236
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Seawater based bio-cementation for calcareous sand improvement in marine environment

&
Pages 949-958 | Received 25 Feb 2022, Accepted 03 Jul 2022, Published online: 18 Aug 2022

References

  • Campos, A., C. M. López, and A. Aguado. 2016. Diffusion-Reaction Model for the Internal Sulfate. attack in Concrete. Construction and Building Materials. 102: 531–540. doi:10.1016/j.conbuildmat.2015.10.177.
  • Cheng, L., M. A. Shahin, and R. Cord-Ruwisch. 2014. Bio-Cementation of Sandy Soil Using Microbially Induced Carbonate Precipitation for Marine Environments. Géotechnique 64 (12): 1010–1013. doi:10.1680/geot.14.T.025.
  • Cheng, L., M. A. Shahin, and D. Mujah. 2017. Influence of Key Environmental Conditions on Microbially Induced Cementation for Soil Stabilization. Journal of Geotechnical and Geoenvironmental Engineering 143 (1): 04016083-1–04016083-11. doi:10.1061/(ASCE)GT.1943-5606.0001586.
  • Cohen, M. D. 1983. Theories of Expansion in Sulfoaluminate-Type Expansive Cements: Schools of Thought. Cement and Concrete Research. 13 (6): 809–818. doi:10.1016/0008-8846(83)90082-0.
  • Dong, B. W., S. Y. Liu, J. Yu, Y. Xiao, Y. Y. Cai, and B. X. Tu. 2021. Evaluation of the Effect of Natural Seawater Strengthening Calcareous Sand Based on MICP. Rock and Soil Mechanics 42: 1104–1114.
  • Gebru, K. A., T. G. Kidanemariam, and H. K. Gebretinsae. 2021. Bio-Cement Production Using Microbially Induced Calcite Precipitation (MICP) Method: A Review. Chemical Engineering Sciences 238: 116610. doi:10.1016/j.ces.2021.116610.
  • Harilal, M., R. P. George, J. Philip, and S. K. Albert. 2021. Binary Blended Fly Ash Concrete with Improved Chemical Resistance in Natural and Industrial Environments. Environmental Science and Pollution Research International 28 (22): 28107–28132. doi:10.1007/s11356-021-12453-4.
  • Li, M. D., L. Lin, U. Ogbonnaya, K. Wen, A. Tian, and F. Amini. 2016. Influence of Fiber Addition on Mechanical Properties of Micp-Treated Sand. Journal of Materials in Civil Engineering 28 (4): 04015166. doi:10.1061/(ASCE)MT.1943-5533.0001442.
  • Lin, H., M. T. Suleiman, and D. G. Brown. 2020. Investigation of Pore-Scale CaCO3 Distributions and Their Effects on Stiffness and Permeability of Sands Treated by Microbially Induced Carbonate Precipitation (MICP). Soils and Foundations 60 (4): 944–961. doi:10.1016/j.sandf.2020.07.003.
  • Liu, S. Y., J. Yu, X. Q. Peng, Y. Y. Cai, and B. X. Tu. 2020. Preliminary Study on Repairing Tabia Cracks by Using Microbially Induced Carbonate Precipitation. Construction and Building Materials 248: 118611. doi:10.1016/j.conbuildmat.2020.118611.
  • Lv, H. J., J. K. Chen, and C. S. Lu. 2021. A Statistical Evolution Model of Concrete Damage Induced by Seawater Corrosion. Materials 14 (4): 1007. doi:10.3390/ma14041007.
  • Peng, J., Y. Tian, and J. Yang. 2019. Experiments of Coral Sand Reinforcement Using MICP in Seawater Environment. Advances in Science and Technology of Water Resources 39 (1): 58–62.
  • Qian, C., X. Yu, and X. Wang. 2018. A Study on the Cementation Interface of Bio-Cement. Materials Characterization. 136: 122–127. doi:10.1016/j.matchar.2017.12.011.
  • Qian, C. X., X. N. Yu, T. W. Zheng, and Y. Q. Chen. 2022. Review on Bacteria Fixing CO2 and Bio-Mineralization to Enhance the Performance of Construction Materials. Journal of CO2 Utilization 55: 101849. doi:10.1016/j.jcou.2021.101849.
  • Sexton, B. G., V. Sivakumar, and B. A. Mccabe. 2017. Creep Reinforcement Factors for Vibro-Replacement Design. Proceedings of the Institution of Civil Engineers – Ground Reinforcement 170 (1): 35–56. doi:10.1680/jgrim.16.00029.
  • Shan, Y., J. L. Liang, H. W. Tong, J. Yuan, and J. T. Zhao. 2022. Effect of Different Fibers on Small-Strain Dynamic Properties of Microbially Induced Calcite Precipitation- Fiber Combined Reinforced Calcareous Sand. Construction and Building Materials 322: 126343. doi:10.1016/j.conbuildmat.2022.126343.
  • Su, Y. L., T. W. Zheng, and C. X. Qian. 2021. Application Potential of Bacillus megaterium Encapsulated by Low Alkaline Sulphoaluminate Cement in Self-Healing Concrete. Construction and Building Materials 273: 121740. doi:10.1016/j.conbuildmat.2020.121740.
  • Tagliaferri, F., J. Waller, E. Ando, S. A. Hall, G. Viggiani, P. Besuelle, and J. T. DeJong. 2011. Observing Strain Localisation Processes in Bio-Cemented Sand Using X-Ray Imaging. Granular Matter 13 (3): 247–250. doi:10.1007/s10035-011-0257-4.
  • Tang, C. S., L. Y. Yin, N. J. Jiang, C. Zhu, H. Zeng, H. Li, and B. Shi. 2020. Factors Affecting the Performance of Microbial-Induced Carbonate Precipitation (MICP) Treated Soil: A Review. Environmental Earth Sciences 79 (5): 94. doi:10.1007/s12665-020-8840-9.
  • Wang, X. Z., Y. Y. Jiao, R. Wang, M. J. Hu, Q. S. Meng, and F. Y. Tan. 2011. Engineering Characteristics of the Calcareous Sand in Nansha Islands, South china Sea. Engineering Geology 120 (1–4): 40–47. doi:10.1016/j.enggeo.2011.03.011.
  • Wang, Y. Z., K. Soga, J. T. Dejong, and A. Kabla. 2019. A Microfluidic Chip and Its Use in Characterising the Particle-Scale Behaviour of Microbial-Induced Calcium Carbonate Precipitation (MICP). Géotechnique 69 (12): 1086–1094. doi:10.1680/jgeot.18.P.031.
  • Whiffin, V. S., L. A. van Paassen, and M. P. Harkes. 2007. Microbial Carbonate Precipitation as a Soil Improvement Technique. Geomicrobiology Journal. 24 (5): 417–423. doi:10.1080/01490450701436505.
  • Xiao, Y., H. F. Deng, J. L. Li, L. Cheng, and W. X. Zhu. 2022. Study on the Domestication of Sporosarcina pasteurii and Strengthening Effect of Calcareous Sand in Seawater Environment. Rock and Soil Mechanics 43: 395–404.
  • Xiao, Y., X. He, T. M. Evans, A. W. Stuedlein, and H. Liu. 2019. Unconfined Compressive and Splitting Tensile Strength of Basalt Fiber–Reinforced Biocemented Sand. Journal of Geotechnical and Geoenvironmental Engineering.145 (9): 04019048.
  • Xu, Y., C. Yu, and X. N. Yu. 2021. Microbial Mineralization and Carbonation Consolidation of Dredger Fill and Its Mechanical Properties. Journal of Materials in Civil Engineering 33 (7): 04021144. doi:10.1061/(ASCE)MT.1943-5533.0003769.
  • Yang, D. F., G. B. Xu, and Y. Duan. 2020. Effect of Particle Size on Mechanical Property of Bio-Treated Sand Foundation. Applied Sciences 10 (22): 8294. doi:10.3390/app10228294.
  • Yi, H. H., T. W. Zheng, Z. R. Jia, T. Su, and C. G. Wang. 2021. Study on the Influencing Factors and Mechanism of Calcium Carbonate Precipitation Induced by Urease Bacteria. Journal of Crystal Growth.564: 126113. doi:10.1016/j.jcrysgro.2021.126113.
  • Yu, X, and J. Jiang. 2018. Mineralization and Cementing Properties of Bio-Canbonate Cement, Bio-Phosphate Cement, and Bio-Canbonate/Phosphate Cement: A Review. Environmental Science and Pollution Research International 25 (22): 21483–21497. doi:10.1007/s11356-018-2143-7.
  • Yu, X., C. Qian, B. Xue, and X. Wang. 2015. The Influence of Standing Time and Content of the Slurry on Bio-Sandstone Cemented by Biological Phosphates. Construction and Building Materials 82: 167–172. doi:10.1016/j.conbuildmat.2015.02.038.
  • Yu, X. N, and H. Rong. 2022. Seawater Based MICP Cements Two-Phase/One-Phase Cemented Sand Blocks. Applied Ocean Research 118: 102972. doi:10.1016/j.apor.2021.102972.
  • Yu, X. N., Q. W. Zhan, C. X. Qian, J. J. Ma, and Y. Liang. 2019. The Optimal Formulation of Bio-Carbonate and Bio-Magnesium Phosphate Cement to Reduce Ammonia Emission. Journal of Cleaner Production 240: 118156. doi:10.1016/j.jclepro.2019.118156.
  • Zhang, D., M. A. Shahin, Y. Yang, H. L. Liu, and L. Cheng. 2022. Effect of Microbially Induced Calcite Precipitation Treatment on the Bonding Properties of Steel Fiber in Ultra-High Performance Concrete. Journal of Building Engineering 50: 104132. doi:10.1016/j.jobe.2022.104132.
  • Zhao, J. T., H. W. Tong, Y. Shan, J. Yuan, Q. W. Peng, and J. L. Liang. 2021. Effects of Different Types of Fibers on the Physical and Mechanical Properties of MICP-Treated Calcareous Sand. Materials 14 (2): 268. doi:10.3390/ma14020268.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.