249
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Simulation of mechanical behavior of carbonate gravel with hybrid PSO–SVR algorithm

, ORCID Icon, , &
Pages 446-459 | Received 12 Oct 2021, Accepted 21 Mar 2022, Published online: 05 Apr 2022

References

  • Alba, J. L., and J. M. Audibert. 1999. Pile Design in Coral and Carbonaceous Granular Materials, and Historic Review. In Proceedings of the 2nd International Conference on Engineering for Coral Sediments, 29–44. Rotterdam: AA Balkema.
  • Al-Douri, R. H., and H. G. Poulos. 1992. Static and Cyclic Direct Shear Tests on Carbonate Sands. Geotechnical Testing Journal 15 (2): 138–157. doi:10.1520/GTJ10236J.
  • Araei, A. A. 2014. Artificial Neural Networks for Modeling Drained Monotonic Behavior of Rockfill Materials. International Journal of Geomechanics 14 (3): 04014005. doi:10.1061/(ASCE)GM.1943-5622.0000323.
  • Bagherzadeh-Khalkhali, A., and A. A. Mirghasemi. 2009. Numerical and Experimental Direct Shear Tests for Coarse-Grained Soils.” Particuology 7 (1): 83–91. doi:10.1016/j.partic.2008.11.006.
  • Benbouras, M. A., R. Kettab Mitiche, H. Zedira, A. I. Petrisor, N. Mezouar, and F. Debiche. 2019. A New Approach to Predict the Compression Index Using Artificial Intelligence Methods. Marine Georesources & Geotechnology 37 (6): 704–720. doi:10.1080/1064119X.2018.1484533.
  • Bergh, F., and A. P. Engelbrecht. 2001. Effects of Swarm Size on Cooperative Particle Swarm Optimisers. In Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, 892–899.
  • Bishop, C. M. 2006. Pattern Recognition and Machine Learning. New York: Springer.
  • Chang, Chih-Chung, and Chih-Jen Lin. 2011. LIBSVM: A Library for Support Vector Machines. ACM Transactions on Intelligent Systems and Technology 2 (3): 1–27. Software available at: http://www.csie.ntu.edu.tw/∼cjlin/libsvm. doi:10.1145/1961189.1961199.
  • Cheng, Z., and J. Wang. 2021. An Investigation of the Breakage Behaviour of a Pre-Crushed Carbonate Sand under Shear Using X-Ray Micro-Tomography. Engineering Geology 293: 106286. doi:10.1016/j.enggeo.2021.106286.
  • Cheng, Z., and J. Wang. 2022. Estimation of Contact Forces of Granular Materials under Uniaxial Compression Based on a Machine Learning Model. Granular Matter. 24 (1): 1–14. doi:10.1007/s10035-021-01160-z.
  • Coop, M. R., K. K. Sorensen, T. Bodas Freitas, and G. Georgoutsos. 2004. Particle Breakage During Shearing of a Carbonate Sand. Géotechnique 54 (3): 157–163. doi:10.1680/geot.2004.54.3.157.
  • Cristianini, N., and J. Shawe-Taylor. 2000. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. New York: Cambridge University Press.
  • Datta, M., S. K. Gulhati, and G. V. Rao. 1979. Crushing of Calcareous Sands During Shear. In Offshore Technology Conference, Houston, 1459–1474. doi:10.4043/3525-MS.
  • Drucker, H., C. J. Burges, and L. Kaufman. 1996. Support Vector Regression Machines. Advances in Neural Information Processing Systems (9): 155–161.
  • Ebid, A. M. 2021. 35 Years of (AI) in Geotechnical Engineering: State of the Art. Geotechnical and Geological Engineering 39 (2): 637–690. doi:10.1007/s10706-020-01536-7.
  • Ellis, G. W., C. Yao, R. Zhao, and D. Penumadu. 1995. Stress–Strain Modeling of Sands Using Artificial Neural Networks. Journal of Geotechnical Engineering 121 (5): 429–435. doi:10.1061/(ASCE)0733-9410(1995)121:5(429).
  • Hashemi, A. B., and M. R. Meybodi. 2011. A Note on the Learning Automata Based Algorithms for Adaptive Parameter Selection in PSO. Applied Soft Computing 11 (1): 689–705. doi:10.1016/j.asoc.2009.12.030.
  • Hu, W., L. Yan, K. Liu, and H. Wang. 2016. A Short-Term Traffic Flow Forecasting Method Based on the Hybrid PSO-SVR. Neural Processing Letters 43 (1): 155–172. doi:10.1007/s11063-015-9409-6.
  • Kennedy, J., and R. Eberhart. 1995. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural Networks, 1942–1948.
  • Kohestani, V. R., and M. Hassanlourad. 2016. Modeling the Mechanical Behavior of Carbonate Sands Using Artificial Neural Networks and Support Vector Machines. International Journal of Geomechanics 16 (1): 04015038. doi:10.1061/(ASCE)GM.1943-5622.0000509.
  • Kotsiantis, S. B., D. Kanellopoulos, and P. E. Pintelas. 2006. Data Preprocessing for Supervised Leaning. In Proc., World Academy of Science Engineering and Technology, 12, 278–283.
  • Kwag, J. M., H. Ochiai, and N. Yasufuku. 1999. Yielding Stress Characteristics of Carbonate Sand in Relation to Individual Particle Fragmentation Strength. In Conf. on Engineering for Calcareous Sediments, 79–86 Rotterdam, Netherlands: Balkema.
  • López, I., L. Aragonés, Y. Villacampa, and P. Compañ. 2018. Artificial Neural Network Modeling of Cross-Shore Profile on Sand Beaches: The Coast of the Province of Valencia (Spain). Marine Georesources & Geotechnology 36 (6): 698–708. doi:10.1080/1064119X.2017.1385666.
  • Ong, S. E., H. A. Joer, and M. F. Randolph. 1999. Frictional Behavior in Calcareous Soils. In Proc., Int. Conf. on Engineering for Calcareous Sediments, Bahrain, 219–228.
  • Peng, M., X. Y. Li, D. Q. Li, S. H. Jiang, and L. M. Zhang. 2014. Slope Safety Evaluation by Integrating Multi-Source Monitoring Information. Structural Safety 49: 65–74. doi:10.1016/j.strusafe.2013.08.007.
  • Penumadu, D., and R. Zhao. 1999. Triaxial Compression Behavior of Sand and Gravel Using Artificial Neural Networks (ANN). Computers and Geotechnics 24 (3): 207–230. doi:10.1016/S0266-352X(99)00002-6.
  • Piotrowski, A. P., J. J. Napiorkowski, and A. E. Piotrowska. 2020. Population Size in Particle Swarm Optimization. Swarm and Evolutionary Computation 58: 100718. doi:10.1016/j.swevo.2020.100718.
  • Pyle, D. 1999. Data Preparation for Data Mining. Los Altos, CA: Morgan Kaufmann.
  • Ratnaweera, A., S. K. Halgamuge, and H. C. Watson. 2004. Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients. IEEE Transactions on Evolutionary Computation 8 (3): 240–255. doi:10.1109/TEVC.2004.826071.
  • Reale, Cormac, Kenneth Gavin, Lovorka Librić, and Danijela Jurić-Kaćunić. 2018. Automatic Classification of Fine-Grained Soils Using CPT Measurements and Artificial Neural Networks. Advanced Engineering Informatics 36: 207–215. doi:10.1016/j.aei.2018.04.003.
  • Rowe, P. H. 1969. The Relation between the Shear Strength of Sands in Triaxial Compression, Plane Strain and Direct Shear. Géotechnique 19 (1): 75–86. doi:10.1680/geot.1969.19.1.75.
  • Semple, R. 1988. State of the Art Report on Engineering Properties of Carbonate Soils. In Proc., Int. Conf. on Calcareous Sediments, 807–836. Rotterdam, Netherlands: Balkema.
  • Shahin, M. A., M. B. Jaksa, and H. R. Maier. 2008. State of the Art of Artificial Neural Networks in Geotechnical Engineering. Electronic Journal of Geotechnical Engineering 8 (1): 1–26.
  • Shahnazari, H., and R. Rezvani. 2013. Effective Parameters for the Particle Breakage of Calcareous Sands: An Experimental Study. Engineering Geology 159: 98–105. doi:10.1016/j.enggeo.2013.03.005.
  • Shang, G., L. Sun, S. Li, X. Liu, and W. Chen. 2020. Experimental Study of the Shear Strength of Carbonate Gravel. Bulletin of Engineering Geology and the Environment 79 (5): 2381–2394. doi:10.1007/s10064-019-01704-x.
  • Shi, Y. 2001. Particle Swarm Optimization: developments, Applications and Resources. In Proceedings of the 2001 Congress on Evolutionary Computation, IEEE, 81–86.
  • Shibuya, S., T. Mitachi, and S. Tamate. 1997. Interpretation of Direct Shear Box Testing of Sands as Quasi-Simple Shear. Géotechnique 47 (4): 769–790. doi:10.1680/geot.1997.47.4.769.
  • Shi, Y., and R. C. Eberhart. 1999. Empirical Study of Particle Swarm Optimization. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, IEEE, 1945–1950.
  • Shi, Y., and R. Eberhart. 1998. A Modified Particle Swarm Optimizer. In IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence, 69–73.
  • Smola, A. J., and B. Schölkopf. 2004. A Tutorial on Support Vector Regression. Statistics and Computing 14 (3): 199–222. doi:10.1023/B:STCO.0000035301.49549.88.
  • Thermann, K., C. Gau, and J. Tiedemann. 2006. Shear Strength Parameters from Direct Shear Tests–Influencing Factors and Their Significance. The Geological Society of London, 484: 1–12.
  • Vapnik, V. N. 1995. The Nature of Statistical Learning Theory. New York: Springer.
  • Wang, X. Z., Y. Y. Jiao, R. Wang, M. J. Hu, Q. S. Meng, and F. Y. Tan. 2011. Engineering Characteristics of the Calcareous Sand in Nansha Islands, South China Sea. Engineering Geology 120 (1–4): 40–47. doi:10.1016/j.enggeo.2011.03.011.
  • Wang, Xin-Zhi, Xing Wang, Zong-Chuan Jin, Qing-Shan Meng, Chang-Qi Zhu, and Ren Wang. 2017. Shear Characteristics of Calcareous Gravelly Soil. Bulletin of Engineering Geology and the Environment 76 (2): 561–573. doi:10.1007/s10064-016-0978-z.
  • Wang, J. J., H. P. Zhang, H. B. Wen, and Y. Liang. 2015. Shear Strength of an Accumulation Soil from Direct Shear Test. Marine Georesources & Geotechnology 33 (2): 183–190. doi:10.1080/1064119X.2013.828821.
  • Wei, H., X. Li, S. Zhang, T. Zhao, M. Yin, and Q. Meng. 2021. Influence of Particle Breakage on Drained Shear Strength of Calcareous Sands. International Journal of Geomechanics 21 (7): 04021118. doi:10.1061/(ASCE)GT.1943-5606.0001841.
  • Wu, P. K., K. Matsushima, and F. Tatsuoka. 2008. Effects of Specimen Size and Some Other Factors on the Strength and Deformation of Granular Soil in Direct Shear Tests. Geotechnical Testing Journal 31 (1): 45–64.
  • Yang, L., and A. Shami. 2020. On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice. Neurocomputing 415: 295–316. doi:10.1016/j.neucom.2020.07.061.
  • Zhang, N., S.-L. Shen, A. Zhou, and Y.-S. Xu. 2019. Investigation on Performance of Neural Networks Using Quadratic Relative Error Cost Function. IEEE Access.7: 106642–106652. doi:10.1109/ACCESS.2019.2930520.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.