimental Results. KSCE Journal of Civil Engineering 20 (4):1546–1551. doi:10.1007/s12205-015-0207-5.
  • Rahimi, E., K. Qaderi, M. Rahimpour, and M. M. Ahmadi. 2018. Effect of Debris on Piers Group Scour: An Experimental Study. KSCE Journal of Civil Engineering 22 (4):1496–1505. doi:10.1007/s12205-017-2002-y.
  • Raudkivi, A. J., and R. Ettema. 1983. Clear-Water Scour at Cylindrical Piers. Journal of Hydraulic Engineering 109 (3):338–350. doi:10.1061/(ASCE)0733-9429(1983)109:3(338).
  • Raudkivi, A. J., and R. Ettema. 1985. Scour at Cylindrical Bridge Piers in Armored Beds. Journal of Hydraulic Engineering 111 (4):713–731. doi:10.1061/(ASCE)0733-9429(1985)111:4(713).
  • Samadi, M., E. Jabbari, and H. M. Azamathulla. 2014. Assessment of M5′ Model Tree and Classification and Regression Trees for Prediction of Scour Depth below Free Overfall Spillways. Neural Computing and Applications 24 (2):357–366. doi:10.1007/s00521-012-1230-9.
  • Taylor, K. E. 2001. Summarizing Multiple Aspects of Model Performance in a Single Diagram. Journal of Geophysical Research: Atmospheres 106 (D7):7183–7192. doi:10.1029/2000JD900719.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.