150
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pareto-optimal performance-based robust design of braced excavations in soft clay with response surface methodology

, &
Pages 353-365 | Received 18 Dec 2020, Accepted 04 Feb 2022, Published online: 22 Feb 2022

References

  • Beyer, H., and B. Sendhoff. 2007. Robust Optimization—A Comprehensive Survey. Computer Methods in Applied Mechanics and Engineering 196 (33-34): 3190–3218. doi:10.1016/j.cma.2007.03.003.
  • Box, G. E. P., and K. B. Wilson. 1951. On the Experimental Attainment of Optimum Conditions. Journal of the Royal Statistical Society: Series B (Methodological) 13 (1): 1–45. doi:10.1111/j.2517-6161.1951.tb00067.x.
  • Chau, K. W. 2007. Reliability and Performance-Based Design by Artificial Neural Network. Advances in Engineering Software 38 (3): 145–149. doi:10.1016/j.advengsoft.2006.09.008.
  • Chen, W., J. K. Allen, F. Mistree, and K.-L. Tsui. 1996. A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors. Journal of Mechanical Design 118 (4): 478–485. doi:10.1115/1.2826915.
  • Cheng, F. Y., and D. Li. 1997. Multiobjective Optimization Design with Pareto Genetic Algorithm. Journal of Structural Engineering 123 (9): 1252–1261. doi:10.1061/(ASCE)0733-9445(1997)123:9(1252).
  • Clough, G. W., and T. D. O’Rourke. 1990. Construction Induced Movements of in Situ Walls. In Proceedings of Design and Performance of Earth Retaining Structure, Geotechnical Special Publication, No. 25, ASCE, New York, 439–470.
  • Dang, H. P., H. D. Lin, and C. H. Juang. 2014. Analyses of Braced Excavation considering Parameter Uncertainties Using a Finite Element Code. Journal of the Chinese Institute of Engineers 37 (2): 141–151. doi:10.1080/02533839.2013.781790.
  • Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6 (2): 182–197. doi:10.1109/4235.996017.
  • Gao, X. K., T. S. Low, Z. J. Liu, and S. X. Chen. 2002. Robust Design for Torque Optimization Using Response Surface Methodology. IEEE Transactions on Magnetics 38 (2): 1141–1144. doi:10.1109/20.996292.
  • Gasser, M., and G. I. Schuëller. 1997. Reliability-Based Optimization of Structural Systems. Mathematical Methods of Operations Research 46 (3): 287–307. doi:10.1007/BF01194858.
  • Ghosh, A., and S. Dehuri. 2004. Evolutionary Algorithms for Multi-Criterion Optimization: A Survey. International Journal of Computing and Information Sciences 2: 38–57.
  • Giovagnoli, A., and D. Romano. 2008. Robust Design via Simulation Experiments: A Modified Dual Response Surface Approach. Quality and Reliability Engineering International 24 (4): 401–416. doi:10.1002/qre.906.
  • Gong, W., H. Huang, C. H. Juang, and L. Wang. 2017. Simplified-Robust Geotechnical Design of Soldier Pile–Anchor Tieback Shoring System for Deep Excavation. Marine Georesources & Geotechnology 35 (2): 157–169. doi:10.1080/1064119X.2015.1120369.
  • Hsiao, E. C. L., M. Schuster, C. H. Juang, and T. C. Kung. 2008. Reliability Analysis of Excavation Induced Ground Settlement for Building Serviceability Evaluation. Journal of Geotechnical and Geoenvironmental Engineering 134 (10): 1448–1458. doi:10.1061/(ASCE)1090-0241(2008)134:10(1448).
  • Hsieh, P. G., and C. Y. Ou. 1997. Use of the Modified Hyperbolic Model in Excavation Analysis under Undrained Condition. Geotechnical Engineering, SEAGS 28 (2): 123–−150.
  • JSA. 1988. Guidelines of Design and Construction of Deep Excavations. Japanese Society of Architecture. Tokyo, Japan: Japanese Society of Architecture.
  • Juang, C. H., L. Wang, H. S. Hsieh, and S. Atamturktur. 2014. Robust Geotechnical Design of Braced Excavations in Clays. Structural Safety 49: 37–44. doi:10.1016/j.strusafe.2013.05.003.
  • Kang, Z. 2005. Robust Design Optimization of Structures under Uncertainties. Aachen, Germany: Shaker Verlag.
  • Khoshnevisan, S., L. Wang, and C. H. Juang. 2017. Response Surface-Based Robust Geotechnical Design of Supported Excavation–Spreadsheet-Based Solution. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 11 (1): 90–102. doi:10.1080/17499518.2016.1247285.
  • Kung, G. T. C., E. C. L. Hsiao, and C. H. Juang. 2007a. Evaluation of a Simplified Small-Strain Soil Model for Estimation of Excavation-Induced Movements. Canadian Geotechnical Journal 44 (6): 726–736. doi:10.1139/t07-014.
  • Kung, G. T., C. H. Juang, E. C. Hsiao, and Y. M. Hashash. 2007b. Simplified Model for Wall Deflection and Ground-Surface Settlement Caused by Braced Excavation in Clays. Journal of Geotechnical and Geoenvironmental Engineering 133 (6): 731–747. doi:10.1061/(ASCE)1090-0241(2007)133:6(731).
  • Kung, G. T. C., C. Y. Ou, and C. H. Juang. 2009. Modeling Small-Strain Behaviour of Taipei Clays for Finite Element Analysis of Braced Excavations. Computers and Geotechnics 36 (1-2): 304–319. doi:10.1016/j.compgeo.2008.01.007.
  • Kung, T. C. 2003. Surface Settlement Induced by Excavation with Consideration of Small Strain Behavior of Taipei Silty Clay. PhD diss., Department of Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
  • Lagaros, N. D., V. Plevris, and M. Papadrakakis. 2010. Neurocomputing Strategies for Solving Reliability-Robust Design Optimization Problems. Engineering Computations 27 (7): 819– 840. doi:10.1108/02644401011073674.
  • Lee, K. H., and G. J. Park. 2001. Robust Optimization considering Tolerances of Design Variables. Computers and Structures. 79 (1): 77–86. doi:10.1016/S0045-7949(00)00117-6.
  • Li, D. Q., D. Zheng, Z. J. Cao, X. S. Tang, and K. K. Phoon. 2016. Response Surface Methods for Slope Reliability Analysis: Review and Comparison. Engineering Geology 203: 3–14. doi:10.1016/j.enggeo.2015.09.003.
  • Luo, Z., S. Atamturktur, Y. Cai, and C. H. Juang. 2012. Reliability Analysis of Basal-Heave in a Braced Excavation in a 2-D Random Field. Computers and Geotechnics 39: 27–37. doi:10.1016/j.compgeo.2011.08.005.
  • Luo, Z., S. Atamturktur, and C. H. Juang. 2013. Bootstrapping for Characterizing the Effect of Uncertainty in Sample Statistics for Braced Excavations. Journal of Geotechnical and Geoenvironmental Engineering 139 (1): 13–23. doi:10.1061/(ASCE)GT.1943-5606.0000734.
  • Luo, Z., S. Atamturktur, C. H. Juang, H. Huang, and P. S. Lin. 2011. Probability of Serviceability Failure in a Braced Excavation in a Spatially Random Field: Fuzzy Finite Element Approach. Computers and Geotechnics 38 (8): 1031–1040. doi:10.1016/j.compgeo.2011.07.009.
  • Luo, Z., and B. Hu. 2019. Robust Design of Energy Piles Using a Fuzzy Set-Based Point Estimate Method. Cold Regions Science and Technology 168: 102874. doi:10.1016/j.coldregions.2019.102874.
  • Means. 2006. 2007 RS Means Building Construction Cost Data. Kingston, MA: R. S. Means Company.
  • Montgomery, D. C. 2005. Design and Analysis of Experiments. 6th ed. New York: John Wiley & Sons.
  • Ou, C. Y. 2006. Deep Excavation-Theory and Practice. London, UK: Taylor and Francis.
  • Ou, C. Y., J. T. Liao, and H. D. Lin. 1998. Performance of Diaphragm Wall Constructed Using Top-Down Method. Journal of Geotechnical and Geoenvironmental Engineering 124 (9): 798–808. doi:10.1061/(ASCE)1090-0241(1998)124:9(798).
  • Phoon, K. K., and F. H. Kulhawy. 1999. Evaluation of Geotechnical Property Variability. Canadian Geotechnical Journal 36 (4): 625–639. doi:10.1139/t99-039.
  • PSCG. 2000. Specification for Excavation in Shanghai Metro Construction. Shanghai, China: Professional Standards Compilation Group.
  • Taguchi, G. 1986. Introduction to Quality Engineering: Designing Quality into Products and Processes. White Plains, NY: Quality Resources.
  • Tang, Y. G. 2011. Probability-Based Method Using RFEM for Predicting Wall Deflection Caused by Excavation. Journal of Zhejiang University-Science A 12 (10): 737–746. doi:10.1631/jzus.A1100016.
  • Terzaghi, K. 1943. Theoretical Soil Mechanics. New York: Wiley.
  • TGS. 2001. Design Specifications for the Foundation of Buildings. Taipei, Taiwan: Taiwan Geotechnical Society.
  • Xu, B., and B. K. Low. 2006. Probabilistic Stability Analyses of Embankments Based on Finite-Element Method. Journal of Geotechnical and Geoenvironmental Engineering 132 (11): 1444–1454. doi:10.1061/(ASCE)1090-0241(2006)132:11(1444).
  • Xue, J. F., and K. Gavin. 2007. Simultaneous Determination of Critical Slip Surface and Minimum Reliability Index for Earth Slopes. Journal of Geotechnical and Geoenvironmental Engineering 133 (7): 878–886. doi:10.1061/(ASCE)1090-0241(2007)133:7(878).
  • Yen, D. L., and G. S. Chang. 1991. A Study of Allowable Settlement of Buildings. Sino-Geotechnics 22: 5–27.
  • Zhang, W., Y. Zhang, and A. T. Goh. 2017. Multivariate Adaptive Regression Splines for Inverse Analysis of Soil and Wall Properties in Braced Excavation. Tunnelling and Underground Space Technology 64: 24–33. doi:10.1016/j.tust.2017.01.009.
  • Zhang, W., R. Zhang, and A. T. Goh. 2018. Multivariate Adaptive Regression Splines Approach to Estimate Lateral Wall Deflection Profiles Caused by Braced Excavations in Clays. Geotechnical and Geological Engineering 36 (2): 1349–1363.
  • Zhang, W., R. Zhang, C. Wu, A. T. C. Goh, S. Lacasse, Z. Liu, and H. Liu. 2020. State-of-the-Art Review of Soft Computing Applications in Underground Excavations. Geoscience Frontiers 11 (4): 1095–1106. doi:10.1016/j.gsf.2019.12.003.
  • Zhang, J., L. M. Zhang, and W. H. Tang. 2011a. Slope Reliability Analysis considering Site-Specific Performance Information. Journal of Geotechnical and Geoenvironmental Engineering 137 (3): 227–238. doi:10.1061/(ASCE)GT.1943-5606.0000422.
  • Zhang, J., L. M. Zhang, and W. H. Tang. 2011b. Reliability-Based Optimization of Geotechnical Systems. Journal of Geotechnical and Geoenvironmental Engineering 137 (12): 1211–1221. doi:10.1061/(ASCE)GT.1943-5606.0000551.
  • Zhang, L. L., J. Zhang, L. M. Zhang, and W. H. Tang. 2010. Back Analysis of Slope Failure with Markov Chain Monte Carlo Simulation. Computers and Geotechnics 37 (7-8): 905–912. doi:10.1016/j.compgeo.2010.07.009.
  • Zhao, H., M. Zhao, and C. Zhu. 2016. Reliability-Based Optimization of Geotechnical Engineering Using the Artificial Bee Colony Algorithm. KSCE Journal of Civil Engineering 20 (5): 1728–1736. doi:10.1007/s12205-015-0117-6.
  • Zhong, Z., S. Zhang, M. Zhao, B. Hou, and W. Gong. 2020. Reliability-Based Robust Geotechnical Design of Spread Foundations considering Multiple Failure Modes. Computers and Geotechnics 119: 103292. doi:10.1016/j.compgeo.2019.103292.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.