596
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Numerical investigation on pullout capacity of helical piles under combined loading in spatially random clay

, , &
Pages 1118-1131 | Received 12 May 2022, Accepted 04 Aug 2022, Published online: 26 Sep 2022

References

  • Al-Baghdadi, T. A., M. J. Brown, J. A. Knappett, and A. H. Al-Defae. 2017. Effects of Vertical Loading on Lateral Screw Pile Performance. Proceedings of the Institution of Civil Engineers – Geotechnical Engineering 170 (3): 259–272. doi:10.1680/jgeen.16.00114.
  • Byrne, B. W, and G. T. Houlsby. 2015. Helical Piles: An Innovative Foundation Design Option for Offshore Wind Turbines. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373 (2035): 20140081. doi:10.1098/rsta.2014.0081.
  • Cassidy, M. J., M. Uzielli, and Y. H. Tian. 2013. Probabilistic Combined Loading Failure Envelopes of a Strip Footing on Spatially Variable Soil. Computers and Geotechnics 49: 191–205. doi:10.1016/j.compgeo.2012.10.008.
  • Charlton, T. S, and M. Rouainia. 2016. Probabilistic Capacity Analysis of Suction Caissons in Spatially Variable Clay. Computers and Geotechnics 80: 226–236. doi:10.1016/j.compgeo.2016.06.001.
  • Chen, X. J., Y. Fu, and Y. Liu. 2022. Random Finite Element Analysis on Uplift Bearing Capacity and Failure Mechanisms of Square Plate Anchors in Spatially Variable Clay. Engineering Geology 304: 106677. doi:10.1016/j.enggeo.2022.106677.
  • Cheng, P., Y. Liu, Y. P. Li, and J. T. Yi. 2022. A Large Deformation Finite Element Analysis of Uplift Behaviour for Helical Anchor in Spatially Variable Clay. Computers and Geotechnics 141: 104542. doi:10.1016/j.compgeo.2021.104542.
  • Chen, X. J., D. Q. Li, X. S. Tang, and Y. Liu. 2021. A Three-Dimensional Large-Deformation Random Finite-Element Study of Landslide Runout considering Spatially Varying Soil. Landslides 18 (9): 3149–3162. doi:10.1007/s10346-021-01699-1.
  • Davidson, C., M. J. Brown, B. Cerfontaine, T. Al-Baghdadi, J. Knappett, A. Brennan, C. Augarde, et al. 2022. Physical Modelling to Demonstrate the Feasibility of Screw Piles for Offshore Jacket-Supported Wind Energy Structures. Géotechnique 72 (2): 108–126. doi:10.1680/jgeot.18.P.311.
  • Demir, A, and B. Ok. 2015. Uplift Response of Multi-Plate Helical Anchors in Cohesive Soil. Geomechanics and Engineering 8 (4): 615–630. doi:10.12989/gae.2015.8.4.615.
  • DNV. 2017. Design and Installation of Plate Anchors in Clay. Recommended Practice DNV-RP-E302. Baerum, Norway: Det Norske Veritas.
  • Fu, Y., J. T. Yi, Y. P. Li, and B. Li. 2019. A Semi-Theoretical Method for Holding Capacity of Dynamically Installed Anchors under Inclined Loading. Computers and Geotechnics 115: 103171. doi:10.1016/j.compgeo.2019.103171.
  • Hentati, A., M. Selmi, T. Kormi, and N. B. H. Ali. 2018. Probabilistic HM Failure Envelopes of Strip Foundations on Spatially Variable Soil. Computers and Geotechnics 102: 66–78. doi:10.1016/j.compgeo.2018.06.001.
  • Hossain, M. S, and M. F. Randolph. 2009. Effect of Strain Rate and Strain Softening on the Penetration Resistance of Spudcan Foundations on Clay. International Journal of Geomechanics 9 (3): 122–132. doi:10.1061/(ASCE)1532-3641(2009)9:3(122).
  • Kwon, O., J. Lee, G. Kim, I. Kim, and J. Lee. 2019. Investigation of Pullout Load Capacity for Helical Anchors Subjected to Inclined Loading Conditions Using Coupled Eulerian-Lagrangian Analyses. Computers and Geotechnics 111: 66–75. doi:10.1016/j.compgeo.2019.03.007.
  • Li, L., J. H. Li, J. S. Huang, H. J. Liu, and M. J. Cassidy. 2017. The Bearing Capacity of Spudcan Foundations under Combined Loading in Spatially Variable Soils. Engineering Geology 227: 139–148. doi:10.1016/j.enggeo.2017.03.022.
  • Li, J. H., Y. Tian, and M. J. Cassidy. 2015. Failure Mechanism and Bearing Capacity of Footings Buried at Various Depths in Spatially Random Soil. Journal of Geotechnical and Geoenvironmental Engineering 141 (2): 04014099. doi:10.1061/(ASCE)GT.1943-5606.0001219.
  • Liu, Y., F. H. Lee, S. T. Quek, and M. Beer. 2014. Modified Linear Estimation Method for Generating Multi-Dimensional Multi-Variate Gaussian Field in Modelling Material Properties. Probabilistic Engineering Mechanics 38: 42–53. doi:10.1016/j.probengmech.2014.09.001.
  • Liu, F., J. T. Yi, P. Cheng, and K. Yao. 2020. Numerical Simulation of Set-up around Shaft of XCC Pile in Clay. Geomechanics and Engineering 21 (5): 489–501. doi:10.12989/gae.2020.21.5.489.
  • Liu, Y, and L. Zhang. 2019. Seismic Response of Pile-Raft System Embedded in Spatially Random Clay. Géotechnique 69 (7): 638–645. doi:10.1680/jgeot.17.T.015.
  • Liu, Y., W. G. Zhang, L. Zhang, Z. R. Zhu, J. Hu, and H. Wei. 2018. Probabilistic Stability Analyses of Undrained Slopes by 3D Random Fields and Finite Element Methods. Geoscience Frontiers 9 (6): 1657–1664. doi:10.1016/j.gsf.2017.09.003.
  • Li, J. H., Y. Zhou, L. L. Zhang, Y. Tian, M. J. Cassidy, and L. M. Zhang. 2016. Random Finite Element Method for Spudcan Foundations in Spatially Variable Soils. Engineering Geology 205: 146–155. doi:10.1016/j.enggeo.2015.12.019.
  • Merifield, R. S. 2011. Ultimate Uplift Capacity of Multiplate Helical Type Anchors in Clay. Journal of Geotechnical and Geoenvironmental Engineering 137 (7): 704–716. doi:10.1061/(ASCE)GT.1943-5606.0000478.
  • Merifield, R. S., A. V. Lyamin, S. W. Sloan, and H. S. Yu. 2003. Three-Dimensional Lower Bound Solutions for Stability of Plate Anchors in Clay. Journal of Geotechnical and Geoenvironmental Engineering 129 (3): 243–253. doi:10.1061/(ASCE)1090-0241(2003)129:3(243).
  • Phoon, K. K, and F. H. Kulhawy. 1999a. Characterization of Geotechnical Variability. Canadian Geotechnical Journal 36 (4): 612–624. doi:10.1139/t99-038.
  • Phoon, K. K, and F. H. Kulhawy. 1999b. Evaluation of Geotechnical Property Variability. Canadian Geotechnical Journal 36 (4): 625–639. doi:10.1139/cgj-36-4-625.
  • Prasad, Y, and S. N. Rao. 1996. Lateral Capacity of Helical Piles in Clays. Journal of Geotechnical Engineering 122 (11): 938–941. doi:10.1061/(ASCE)0733-9410(1996)122:11(938).
  • Reape, D, and P. Naughton. 2017. An Experimental Investigation of Helical Piles Subject to Inclined Pullout Loads. Proceedings of the Civil Engineering Research in Ireland Conference, 235–240.
  • Spagnoli, G, and C. D. C. Tsuha. 2020. A Review on the Behavior of Helical Piles as a Potential Offshore Foundation System. Marine Georesources & Geotechnology 38 (9): 1013–1036. doi:10.1080/1064119X.2020.1729905.
  • Taiebat, H. A, and J. P. Carter. 2000. Numerical Studies of the Bearing Capacity of Shallow Foundations on Cohesive Soil Subjected to Combined Loading. Géotechnique 50 (4): 409–418. doi:10.1680/geot.2000.50.4.409.
  • Wang, D., R. S. Merifield, and C. Gaudin. 2013. Uplift Behaviour of Helical Anchors in Clay. Canadian Geotechnical Journal 50 (6): 575–584. doi:10.1139/cgj-2012-0350.
  • Ye, Z. T., Y. F. Gao, S. Shu, and Y. Wu. 2021. Probabilistic Undrained Bearing Capacity of Skirted Foundations under HM Combined Loading in Spatially Variable Soils. Ocean Engineering 219: 108297. doi:10.1016/j.oceaneng.2020.108297.
  • Yi, J. T., L. Y. Huang, D. Q. Li, and Y. Liu. 2020. A Large-Deformation Random Finite-Element Study: failure Mechanism and Bearing Capacity of Spudcan in a Spatially Varying Clayey Seabed. Géotechnique 70 (5): 392–405. doi:10.1680/jgeot.18.P.171.
  • Yin, S. 2021. Undrained Failure Envelope for Skirted Spudcan Foundations in Clay under Combined Loading. Marine Georesources & Geotechnology 40 (2): 1–23. doi:10.1080/1064119X.2021.1879331.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.