173
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Compressibility behavior and lateral earth pressure of a marine soil mixed with tire crumbs

, &
Pages 600-609 | Received 13 Dec 2019, Accepted 13 Feb 2020, Published online: 11 Mar 2020

References

  • Aghajani, H. F., H. Salehzadeh, and R. Rezvani. 2016. Energy Equilibrium during Crushing of Sandy Soils under Isotropic Compression. Arabian Journal for Science and Engineering 41 (4): 1531–1542. doi:10.1007/s13369-016-2063-0.
  • Alvarez-Borges, F., C. R. I. Clayton, D. Richards, and M. Bn. 2018. The Effect of the Remolded Void Ratio on Unit Shaft Friction in Small-Displacement Piles in Chalk. Engineering in Chalk: Proceedings of the Chalk 2018 Conference, London. 475–480.
  • Anastasiadis, A.,. K. Senetakis, K. Pitilakis, C. Gargala, I. Karakasi, T. Edil, and S. Dean. 2012. Dynamic Behavior of Sand/Rubber Mixtures. Part I: Effect of Rubber Content and Duration of Confinement on Small-Strain Shear Modulus and Damping Ratio. Journal of ASTM International 9 (2): 103680. doi:10.1520/JAI103680.
  • ASTM D2435 2004. Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading. West Conshohocken, PA: ASTM International.
  • ASTM D6270 2017. Standard Practice for Use of Scrap Tires in Civil Engineering Applications, , West Conshohocken, PA: ASTM International.
  • Attom, M. F. 2006. The Use of Shredded Waste Tires to Improve the Geotechnical Engineering Properties of Sands. Environmental Geology 49 (4): 497–503. doi:10.1007/s00254-005-0003-5.
  • Balaban, E., A. Smejda, and M. I. Onur. 2019. Influence of Tire Crumbs on Mechanical Properties of Sand-Fine Soil Mixtures. Geomechanics and Geoengineering : 1–16.
  • Bishop, A. W., I. Alpan, G. E. Blight, and I. B. Donald. 1960. Factors Controlling the Shear Strength of Partly Saturated Cohesive Soils. Proceedings of the Research Conference on Shear Strength of Cohesive Soils, ASCE, New York, USA. 503–532.
  • BSI (British Standards Institute) 1990. BS1377: Part 3 Chemical and Electro-Chemical Tests. London: BSI.
  • Budhu, M. 2010. Soil Mechanics and Foundations. 3rd ed. Hoboken, NJ: John Wiley & Sons, Inc.
  • Cabalar, A., and Z. Karabash. 2015. California Bearing Ratio of a Sub-Base Material Modified with Tire Buffings and Cement Addition. Journal of Testing and Evaluation 43 (6): 20130070. doi:10.1520/JTE20130070.
  • Coop, M. 1990. The Mechanics of Uncemented Carbonate Sands. Géotechnique 40 (4): 607–615. doi:10.1680/geot.1990.40.4.607.
  • Dehnavi, Y., H. Shahnazari, H. Salehzadeh, and R. Rezvani. 2010. Compressibility and Undrained Behavior of Hormuz Calcareous Sand. Electronic Journal of Geotechnical Engineering 15 (O): 1684–1702.
  • Edil, T., and P. Bosscher. 1994. Engineering Properties of Tire Chips and Soil Mixtures. Geotechnical Testing Journal 17 (4): 453–464. 1994, doi:10.1520/GTJ10306J.
  • Edil, T. B. 2004. A Review of Mechanical and Chemical Properties of Shredded Tires and Soil Mixtures. Recycled Materials in Geotechnics Sessions at ASCE Civil Engineering Conference and Exposition 2004, Baltimore, Maryland, United States, 1–21. doi:10.1061/40756(149)1.
  • Edincliler, A., A. F. Cabalar, and A. Cevik. 2013. Modelling Dynamic Behaviour of Sand–Waste Tires Mixtures Using Neural Networks and Neuro-Fuzzy. European Journal of Environmental and Civil Engineering 17 (8): 720–741. doi:10.1080/19648189.2013.814552.
  • Edincliler, A., A. F. Cabalar, A. Cagatay, and A. Cevik. 2012. Triaxial Compression Behavior of Sand and Tire Wastes Using Neural Networks. Neural Computing and Applications 21 (3): 441–452. doi:10.1007/s00521-010-0430-4.
  • Ehsani, M., N. Shariatmadari, and S. M. Mirhosseini. 2017. Experimental Study on Behavior of Soil-Waste Tire Mixtures. Scientia Iranica 24 (1): 65–71. doi:10.24200/sci.2017.2377.
  • ETRMA 2012. Information + Enforcement = Consumer-Protection-Annual Report 2011–2012, 22 August 2012,2 Avenue des Arts, Box 12 B-1210 Brussels. http://www.etrma.org/uploads/Modules/Documentsmanager/etrma-annual-report-2012_8_def.pdf.
  • Hardin, B. O. 1985. Crushing of Soil Particles. Journal of Geotechnical Engineering 111 (10): 1177–1192. doi:10.1061/(ASCE)0733-9410(1985)111:10(1177).
  • Holmes, A. 1978. Principles of Physical Geology Sunbury-on-Thames, Nelson, London, 730.
  • Hyodo, M., N. Aramaki, M. Itoh, and A. F. L. Hyde. 1996. Cyclic Strength and Deformation of Crushable Carbonate Sand. Soil Dynamics and Earthquake Engineering 15 (5): 331–336. doi:10.1016/0267-7261(96)00003-6.
  • Jamshidi Chenari, R., M. Karimpour Fard, S. Pourghaffar Maghfarati, F. Pishgar, and S. Lemos Machado. 2016. An Investigation on the Geotechnical Properties of Sand–EPS Mixture Using Large Oedometer Apparatus. Construction and Building Materials 113: 773–782. doi:10.1016/j.conbuildmat.2016.03.083.
  • Li, S., and D. Li. 2018. Mechanical Properties of Scrap Tire Crumbs-Clayey Soil Mixtures Determined by Laboratory Tests. Advances in Materials Science and Engineering 2018: 1–10. doi:10.1155/2018/1742676.
  • Lovisa, J., and N. Sivakugan. 2015. Tall Oedometer Testing: method to account for Wall Friction. International Journal of Geomechanics 15 (2): 04014045. doi:10.1061/(ASCE)GM.1943-5622.0000359.
  • Masad, E., R. Taha, C. Ho, and T. Papagiannakis. 1996. Engineering Properties of Tire/Soil Mixtures as a Lightweight Fill Material. Geotechnical Testing Journal 19 (3): 297–304. doi:10.1520/GTJ10355J.
  • Mashiri, M. S., J. S. Vinod, M. N. Sheikh, and H.-H. Tsang. 2015. Shear Strength and Dilatancy Behaviour of Sand–Tyre Chip Mixtures. Soils and Foundations 55 (3): 517–528. doi:10.1016/j.sandf.2015.04.004.
  • Matthews, M., and C. Clayton. 2004. Large Diameter Plate Tests on Weathered in-Situ Chalk. Quarterly Journal of Engineering Geology and Hydrogeology 37 (1): 61–72. doi:10.1144/1470-9236/03-033.
  • Morioka, B., and P. Nicholson. 2000. Evaluation of the Liquefaction Potential of Calcareous Sand. Proceedings of the International Offshore and Polar Engineering Conference, Seattle, WA, USA, 494–500.
  • Northcutt, S., and D. Wijewickreme. 2013. Effect of Particle Fabric on the Coefficient of Lateral Earth Pressure Observed during One-Dimensional Compression of Sand. Canadian Geotechnical Journal 50 (5): 457–466. doi:10.1139/cgj-2012-0162.
  • Rezvani, R. 2020. Shearing Response of Geotextile-Reinforced Calcareous Soils Using Monotonic Triaxial Tests. Marine Georesources & Geotechnology 38 (2): 238–249. doi:10.1080/1064119X.2019.1566936.
  • Rezvani, R.,. H. Shahnazari, H. Salehzadeh, and Y. Dehnavi. 2011. The Comparison of Monotonic Behaviors of Two Different Calcareous Sands. First International Conference on Geotechnique, Construction Materials and Environment, Mie, Japan, November 21–23, Vol. 1.
  • Shahnazari, H., and R. Rezvani. 2013. Effective Parameters for the Particle Breakage of Calcareous Sands: An Experimental Study. Engineering Geology 159: 98–105. doi:10.1016/j.enggeo.2013.03.005.
  • Shahnazari, H., M. Amin Tutunchian, R. Rezvani, and F. Valizadeh. 2013. Evolutionary-Based Approaches for Determining the Deviatoric Stress of Calcareous Sands. Computers & Geosciences 50 (0): 84–94. doi:10.1016/j.cageo.2012.07.006.
  • Shahnazari, H., H. Salehzadeh, R. Rezvani, and Y. Dehnavi. 2014. The Effect of Shape and Stiffness of Originally Different Marine Soil Grains on Their Contractive and Dilative Behavior. KSCE Journal of Civil Engineering 18 (4): 975–983. doi:10.1007/s12205-014-0286-8.
  • Shahnazari, H., Y. Jafarian, M. A. Tutunchian, and R. Rezvani. 2016a. Probabilistic Assessment of Liquefaction Occurrence in Calcareous Fill Materials of Kawaihae Harbor, Hawaii. International Journal of Geomechanics 16 (6): 05016001. doi:10.1061/(ASCE)GM.1943-5622.0000621.
  • Shahnazari, H., Y. Jafarian, M. A. Tutunchian, and R. Rezvani. 2016b. Undrained Cyclic and Monotonic Behavior of Hormuz Calcareous Sand Using Hollow Cylinder Simple Shear Tests. International Journal of Civil Engineering 14: 209–219. doi:10.1007/s40999-016-0021-6.
  • Shahnazari, H., R. Rezvani, and M. A. Tutunchian. 2016. The Effects of Dissipated Energy on Mechanical Behavior of Carbonate Sands Using Monotonic Triaxial Tests. Japanese Geotechnical Society Special Publication 2 (9): 397–400. doi:10.3208/jgssp.IRN-04.
  • Shahnazari, H., R. Rezvani, and M. A. Tutunchian. 2017. Experimental Study on the Phase Transformation Point of Crushable and Noncrushable Soils. Marine Georesources & Geotechnology 35 (2): 176–185. doi:10.1080/1064119X.2015.1126773.
  • Shahnazari, H., R. Rezvani, and M. A. Tutunchian. 2019. Post-Cyclic Volumetric Strain of Calcareous Sand Using Hollow Cylindrical Torsional Shear Tests. Soil Dynamics and Earthquake Engineering 124: 162–171. doi:10.1016/j.soildyn.2019.05.030.
  • Sharma, S. S., and M. A. Ismail. 2006. Monotonic and Cyclic Behavior of Two Calcareous Soils of Different Origins. Journal of Geotechnical and Geoenvironmental Engineering 132 (12): 1581–1591. doi:10.1061/(ASCE)1090-0241(2006)132:12(1581).
  • Sheikh, M. N., M. S. Mashiri, J. S. Vinod, and H.-H. Tsang. 2013. Shear and Compressibility Behavior of Sand–Tire Crumb Mixtures. Journal of Materials in Civil Engineering 25 (10): 1366–1374. doi:10.1061/(ASCE)MT.1943-5533.0000696.
  • Skempton, A. W. 1961. Effective Stress in Soils, Concrete and Rocks. Pore Pressure and Suction in Soils. London: Butterworths.
  • Tsang, H.-H., S. H. Lo, X. Xu, and M. N. Sheikh. 2012. Seismic Isolation for Low-to-Medium-Rise Buildings Using Granulated Rubber–Soil Mixtures: numerical Study. Earthquake Engineering & Structural Dynamics 41 (14): 2009–2024. doi:10.1002/eqe.2171.
  • Terzaghi, K. 1936. The Shearing Resistance of Saturated Soil and the Angle between the Planes of Shear. Proceedings of First International SMFE Conference Vol. 1. Harvard, MA, 54–56.
  • Tizpa, P., R. Jamshidi Chenari, and F. Farrokhi. 2019. A Note on the Compressibility and Earth Pressure Properties of EPS Beads-Rigid Particulates Composite. Geotechnical and Geological Engineering 37 (6): 5231–5243. doi:10.1007/s10706-019-00977-z.
  • Wang, X.-Z., F.-Y. Tan, Y.-Y. Jiao, and R. Wang. 2013. A New Apparatus for Testing the Bearing Capacity of Calcareous Sand in Laboratory. Marine Georesources & Geotechnology 32 (4): 379–386. doi:10.1080/1064119X.2012.728683.
  • Wood, A., B. Mackenzie, D. Burbury, M. Rattley, C. Clayton, M. Mygind, K. Andersen, C. Thilsted, and M. Liingaard. 2015. Design of Large Diameter Monopiles in Chalk at Westermost Rough Offshore Wind Farm. Frontiers in Offshore Geotechnics III: proceedings of the Third International Symposium on Frontiers in Offshore Geotechnics (ISFOG 2015), Oslo, Norway, 10–12 June 2015, CRC Press, Boca Raton, pp. 723–728.
  • Zhou, X.-Z., Y.-M. Chen, W.-W. Li, and H.-L. Liu. 2018. Monotonic and Cyclic Behaviors of Loose Anisotropically Consolidated Calcareous Sand in Torsional Shear Tests. Marine Georesources & Geotechnology 37 (5): 1–14. doi:10.1080/1064119X.2018.1449274.
  • Zimmerman, P. S. 1997. Compressibility, Hydraulic Conductivity, and Soil Infiltration Testing of Tire Shreds and Field Testing of a Shredded Tire Horizontal Drain. Master of Science, Iowa State University.
  • Zornberg, J. G., A. R. Cabral, and C. Viratjandr. 2004. Behavior of Tire Shred-Sand Mixtures. Canadian Geotechnical Journal 41 (2): 227–241. doi:10.1139/t03-086.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.