111
Views
0
CrossRef citations to date
0
Altmetric
Articles

Comparative study of capillary rise characteristics of saltwater in loose materials

&
Pages 1341-1358 | Received 07 Jul 2021, Accepted 11 Oct 2021, Published online: 23 Oct 2021

References

  • Aghajani, H. F., A. Soroush, and P. T. Shourijeh. 2011. An Improved Solution to Capillary Rise of Water in Soils. International Journal of Civil Engineering 9 (4): 275–281.
  • Alderete, N., Y. A. Villagrán Zaccardi, and N. De Belie. 2020. Mechanism of Long-Term Capillary Water Uptake in Cementitious Materials. Cement and Concrete Composites 106 (2020): 103448. doi:10.1016/j.cemconcomp.2019.103448.
  • Aqeel, A., and S. M. Sabih. 2019. Effect of Salty Soil on Subsurface Concrete Strength. International Journal of Civil Engineering and Technology (IJCIET) 10 (1): 2556–2565.
  • ASTM C1585-13. 2013. Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. ASTM International. West Conshohocken, PA.
  • ASTM D2434-19. 2019. Standard Test Method for Permeability of Granular Soils (Constant Head). ASTM International. West Conshohocken, PA.
  • Cadersa, A. S., and I. Auckburally. 2014. Use of Unprocessed Coal Bottom Ash as Partial Fine Aggregate Replacement in Concrete. University of Mauritius Research Journal 20: 62–84.
  • Charles, W. W., Ng, J. Liu, R. Chen, and J. Xu. 2015. Physical and Numerical Modeling of an Inclined Three-Layer (Silt/Gravelly Sand/Clay) Capillary Barrier Cover System under Extreme Rainfall. Waste Management (New York, N.Y.) 38: 210–221. doi:10.1016/j.wasman.2014.12.013.
  • Dale, M., S. Ekrann, J. Mykkeltveit, and G. Virnovsky. 1997. Effective Relative Permeabilities and Capillary Pressure for One-Dimensional Heterogeneous Media. Transport in Porous Media 26 (3): 229–260. doi:10.1023/A:1006536021302.
  • Dan, D. Q., D. T. Tuong, and D. N. Son. 2019. Sử Dụng Tro xỉ Nhiệt Điện Làm Vật Liệu San Lấp [the Utilization of Coal Ash as a Backfill Material. Journal of Vietnam Institute for Building Science and Technology 1 (2019): 35–43.
  • Devitt, D. A., and R. L. Morris. 2009. Concrete Problems with Desert Soils. University of Nevada-Reno, Nevada, United States of America.
  • Hird, R., and M. D. Bolton. 2017. Clarification of Capillary Rise in Dry Sand. Engineering Geology 230: 77–83. doi:10.1016/j.enggeo.2017.09.023.
  • Janetti, M. B., L. P. M. Colombo, F. Ochs, and W. Feist. 2018. Effect of Evaporation Cooling on Drying Capillary Active Building Materials. Energy and Buildings 166: 550–560. doi:10.1016/j.enbuild.2017.12.048.
  • Karagiannis, N., M. Karoglou, A. Bakolas, M. Krokida, and A. Moropoulou. 2017. Drying Kinetics of Building Materials Capillary Moisture. Construction and Building Materials 137: 441–449. doi:10.1016/j.conbuildmat.2017.01.094.
  • Karagiannis, N., M. Karoglou, A. Bakolas, M. Krokida, and A. Moropoulou. 2018. The Influence of Dynamic Environmental Conditions on Capillary Water Uptake of Building Materials. Journal of Building Physics 42 (4): 506–526. doi:10.1177/1744259118773284.
  • Karagiannis, N., M. Karoglou, A. Bakolas, and A. Moropoulou. 2016a. Building Materials Capillary Rise Coefficient: Concepts, Determination and Parameters Involved. In New Approaches to Building Pathology and Durability, Building Pathology and Rehabilitationoed. J. Delgado, vol. 6, 27–44. Singapore: Springer Science + Business Media.. doi:10.1007/978-981-10-0648-7_2.
  • Karagiannis, N., M. Karoglou, A. Bakolas, and A. Moropoulou. 2016b. Effect of Temperature on Water Capillary Rise Coefficient of Building Materials. Building and Environment 106: 402–408. doi:10.1016/j.buildenv.2016.07.008.
  • Karoglou, M., A. Moropoulou, A. Giakoumaki, and M. Krokida. 2005. Capillary Rise Kinetics of Some Building Materials. Journal of Colloid and Interface Science 284 (1): 260–264. doi:10.1016/j.jcis.2004.09.065.
  • Kerkhoff, B. 2007. Effects of Substances on Concrete and Guide to Protective Treatments. Skokie, IL: Portland Cement Association
  • Lu, N., and W. J. Likos. 2004. Rate of Capillary Rise in Soil. Journal of Geotechnical and Geoenvironmental Engineering 130 (6): 646–650. 130:6 (646) doi:10.1061/(ASCE)1090-0241(2004).
  • Lubelli, Barbara, Veerle Cnudde, Teresa Diaz-Goncalves, Elisa Franzoni, Rob P. J. van Hees, Ioannis Ioannou, Beatriz Menendez, et al. 2018. Towards a More Effective and Reliable Salt Crystallization Test for Porous Building Materials: state of the Art. Materials and Structures 51 (2): 55. doi:10.1617/s11527-018-1180-5.
  • Lubelli, B. 2006. Sodium Chloride Damage to Porous Building Materials. PhD diss., Delft university of Technology.
  • Malik, R. S., S. Kumar, and R. K. Malik. 1989. Maximal Capillary Rise Flux as a Function of Height from the Water Table. Soil Science 148 (5): 322–326. doi:10.1097/00010694-199012000-00010.
  • Ministry of Construction. 2017. Decision No.430/QDBXD: Guideline on iron and steel slag for use as Building Materials. Vietnam Ministry of Construction.
  • Monsif, M. Y., J. Liu, and N. Gurpersaud. 2020. Impact of Salinity on Strength and Microstructure of Cement-Treated Champlain Sea Clay. Marine Georesources & Geotechnology 1–13. doi:10.1080/1064119X.2020.1841347.
  • Nghia, T. D. 2019. Tro xỉ và sử Dụng Tro xỉ Của Nhà Máy Nhiệt Điện than [Coal Ash and the Utilization of Coal Ash from Thermal Power Plants]. Scientific Conference on Environmental Protection in Mining, Processing and Use of Coal, Minerals and Petroleum, in Nha Trang city, Khanh Hoa, Vietnam.
  • Ngo, S. H., and T. P. Huynh. 2020. Development of Innovative Green Bricks Based on Coal-Combustion Bottom Ash. International Journal of Engineering and Advanced Technology (IJEAT) 9 (4): 875–880. doi:10.35940/ijeat.D8051.049420.
  • Nhan, T. T. 2018. Potential Application of Granulated Blast Furnace Slag as an Alternative Geo-Material for Sustainable Development in Vietnam. IPB&KU International Symposium on Education and Research in Global Environmental Studies in Asia. Indonesia.
  • Nikitsin, V. I., and B. Backiel-Brzozowska. 2013. Determination of Capillary Tortuosity Coefficient in Calculations of Moisture Transfer in Building Materials. International Journal of Heat and Mass Transfer 56 (1–2): 30–34. doi:10.1016/j.ijheatmasstransfer.2012.09.021.
  • Nu, N. T., P. H. Thinh, and B. T. Son. 2019. Utilizing Coal Bottom Ash from Thermal Power Plants in Vietnam as Partial Replacement of Aggregates in Concrete Pavement. Journal of Engineering 2019: 11. doi:10.1155/2019/3903097.
  • Parlange, J.-Y., R. Haverkamp, J. L. Starr, C. Fuentes, R. S. Malik, S. Kumar, and R. K. Malik. 1990. Maximal Capillary Rise Flux as a Function of Height from the Water Table. Soil Science 150 (6): 896–898.
  • Plug, W. J., and J. Bruining. 2007. Capillary Pressure for the Sand–CO2–Water System under Various Pressure Conditions. Application to CO2 Sequestration. Advances in Water Resources 30 (11): 2339–2353. doi:10.1016/j.advwatres.2007.05.010.
  • Richards, L. A. 1952. Water Conducting and Retaining Properties of Soils in Relation to Irrigation. Proceedings of the International Symposium on Desert Research, Jerusalem, 523–546.
  • Sivakugan, N., and D. M. Braja. 2010. Geotechnical Engineering Handbook – A Practical Problem Solving Approach. Fort Lauderdale, FL: Ross Publishing Eureka Series.
  • Terzaghi, K. 1943. Theoretical Soil Mechanics. London: Chapman and Hall – CRC Press.
  • Truc, N. N., and L. Mihova. 2015. Soft Soil in Salt-Affected Media: geotechnical Perspectives. Hanoi: Vietnam National University Press.
  • Truc, N. N., L. Mihova, T. Mukunoki, and D. M. Duc. 2019. Effect of Saline Intrusion on the Properties of Cohesive Soils in the Red River Delta, Vietnam. Marine Georesources & Geotechnology 38 (1): 23–39. doi:10.1080/1064119X.2018.1550827.
  • Truc, N. N., and N. V. Vu. 2018. Partial Replacement of Natural Sand by Granulated Blast Furnace Slag (GBFS) in Fine Aggregate for Concrete: practical Application in Vietnam. 18th International Multidisciplinary Scientific GeoConference SGEM 2018 18 (1–2): 523–530. doi:10.5593/sgem2018/1.2/S02.066.
  • Widomski, M. K., G. Łagód, Z. Suchorab, M. Pavlikova, Z. Pavlik, and M. Zaleska. 2021. Application of the Darcy and Richards Equations for Modelling of Water Capillary Rise in Building Materials. Journal of Physics: Conference Series 1736: 012042. doi:10.1088/1742-6596/1736/1/012042.
  • William, G. G., K. Bruning, and C. T. Miller. 2019. Non-Hysteretic Functional Form of Capillary Pressure in Porous Media. Journal of Hydraulic Research 57 (6): 747–759. doi:10.1080/00221686.2019.1671520.
  • Winterkorn, H. F., and H. Y. Fang. 1975. Foundation Engineering Handbook. New York: Van Nostrand Reinhold Publisher
  • Yang, H., H. Rahardjo, E. C. Leong, and D. G. Fredlund. 2004. A Study of Infiltration on Three Sand Capillary Barriers. Canadian Geotechnical Journal 41 (4): 629–643. doi:10.1139/t04-021.
  • Yin, J., M. M. Hu, G. Z. Xu, W. X. Han, and Y. H. Miao. 2019. Effect of Salinity on Rheological and Strength Properties of Cement-Stabilized Clay Minerals. Marine Georesources & Geotechnology 38 (5): 611–620. doi:10.1080/1064119X.2019.1608484.
  • Yuksel, I. 2018. Blast Furnace Slag. In Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Propertiesvand Applications. A volume in Woodhead Publishing Series in Civil and Structural Engineering, 361–415. doi:10.1016/b978-0-08-102156-9.00012-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.