380
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Case study on long-term ground settlement of reclamation project on clay deposits in Nansha of China

, , , &
Pages 372-387 | Received 21 Apr 2019, Accepted 30 Nov 2019, Published online: 26 Dec 2019

References

  • Brinkgreve, R. B. J., S. Kumarswamy, and W. M. Swolfs. 2015. Plaxis, Reference Manual. Delft: Plaxis BV.
  • British Standard. 1990. BS 1377-6: Methods of Test for Soils for Civil Engineering Purposes.
  • Bjerrum, L. 1954. Geotechnical Properties of Norwegian Marine Clays. Géotechnique 4 (2): 49–69. doi:10.1680/geot.1954.4.2.49.
  • Bjerrum, L. 1967. Engineering Geology of Norwegian Normally-Consolidated Marine Clays as Related to Settlements of Buildings. Géotechnique 17 (2): 83–118. doi:10.1680/geot.1967.17.2.83.
  • Chen, X. P., G. Y. Huang, and Z. S. Liang. 2003. Study on Soft Soil Properties of the Pearl River Delta. Chinese Journal of Rock Mechanics and Engineering 22 (1): 137–141.
  • Cheng, C. M., and J.-H. Yin. 2005. Strain-Rate Dependent Stress-Strain Behaviour of Undisturbed Hong Kong Marine Deposits under Oedometric and Triaxial Stress States. Marine Georesources & Geotechnology 23 (1–2): 61–92. doi:10.1080/10641190590953818.
  • Degago, S. A., G. Grimstad, H. P. Jostad, S. Nordal, and M. Olsson. 2011. Use and Misuse of the Isotache Concept with respect to Creep Hypotheses A and B. Géotechnique 61 (10): 897–908.
  • Feng, W. Q., B. Lalit, Z. Y. Yin, and J. H. Yin. 2017. Long-Term Non-Linear Creep and Swelling Behavior of Hong Kong Marine Deposits in Oedometer Condition. Computers and Geotechnics 84: 1–15. doi:10.1016/j.compgeo.2016.11.009.
  • Feng, W.‐Q., and J.‐H. Yin. 2017. A New Simplified Hypothesis B Method for Calculating Consolidation Settlements of Double Soil Layers Exhibiting Creep. International Journal for Numerical and Analytical Methods in Geomechanics 41 (6): 899–917. doi:10.1002/nag.2635.
  • Feng, W.‐Q., and J.‐H. Yin. 2019. Development and Verification of a New Simplified Method for Calculating Settlement of a Thick Soil Layer with Nonlinear Compressibility and Creep. International Journal of Geomechanics (accepted).
  • Liu, Y. J., Z. M. Li, S. M. Wu, and J. W. Wu. 2010. Statistic Analysis of Physical–Mechanical Indexes and Microstructure Parameters of Soft Soil in Nansha Area. Journal of Guangdong University of Technology 27 (2): 21–26.
  • Lunne, T., T. Berre, K. H. Andersen, S. Strandvik, and M. Sjursen. 2006. Effects of Sample Disturbance and Consolidation Procedures on Measured Shear Strength of Soft Marine Norwegian Clays. Canadian Geotechnical Journal 43 (7): 726–750. doi:10.1139/t06-040.
  • Lunne, T., O. Eide, and J. D. Ruiter. 1976. Correlations between Cone Resistance and Vane Shear Strength in Some Scandinavian Soft to Medium Stiff Clays. Canadian Geotechnical Journal 13 (4): 430–441. doi:10.1139/t76-043.
  • Luo, Q. Z., and X. P. Chen. 2014. Experimental Research on Creep Characteristics of Nansha Soft Soil. The Scientific World Journal 2014: 968738. doi:10.1155/2014/968738.
  • Mesri, G. 2009. Effects of Friction and Thickness on Long-Term Consolidation Behavior of Osaka Bay Clays. Soils and Foundations 49 (5): 823–824. doi:10.3208/sandf.49.823.
  • Mesri, G., and B. Vardhanabhuti. 2006. Closure of “Secondary Compression” by Mesri and Vardhanabhuti. Journal of Geotechnical and Geoenvironmental Engineering 132 (6): 817–818. doi:10.1061/(ASCE)1090-0241(2006)132:6(817).
  • Mitchell, J. K., and T. L. Brandon. 1998. Analysis and Use of CPT in Earthquake and Environmental Engineering, Keynote Lecture. Proceedings of ISC’98 1: 69–97.
  • Nagaraj, T. S., and N. Miura. 2001. Soft Clay Behaviour Analysis and Assessment. Rotterdam, The Netherlands: Balkema.
  • Nash, D., and M. Brown. 2013. Influence of Destructuration of Soft Clay on Time-Dependent Settlements: Comparison of Some Elastic Viscoplastic Models. International Journal of Geomechanics 15 (5): A4014004. doi:10.1061/(ASCE)GM.1943-5622.0000281.
  • Nash, D. F. T., and S. J. Ryde. 2001. Modelling Consolidation Accelerated by Vertical Drains in Soils Subject to Creep. Géotechnique 51 (3): 257–273.
  • Shen, S. L., Z. F. Wang, and W. C. Cheng. 2017. Estimation of Lateral Displacement Induced by Jet Grouting in Clayey Soils. Géotechnique 67 (7): 621–630. doi:10.1680/jgeot.16.P.159.
  • Shen, S. L., H. N. Wu, Y. J. Cui, and Z. Y. Yin. 2014. Long-Term Settlement Behaviour of Metro Tunnels in the Soft Deposits of Shanghai. Tunnelling and Underground Space Technology 40: 309–323. doi:10.1016/j.tust.2013.10.013.
  • Sridharan, A., and Y. Gurtug. 2004. Swelling Behaviour of Compacted Fine-Grained Soils. Engineering Geology 72 (1–2): 9–18. doi:10.1016/S0013-7952(03)00161-3.
  • Stolle, D. F. E., P. A. Vermeer, and P. G. Bonnier. 1999. A Consolidation Model for a Creeping Clay. Canadian Geotechnical Journal 36 (4): 754–759. doi:10.1139/t99-034.
  • Tavenas, F., P. Jean, P. Leblond, and S. Leroueil. 1983. The Permeability of Natural Soft Clays. Part II: Permeability Characteristics. Canadian Geotechnical Journal 20 (4): 645–660. doi:10.1139/t83-073.
  • Vermeer, P. A., and H. P. Neher. 1999. A soft soil model that accounts for creep. Proc., Plaxis Symposium “Beyond 2000 in Computational Geotechnics”, Balkema, Rotterdam, 249–262.
  • Wei, X., and C. Wu. 2011. Holocene Delta Evolution and Sequence Stratigraphy of the Pearl River Delta in South China. Science China Earth Sciences 54 (10): 1523–1541. doi:10.1007/s11430-011-4238-6.
  • Yin, J. H. 1999. Non-Linear Creep of Soils in Oedometer Tests. Géotechnique 49 (5): 699–707. doi:10.1680/geot.1999.49.5.699.
  • Yin, J.-H., and W.-Q. Feng. 2017. A New Simplified Method and Its Verification for Calculation of Consolidation Settlement of a Clayey Soil with Creep. Canadian Geotechnical Journal 54 (3): 333–347. doi:10.1139/cgj-2015-0290.
  • Yin, J.-H., and J. Graham. 1989. Viscous-Elastic-Plastic Modelling of One-Dimensional Time-Dependent Behaviour of Clays. Canadian Geotechnical Journal 26 (2): 199–209. doi:10.1139/t89-029.
  • Yin, J.-H., and J. Graham. 1994. Equivalent Times and One-Dimensional Elastic Viscoplastic Modelling of Time-Dependent Stress-Strain Behaviour of Clays. Canadian Geotechnical Journal 31 (1): 42–52. doi:10.1139/t94-005.
  • Yin, J. H., J. Graham, J. I. Clark, and L. Gao. 1994. Modelling Unanticipated Pore-Water Pressures in Soft Clays. Canadian Geotechnical Journal 31 (5): 773–778. doi:10.1139/t94-088.
  • Yin, J. H., and F. Tong. 2011. Constitutive Modeling of Time-Dependent Stress–Strain Behaviour of Saturated Soils Exhibiting Both Creep and Swelling. Canadian Geotechnical Journal 48 (12): 1870–1885. doi:10.1139/t11-076.
  • Yin, J. H., and J. G. Zhu. 1999. Elastic Viscoplastic Consolidation Modelling and Interpretation of Pore-Water Pressure Responses in Clay underneath Tarsiut Island. Canadian Geotechnical Journal 36 (4): 708–717. doi:10.1139/t99-041.
  • Yin, J.-H., J.-G. Zhu, and J. Graham. 2002. A New Elastic Visco-Plastic Model for Time-Dependent Behaviour of Normally and Over-Consolidated Clays: theory and Verification. Canadian Geotechnical Journal 39 (1): 157–173. doi:10.1139/t01-074.
  • Yin, Z. Y., M. Karstunen, J. H. Wang, and C. Yu. 2011. Influence of Features of Natural Soft Clay on Behaviour of Embankment. Journal of Central South University of University 18 (5): 1667–1676. doi:10.1007/s11771-011-0887-z.
  • Zhang, F. Z., and L. J. Huang. 2012. Mechanical Behavior of Silty Sand in Guangdong. Journal of Yangtze River Scientific Research Institute 29 (7): 67–72 (in Chinese).
  • Zhu, G. F., and J. H. Yin. 1999. Consolidation of Double Soil Layers under Depth-Dependent Ramp Load. Geotechnique 49 (3): 415–421.
  • Zhu, G., and J. H. Yin. 2005. Solution Charts for the Consolidation of Double Soil Layers. Canadian Geotechnical Journal 42 (3): 949–956. doi:10.1139/t05-001.
  • Zhu, G., and J. H. Yin. 2012. Analysis and Mathematical Solutions for Consolidation of a Soil Layer with Depth-Dependent Parameters under Confined Compression. International Journal of Geomechanics 12 (4): 451–461. doi:10.1061/(ASCE)GM.1943-5622.0000152.
  • Zhu, G., J.-H. Yin, and J. Graham. 2001. Consolidation Modelling of Soils under the Test Embankment at Chek Lap Kok International Airport in Hong Kong Using a Simplified Finite Element Method. Canadian Geotechnical Journal 38 (2): 349–363. doi:10.1139/t00-103.
  • Zhu, H.-H., C.-C. Zhang, G.-X. Mei, B. Shi, and L. Gao. 2017. Prediction of One-Dimensional Compression Behavior of Nansha Clay Using Fractional Derivatives. Marine Georesources & Geotechnology 35 (5): 688–697. doi:10.1080/1064119X.2016.1217958.
  • Zhu, Q. Y., Y. F. Jin, and Z. Y. Yin. 2019. Modeling of Embankment beneath Marine Deposited Soft Sensitive Clays considering Straightforward Creep Degradation. Marine Georesources & Geotechnology: 1–17. doi:10.1080/1064119X.2019.1603254.
  • Zou, S. F., X. Y. Xie, J. Z. Li, Z. J. Wang, and H. Y. Wang. 2019. Rheological Characteristics and One-Dimensional Isotache Modelling of Marine Soft Clays. Marine Georesources & Geotechnology 37 (6): 660–670. doi:10.1080/1064119X.2018.1473903.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.