487
Views
0
CrossRef citations to date
0
Altmetric
Article

A three-dimensional DEM modelling of triaxial test on gas hydrate-bearing sediments considering flexible boundary condition

, &
Pages 1470-1489 | Received 03 Aug 2021, Accepted 19 Sep 2021, Published online: 20 Dec 2021

References

  • Bagi, K. 2003. “Statistical Analysis of Contact Force Components in Random Granular Assemblies.” Granular Matter 5 (1): 45–54. https://doi.org/10.1007/s10035-002-0123-5.
  • Brugada, J., Y. P. Cheng, K. Soga, and J. C. Santamarina. 2010. “Discrete Element Modelling of Geomechanical Behaviour of Methane Hydrate Soils with Pore-Filling Hydrate Distribution.” Granular Matter 12 (5): 517–525. https://doi.org/10.1007/s10035-010-0210-y.
  • Chaouachi, M., A. Falenty, K. Sell, F. Enzmann, M. Kersten, D. Haberthür, and W. F. Kuhs. 2015. “Microstructural Evolution of Gas Hydrates in Sedimentary Matrices Observed with Synchrotron X‐Ray Computed Tomographic Microscopy.” Geochemistry, Geophysics, Geosystems 16 (6): 1711–1722. https://doi.org/10.1002/2015GC005811.
  • Cheung, G., and C. O'Sullivan. 2008. “Effective Simulation of Flexible Lateral Boundaries in Two-and Three-Dimensional DEM Simulations.” Particuology 6 (6): 483–500. https://doi.org/10.1016/j.partic.2008.07.018.
  • Choi, J. H., S. Dai, J. S. Lin, and Y. Seol. 2018. “Multistage Triaxial Tests on Laboratory‐Formed Methane Hydrate‐Bearing Sediments.” Journal of Geophysical Research: Solid Earth 123 (5): 3347–3357. https://doi.org/10.1029/2018JB015525.
  • Chong, Z. R., S. H. B. Yang, P. Babu, P. Linga, and X. Li. 2016. “Review of Natural Gas Hydrates as an Energy Resource: prospects and Challenges.” Applied Energy 162: 1633–1652. https://doi.org/10.1016/j.apenergy.2014.12.061.
  • Cil, M. B., and K. A. Alshibli. 2014. “3D Analysis of Kinematic Behavior of Granular Materials in Triaxial Testing Using DEM with Flexible Membrane Boundary.” Acta Geotechnica 9 (2): 287–298. https://doi.org/10.1007/s11440-013-0273-0.
  • Cohen, E., A. Klar, and K. Yamamoto. 2019. “Micromechanical Investigation of Stress Relaxation in Gas Hydrate-Bearing Sediments Due to Sand Production.” Energies 12 (11): 2131. https://doi.org/10.3390/en12112131.
  • Cui, L., C. O'Sullivan, and S. O'Neill. 2007. “An Analysis of the Triaxial Apparatus Using a Mixed Boundary Three-Dimensional Discrete Element Model.” Géotechnique 57 (10): 831–844. https://doi.org/10.1680/geot.2007.57.10.831.
  • Cundall, P. A., and O. D. L. Strack. 1979. “A Discrete Numerical Model for Granular Assemblies.” Géotechnique 29 (1): 47–65. https://doi.org/10.1680/geot.1979.29.1.47.
  • Fang, H., K. Shi, and Y. Yu. 2020. “Geomechanical Constitutive Modelling of Gas Hydrate-Bearing Sediments by a State-Dependent Multishear Bounding Surface Model.” Journal of Natural Gas Science and Engineering 75: 103119. https://doi.org/10.1016/j.jngse.2019.103119.
  • GDR MiDi. 2004. “On Dense Granular Flows.” The European Physical Journal E 14: 341–365. https://doi.org/10.1140/epje/i2003-10153-0.
  • Gong, B., Y. Jiang, P. Yan, and S. Zhang. 2020. “Discrete Element Numerical Simulation of Mechanical Properties of Methane Hydrate-Bearing Specimen considering Deposit Angles.” Journal of Natural Gas Science and Engineering 76: 103182. https://doi.org/10.1016/j.jngse.2020.103182.
  • Gong, G., C. Thornton, and A. H. C. Chan. 2012. “DEM Simulations of Undrained Triaxial Behavior of Granular Material.” Journal of Engineering Mechanics 138 (6): 560–566. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000366.
  • Guo, X., D. Zheng, T. Nian, and L. Lv. 2020. “Large-Scale Seafloor Stability Evaluation of the Northern Continental Slope of South China Sea.” Marine Georesources & Geotechnology 38 (7): 804–817. https://doi.org/10.1080/1064119X.2019.1632996.
  • He, J., R. Blumenfeld, and H. Zhu. 2021. “Mechanical Behaviors of Sandy Sediments Bearing Pore-Filling Methane Hydrate under Different Intermediate Principal Stress.” International Journal of Geomechanics 21 (5): 04021043. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001965.
  • Huang, X., C. O’Sullivan, K. J. Hanley, and C. Kwok. 2017. “Partition of the Contact Force Network Obtained in Discrete Element Simulations of Element Tests.” Computational Particle Mechanics 4 (2): 145–152. https://doi.org/10.1007/s40571-015-0095-y.
  • Hurley, R. C., S. A. Hall, J. E. Andrade, and J. Wright. 2016. “Quantifying Interparticle Forces and Heterogeneity in 3D Granular Materials.” Physical Review Letters 117 (9): 098005. https://doi.org/10.1103/PhysRevLett.117.098005.
  • Jiang, Y., and B. Gong. 2020. “Discrete-Element Numerical Modelling Method for Studying Mechanical Response of Methane-Hydrate-Bearing Specimens.” Marine Georesources & Geotechnology 38 (9): 1082–1096. https://doi.org/10.1080/1064119X.2019.1652373.
  • Jiang, M., J. Liu, and Z. Shen. 2019. “DEM Simulation of Grain-Coating Type Methane Hydrate Bearing Sediments along Various Stress Paths.” Engineering Geology 261: 105280. https://doi.org/10.1016/j.enggeo.2019.105280.
  • Jiang, M., D. Peng, and J. Ooi. 2017. “DEM Investigation of Mechanical Behavior and Strain Localization of Methane Hydrate Bearing Sediments with Different Temperatures and Water Pressures.” Engineering Geology 223: 92–109. https://doi.org/10.1016/j.enggeo.2017.04.011.
  • Jung, J. W., J. C. Santamarina, and K. Soga. 2012. “Stress‐Strain Response of Hydrate‐Bearing Sands: Numerical Study Using Discrete Element Method Simulations.” Journal of Geophysical Research: Solid Earth 117 (B4): n/a–n/a. https://doi.org/10.1029/2011JB009040.
  • Ken-Ichi, K. 1984. “Distribution of Directional Data and Fabric Tensors.” International Journal of Engineering Science 22 (2): 149–164. https://doi.org/10.1016/0020-7225(84)90090-9.
  • Khoubani, A., and T. M. Evans. 2018. “An Efficient Flexible Membrane Boundary Condition for DEM Simulation of Axisymmetric Element Tests.” International Journal for Numerical and Analytical Methods in Geomechanics 42 (4): 694–715. https://doi.org/10.1002/nag.2762.
  • Kim, J., Y. Zhang, Y. Seol, and S. Dai. 2020. “Particle Crushing in Hydrate-Bearing Sands.” Geomechanics for Energy and the Environment 23: 100133. https://doi.org/10.1016/j.gete.2019.100133.
  • Li, J., Y. Huang, H. Pu, H. Gao, Y. Li, S. Ouyang, Y. Guo, et al. 2021. “Influence of Block Shape on Macroscopic Deformation Response and Meso-Fabric Evolution of Crushed Gangue under the Triaxial Compression.” Powder Technology 384: 112–124. https://doi.org/10.1016/j.powtec.2021.02.001.
  • Lin, J. S., Y. Seol, and J. H. Choi. 2015. “An SMP Critical State Model for Methane Hydrate‐Bearing Sands.” International Journal for Numerical and Analytical Methods in Geomechanics 39 (9): 969–987. https://doi.org/10.1002/nag.2347.
  • Li, J.-f., J.-l. Ye, X.-w. Qin, H.-j. Qiu, N.-y. Wu, H.-l. Lu, W.-w. Xie, et al. 2018. “The First Offshore Natural Gas Hydrate Production Test in South China Sea.” China Geology 1 (1): 5–16. https://doi.org/10.31035/cg2018003.
  • Majmudar, T. S., and R. P. Behringer. 2005. “Contact Force Measurements and stress-induced anisotropy in granular materials .” Nature 435 (7045): 1079–1082. https://doi.org/10.1038/nature03805.
  • Masui, A., H. Haneda, Y. Ogata, and K. Aoki. 2005. “Effects of Methane Hydrate Formation on Shear Strength of Synthetic Methane Hydrate Sediments.” The 15th International Offshore and Polar Engineering Conference, Seoul, Korea.
  • Minh, N. H., and Y. P. Cheng. 2013. “A DEM Investigation of the Effect of Particle-Size Distribution on One-Dimensional Compression.” Géotechnique 63 (1): 44–53. https://doi.org/10.1680/geot.10.P.058.
  • Minh, N. H., Y. P. Cheng, and C. Thornton. 2014. “Strong Force Networks in Granular Mixtures.” Granular Matter 16 (1): 69–78. https://doi.org/10.1007/s10035-013-0455-3.
  • Miyazaki, K., A. Masui, Y. Sakamoto, K. Aoki, N. Tenma, and T. Yamaguchi. 2011. “Triaxial Compressive Properties of Artificial Methane‐Hydrate‐Bearing Sediment.” Journal of Geophysical Research 116 (B6): 8049. https://doi.org/10.1029/2010JB008049.
  • Ng, T. T. 2004. “Macro-and Micro-Behaviors of Granular Materials under Different Sample Preparation Methods and Stress Paths.” International Journal of Solids and Structures 41 (21): 5871–5884. https://doi.org/10.1016/j.ijsolstr.2004.05.050.
  • Oda, M. 1972. “Initial Fabrics and Their Relations to Mechanical Properties of Granular Material.” Soils and Foundations 12 (1): 17–36. https://doi.org/10.3208/sandf1960.12.17.
  • Oda, M., S. Nemat-Nasser, and J. Konishi. 1985. “Stress-Induced Anisotropy in Granular Masses.” Soils and Foundations 25 (3): 85–97. https://doi.org/10.3208/sandf1972.25.3_85.
  • Potyondy, D. O., and P. A. Cundall. 2004. “A Bonded-Particle Model for Rock.” International Journal of Rock Mechanics and Mining Sciences 41 (8): 1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
  • Powrie, W., Q. Ni, R. M. Harkness, and X. Zhang. 2005. “Numerical Modelling of Plane Strain Tests on Sands Using a Particulate Approach.” Géotechnique 55 (4): 297–306. https://doi.org/10.1680/geot.55.4.297.65492.
  • Qu, T., Y. T. Feng, M. Wang, and S. Jiang. 2020. “Calibration of Parallel Bond Parameters in Bonded Particle Models via Physics-Informed Adaptive Moment Optimization.” Powder Technology 366: 527–536. https://doi.org/10.1016/j.powtec.2020.02.077.
  • Qu, T., Y. T. Feng, Y. Wang, and M. Wang. 2019. “Discrete Element Modelling of Flexible Membrane Boundaries for Triaxial Tests.” Computers and Geotechnics 115: 103154. https://doi.org/10.1016/j.compgeo.2019.103154.
  • Radjai, F., D. E. Wolf, M. Jean, and J. Moreau. 1998. “Bimodal Character of Stress Transmission in Granular Packings.” Physical Review Letters 80 (1): 61–64. https://doi.org/10.1103/PhysRevLett.80.61.
  • Rothenburg, L., and R. J. Bathurst. 1989. “Analytical Study of Induced Anisotropy in Idealized Granular Materials.” Géotechnique 39 (4): 601–614. https://doi.org/10.1680/geot.1989.39.4.601.
  • Sánchez, M., X. Gai, and J. C. Santamarina. 2017. “A Constitutive Mechanical Model for Gas Hydrate Bearing Sediments Incorporating Inelastic Mechanisms.” Computers and Geotechnics 84: 28–46. https://doi.org/10.1016/j.compgeo.2016.11.012.
  • Santamarina, J. C., S. Dai, M. Terzariol, J. Jang, W. F. Waite, W. J. Winters, J. Nagao, et al. 2015. “Hydro-Bio-Geomechanical Properties of Hydrate-Bearing Sediments from Nankai Trough.” Marine and Petroleum Geology 66: 434–450. https://doi.org/10.1016/j.marpetgeo.2015.02.033.
  • Satake, M. 1978. “Constitution of Mechanics of Granular Materials through the Graphy Theory.” In Proceedings of the U.S.-Japan Seminar on Continuum Mechanical and Statistical Approaches in the Mechanics of Granular Materials, Tokyo, Japan, pp. 47–62.
  • Shi, J., and P. Guo. 2018. “Fabric Evolution of Granular Materials along Imposed Stress Paths.” Acta Geotechnica 13 (6): 1341–1354. https://doi.org/10.1007/s11440-018-0665-2.
  • Tang, Q., W. Guo, H. Chen, R. Jia, and Y. Zhou. 2020. “A Discrete Element Simulation considering Liquid Bridge Force to Investigate the Mechanical Behaviors of Methane Hydrate-Bearing Clayey Silt Sediments.” Journal of Natural Gas Science and Engineering 83: 103571. https://doi.org/10.1016/j.jngse.2020.103571.
  • Thornton, C. 2000. “Numerical Simulations of Deviatoric Shear Deformation of Granular Media.” Géotechnique 50 (1): 43–53. https://doi.org/10.1680/geot.2000.50.1.43.
  • Thornton, C., and G. Sun. 1993. “Axisymmetric Compression of 3D Polydisperse Systems of Spheres.” Powders and Grains 93: 129–134.
  • Thornton, C., and L. Zhang. 2010. “On the Evolution of Stress and Microstructure during General 3D Deviatoric Straining of Granular Media.” Géotechnique 60 (5): 333–341. https://doi.org/10.1680/geot.2010.60.5.333.
  • Uchida, S., K. Soga, and K. Yamamoto. 2012. “Critical State Soil Constitutive Model for Methane Hydrate Soil.” Journal of Geophysical Research: Solid Earth 117 (B3). https://doi.org/10.1029/2011JB008661.
  • Waite, W. F., J. C. Santamarina, D. D. Cortes, B. Dugan, D. N. Espinoza, J. Germaine, J. Jang, et al. 2009. “Physical Properties of Hydrate-Bearing Sediments.” Reviews of Geophysics 47 (4). https://doi.org/10.1029/2008RG000279.
  • Wu, K., W. Sun, S. Liu, and X. Zhang. 2021. “Study of Shear Behavior of Granular Materials by 3D DEM Simulation of the Triaxial Test in the Membrane Boundary Condition.” Advanced Powder Technology 32 (4): 1145–1156. https://doi.org/10.1016/j.apt.2021.02.018.
  • Yamamoto, K., Y. Terao, T. Fujii, T. Ikawa, M. Seki, M. Matsuzawa, and T. Kanno. 2014. “Operational Overview of the First Offshore Production Test of Methane Hydrates in the Eastern Nankai Trough.” In Offshore Technology Conference, Houston, Texas. https://doi.org/10.4043/25243-MS.
  • Yan, C., Y. Li, X. Yan, Y. Cheng, Z. Han, W. Tian, and X. Ren. 2019. “Wellbore Shrinkage during Drilling in Methane Hydrate Reservoirs.” Energy Science & Engineering 7 (3): 930–942. https://doi.org/10.1002/ese3.323.
  • Yang, X., L. Guo, L. Zhou, Y. Lu, and T. Liu. 2021. “Study of Mechanism and Theoretical Model of Seabed Destruction Caused by Gas Hydrate Dissociation.” Marine Georesources & Geotechnology 39 (3): 343–353. https://doi.org/10.1080/1064119X.2019.1701590.
  • Ye, J., X. Qin, W. Xie, H. Lu, B. Ma, H. Qiu, J. Liang, et al. 2020. “The Second Natural Gas Hydrate Production Test in the South China Sea.” China Geology 3 (2): 197–209. https://doi.org/10.31035/cg2020043.
  • Yin, Z., and P. Linga. 2019. “Methane Hydrates: A Future Clean Energy Resource.” Chinese Journal of Chemical Engineering 27 (9): 2026–2036. https://doi.org/10.1016/j.cjche.2019.01.005.
  • Yoneda, J., Y. Jin, J. Katagiri, and N. Tenma. 2016. “Strengthening Mechanism of Cemented Hydrate‐Bearing Sand at Microscales.” Geophysical Research Letters 43 (14): 7442–7450. https://doi.org/10.1002/2016GL069951.
  • Yoneda, J., A. Masui, Y. Konno, Y. Jin, M. Kida, J. Katagiri, J. Nagao, et al. 2017. “Pressure-Core-Based Reservoir Characterization for Geomechanics: Insights from Gas Hydrate Drilling during 2012–2013 at the Eastern Nankai Trough.” Marine and Petroleum Geology 86: 1–16. https://doi.org/10.1016/j.marpetgeo.2017.05.024.
  • Yu, Y., Y. P. Cheng, X. Xu, and K. Soga. 2016. “Discrete Element Modelling of Methane Hydrate Soil Sediments Using Elongated Soil Particles.” Computers and Geotechnics 80: 397–409. https://doi.org/10.1016/j.compgeo.2016.03.004.
  • Zhang, H., X. Luo, J. Bi, G. He, and Z. Guo. 2019. “Submarine Slope Stability Analysis during Natural Gas Hydrate Dissociation.” Marine Georesources & Geotechnology 37 (4): 467–476. https://doi.org/10.1080/1064119X.2018.1452997.
  • Zhang, J., X. Wang, Z.-Y. Yin, and Z. Liang. 2020. “DEM Modeling of Large-Scale Triaxial Test of Rock Clasts considering Realistic Particle Shapes and Flexible Membrane Boundary.” Engineering Geology 279: 105871. https://doi.org/10.1016/j.enggeo.2020.105871.
  • Zhao, X., and T. M. Evans. 2009. “Discrete Simulations of Laboratory Loading Conditions.” International Journal of Geomechanics 9 (4): 169–178. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:4(169).
  • Zhao, S., T. M. Evans, and X. Zhou. 2018. “Shear-Induced Anisotropy of Granular Materials with Rolling Resistance and Particle Shape Effects.” International Journal of Solids and Structures 150: 268–281. https://doi.org/10.1016/j.ijsolstr.2018.06.024.
  • Zhou, W., J. Liu, G. Ma, and X. Chang. 2017. “Three-Dimensional DEM Investigation of Critical State and Dilatancy Behaviors of Granular Materials.” Acta Geotechnica 12 (3): 527–540. https://doi.org/10.1007/s11440-017-0530-8.
  • Zhu, Y., H. Wang, C. Chen, and T. Luo. 2020. “Effects of Sand Contents on Mechanical Characteristics of Methane Hydrate-Bearing Sediments in the Permafrost.” Journal of Natural Gas Science and Engineering 75: 103129. https://doi.org/10.1016/j.jngse.2019.103129.
  • Zhu, H., T. Xu, Y. Yuan, G. Feng, Y. Xia, and X. Xin. 2020. “Numerical Analysis of Sand Production during Natural Gas Extraction from Unconsolidated Hydrate-Bearing Sediments.” Journal of Natural Gas Science and Engineering 76: 103229. https://doi.org/10.1016/j.jngse.2020.103229.
  • Zhu, H. X., Z. Y. Yin, and Q. Zhang. 2020. “A Novel Coupled FDM‐DEM Modelling Method for Flexible Membrane Boundary in Laboratory Tests.” International Journal for Numerical and Analytical Methods in Geomechanics 44 (3): 389–404. https://doi.org/10.1002/nag.3019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.