215
Views
1
CrossRef citations to date
0
Altmetric
Articles

Primary and secondary compression behavior of dredged clay at low effective stresses

, ORCID Icon, , ORCID Icon &
Pages 123-131 | Received 18 Jul 2021, Accepted 22 Nov 2021, Published online: 22 Dec 2021

References

  • Bian, X., Y. P. Cao, Z. F. Wang, G. Q. Ding, and G. H. Lei. 2017. Effect of Super-Absorbent Polymer on the Undrained Shear Behavior of Cemented Dredged Clay with High Water Content. Journal of Materials in Civil Engineering 29 (7): 04017023. doi:10.1061/(ASCE)MT.1943-5533.0001849.
  • Bjerrum, L. 1967. Engineering Geology of Norwegian Normally Consolidated Marine Clays. Géotechnique 17 (2): 83–118. doi:10.1680/geot.1967.17.2.83.
  • Bo, M. W., V. Choa, and K. S. Wong. 2002. Compression Tests on a Slurry Using a Small-Scale Consolidometer. Canadian Geotechnical Journal 39 (2): 388–398. doi:10.1139/t01-112.
  • Bo, M. W., K. S. Wong, and V. Choa. 2008. Constant Rate of Displacement Test on Ultra-Soft Soil. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering 161 (3): 129–135. doi:10.1680/geng.2008.161.3.129.
  • Bo, M. W., V. Choa, and K. S. Wong. 2010. Constant Rate of Loading Test on Ultra-Soft Soil. Geotechnical Testing Journal 33 (3): 192–200. doi:10.1520/GTJ102802.
  • Bo, M. W., V. Choa, K. S. Wong, and A. Arulrajah. 2011. Laboratory Validation of Ultra-Soft Soil Deformation Model. Geotechnical and Geological Engineering 29 (1): 65–74. doi:10.1007/s10706-010-9351-3.
  • Brils, J., P. de Boer, J. Mulder, and E. de Boer. 2014. Reuse of Dredged Material as a Way to Tackle Societal Challenges. Journal of Soils and Sediments 14 (9): 1638–1641. doi:10.1007/s11368-014-0918-0.
  • Burland, J. B. 1990. On the Compressibility and Shear Strength of Natural Clays. Géotechnique 40 (3): 329–378. doi:10.1680/geot.1990.40.3.329.
  • Butterfield, R. 1979. A Natural Compression Law for Soils (an Advance on e–Logp). Géotechnique 29 (4): 469–480. doi:10.1680/geot.1979.29.4.469.
  • Carrier, W. D. III, and J. F. Beckman. 1984. Correlations between Index Tests and the Properties of Remolded Clays. Géotechnique 34 (2): 211–228. doi:10.1680/geot.1984.34.2.211.
  • Chu, J., S. W. Yan, and H. Yang. 2000. Soil Improvement by the Vacuum Preloading Method for an Oil Storage Station. Géotechnique 50 (6): 625–632. doi:10.1680/geot.2000.50.6.625.
  • Chu, J., M. W. Bo, and V. Choa. 2006. Improvement of Ultra-Soft Soil Using Prefabricated Vertical Drains. Geotextiles and Geomembranes 24 (6): 339–348. doi:10.1016/j.geotexmem.2006.04.004.
  • Develioglu, I., and H. F. Pulat. 2019. Compressibility Behaviour of Natural and Stabilized Dredged Soils in Different Organic Matter Contents. Construction and Building Materials 228: 116787. doi:10.1016/j.conbuildmat.2019.116787.
  • Hong, Z. S. 2007. Void Ratio-Suction Behavior of Remolded Ariake Clays. Geotechnical Testing Journal 30 (3): 234–239. doi:10.1520/GTJ12624.
  • Hong, Z. S., J. Yin, and Y. J. Cui. 2010. Compression Behaviour of Reconstituted Soils at High Initial Water Contents. Géotechnique 60 (9): 691–700. doi:10.1680/geot.09.P.059.
  • Hong, Z. S., L. L. Zeng, Y. J. Cui, Y. Q. Cai, and C. Lin. 2012. Compression Behaviour of Natural and Reconstituted Clays. Géotechnique 62 (4): 291–301. doi:10.1680/geot.10.P.046.
  • Kim, Y. T., and S. Leroueil. 2001. Modeling the Viscoplastic Behavior of Clays during Consolidation: application to Berthierville Clay in Both Laboratory and Field Conditions. Canadian Geotechnical Journal 38 (3): 484–497. doi:10.1139/t00-108.
  • Lade, P. V., C. D. Liggio, and J. Nam. 2009. Strain Rate, Creep, and Stress Drop-Creep Experiments on Crushed Coral Sand. Journal of Geotechnical and Geoenvironmental Engineering 135 (7): 941–953. GT.1943-5606.0000067. doi:10.1061/(ASCE).
  • Lee, K. L., and I. Farhoomand. 1967. Compressibility and Crushing of Granular Soil in Anisotropic Triaxial Compression. Canadian Geotechnical Journal 4 (1): 68–86. doi:10.1139/t67-012.
  • Leroueil, S., and P. R. Vaughan. 1990. The General and Congruent Effects of Structure in Natural Soils and Weak Rocks. Géotechnique 40 (3): 467–488. doi:10.1680/geot.1990.40.3.467.
  • Leroueil, S., F. Tavenas, and J. Locat. 1985. Discussion: correlations between Index Tests and the Properties of Remoulded Clays. Géotechnique 35 (2): 223–226. doi:10.1680/geot.1985.35.2.223.
  • Li, L. H., Q. Wang, N. X. Wang, and J. P. Wang. 2009. Vacuum Dewatering and Horizontal Drainage Blankets: A Method for Layered Soil Reclamation. Bulletin of Engineering Geology and the Environment 68 (2): 277–285. doi:10.1007/s10064-009-0200-7.
  • Mitchell, J. K., and K. Soga. 2005. Fundamentals of Soil Behaviour. 3rd ed. New York: Wiley.
  • Tang, Y. X., Y. Miyazaki, and T. Tsuchida. 2001. Practices of Reused Dredgings by Cement Treatment. Soils and Foundations 41 (5): 129–143. doi:10.3208/sandf.41.5_129.
  • Xiao, Y., Z. Yuan, C. S. Desai, M. Zaman, Q. Ma, Q. Chen, and H. Liu. 2020. Effects of Load Duration and Stress Level on Deformation and Particle Breakage of Carbonate Sands. International Journal of Geomechanics 20 (7): 06020014-1. doi:10.1061/(ASCE)GM.1943-5622.0001731.
  • Xu, G. Z., Y. F. Gao, Z. S. Hong, and J. W. Ding. 2012. Sedimentation Behavior of Four Dredged Slurries in China. Marine Georesources & Geotechnology 30 (2): 143–156. doi:10.1080/1064119X.2011.602382.
  • Xu, G. Z., Y. F. Gao, and C. J. Xu. 2015a. Permeability Behavior of High-Moisture Content Dredged Slurries. Marine Georesources & Geotechnology 33 (4): 348–355. doi:10.1080/1064119X.2014.890258.
  • Xu, G. Z., Y. F. Gao, J. Yin, R. M. Yang, and J. J. Ni. 2015b. Compression Behavior of Dredged Slurries at High Water Contents. Marine Georesources & Geotechnology 33 (2): 99–108. doi:10.1080/1064119X.2013.805287.
  • Xu, G. Z., and J. Yin. 2016. Compression Behavior of Secondary Clay Minerals at High Initial Water Contents. Marine Georesources & Geotechnology 34 (8): 721–728. doi:10.1080/1064119X.2015.1080333.
  • Xu, G. Z., Z. Y. Feng, J. Yin, W. X. Han, S. Ahmed, and Y. H. Miao. 2020. Effect of Salinity on Rheological Behavior of Cement-Treated Dredged Clays as Fills. Journal of Materials in Civil Engineering 32 (9): 04020269. doi:10.1061/(ASCE)MT.1943-5533.0003376.
  • Yin, J., W. X. Han, G. Z. Xu, M. M. Hu, and Y. H. Miao. 2019. Effect of Salinity on Strength Behavior of Cement-Treated Dredged Materials at High Water Contents. KSCE Journal of Civil Engineering 23 (10): 4288–4296. doi:10.1007/s12205-019-0695-9.
  • Yin, J., Q. Wang, J. Ding, G. Xu, and G. Hu. 2021a. Time-Dependent Strength Behavior of Dredged Clays at Low Effective Stresses. Marine Georesources and Geotechnology doi:10.1080/1064119X.2021.1989094.
  • Yin, J., Z. Lu, W. Geng, W. Han, and A. A. Hudu. 2021b. Effect of Porewater Salinity on Compression Behaviors and Hydraulic Conductivity of Soft Marine Clay. Marine Georesources and Geotechnology. doi:10.1080/1064119X.2021.1941451.
  • Zeng, L. L., Z. S. Hong, and Y. J. Cui. 2015a. Determining the Virgin Compression Lines of Reconstituted Clays at Different Initial Water Contents. Canadian Geotechnical Journal 52 (9): 1408–1415. doi:10.1139/cgj-2014-0172.
  • Zeng, L. L., Z. S. Hong, and Y. J. Cui. 2015b. On the Volumetric Strain-Time Curve Patterns of Dredged Clays during Primary Consolidation. Géotechnique 65 (12): 1023–1028. doi:10.1680/jgeot.15.T.003.
  • Zeng, L. L., Z. S. Hong, and Y. J. Cui. 2016. Time-Dependent Compression Behaviour of Dredged Clays at High Water Contents in China. Applied Clay Science 123: 320–328. doi:10.1016/j.clay.2016.01.039.
  • Zeng, L. L., Z. S. Hong, and Y. F. Gao. 2017. Practical Estimation of Compression Behaviour of Dredged Clays with Three Physical Parameters. Engineering Geology 217: 102–109. doi:10.1016/j.enggeo.2016.12.013.
  • Zhang, C. L., W. Zhu, L. Li, and G. J. Fan. 2007. Field Test of Dike Construction with Solidified Lake Dredged Material. China Harbour Engineering 147 (01): 27 ∼ 29. in chinese)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.