288
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Prediction of shear stress induced by shoaling internal solitary waves based on machine learning method

ORCID Icon, , , &
Pages 221-232 | Received 24 Jul 2022, Accepted 12 Sep 2022, Published online: 21 Oct 2022

References

  • Agarwal, Shivang, Sumit Sharma, R. Suresh, Md. H. Rahman, Stijn Vranckx, Bino Maiheu, Lisa Blyth, et al. 2020. Air Quality Forecasting Using Artificial Neural Networks with Real Time Dynamic Error Correction in Highly Polluted Regions. The Science of the Total Environment 735: 139454. doi:10.1016/j.scitotenv.2020.139454.
  • Aghsaee, P., and L. Boegman. 2015. Experimental Investigation of Sediment Resuspension Beneath Internal Solitary Waves of Depression: Solitary Wave-Induced Resuspension. Journal of Geophysical Research: Oceans 120 (5): 3301–3314. doi:10.1002/2014JC010401.
  • Aghsaee, Payam, Leon Boegman, Peter J. Diamessis, and Kevin G. Lamb. 2012. Boundary Layer Separation Driven Vortex Shedding beneath Internal Solitary Waves of Depression. Journal of Fluid Mechanics 690: 321–344. doi:10.1017/jfm.2011.432.
  • Barzegar, R., M. T. Aalami, and J. Adamowski. 2020. Short-Term Water Quality Variable Prediction Using a Hybrid CNN–LSTM Deep Learning Model. Stochastic Environmental Research and Risk Assessment 34 (2): 415–433. doi:10.1007/s00477-020-01776-2.
  • Basak, D., S. Pal, and D. C. Patranabis. 2007. Support Vector Regression. Neuronal Information Processing-Letters and Reviews 11 (10): 203–224.
  • Bogucki, D., T. Dickey, and L. G. Redekopp. 1997. Sediment Resuspension and Mixing by Resonantly Generated Internal Solitary Waves. Journal of Physical Oceanography 27 (7): 1181–1196. doi:10.1175/1520-0485(1997)027<1181:SRAMBR>2.0.CO;2.
  • Chen, Y., M. Wu, R. Tang, S. Chen, and S. Chen. 2021. A Hybrid Deep Learning Model Based on LSTM for Long-Term PM2.5 Prediction. The 3rd International Conference on Intelligent Science and Technology doi:10.1145/3507959.3507969.
  • Chollet, F. 2018. Deep Learning with Python. Printed in the United States of America: Manning Publications Co. doi:10.1007/978-1-4842-2766-4.
  • Clainche, S. L., M. Rosti, and L. Brandt. 2020. Flow Structures and Shear-Stress Predictions in the Turbulent Channel Flow over an Anisotropic Porous Wall. Journal of Physics: Conference Series 1522 (1): 012016. doi:10.1088/1742-6596/1522/1/012016.
  • Elmaz, Furkan, Reinout Eyckerman, Wim Casteels, Steven Latré, and Peter Hellinckx. 2021. CNN-LSTM Architecture for Predictive Indoor Temperature Modeling. Building and Environment 206: 108327. doi:10.1016/j.buildenv.2021.108327.
  • Gilik, A., A. S. Ogrenci, and A. Ozmen. 2022. Air Quality Prediction Using CNN + LSTM-Based Hybrid Deep Learning Architecture. Environmental Science and Pollution Research International 29 (8): 11920–11938. doi:10.1007/s11356-021-16227-w.
  • Goldstein, Evan B., Giovanni Coco, and Nathaniel G. Plant. 2019. A Review of Machine Learning Applications to Coastal Sediment Transport and Morphodynamics. Earth-Science Reviews 194: 97–108. doi:10.1016/j.earscirev.2019.04.022.
  • Graves, A., N. Jaitly, and A. R. Mohamed. 2013. Hybrid Speech Recognition with Deep Bidirectional LSTM. Automatic Speech Recognition and Understanding (ASRU), 2013 IEEE Workshop on. IEEE.
  • He, L., and D. K. Tafti. 2019. A Supervised Machine Learning Approach for Predicting Variable Drag Forces on Spherical Particles in Suspension. Powder Technology 345: 379–389. doi:10.1016/j.powtec.2019.01.013.
  • Hinton, N., A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research 15 (1): 1929–1958.
  • Hochreiter, S., and J. Schmidhuber. 1997. Long Short-Term Memory. Neural Computation 9 (8): 1735–1780. doi:10.1162/neco.1997.9.8.1735.
  • Kaveh, Keivan, Hamid Kaveh, Minh Duc Bui, and Peter Rutschmann. 2021. Long Short-Term Memory for Predicting Daily Suspended Sediment Concentration. Engineering with Computers 37 (3): 2013–2027. doi:10.1007/s00366-019-00921-y.
  • Khozani, Z. S., H. Bonakdari, and A. H. Zaji. 2017. Estimating the Shear Stress Distribution in Circular Channels Based on the Randomized Neural Network Technique. Applied Soft Computing 58: 441–448. doi:10.1016/j.asoc.2017.05.024.
  • Khozani, Z. S., H. Hosseinjanzadeh, and W. H. M. Mohtar. 2019. Shear Force Estimation in Rough Boundaries Using SVR Method. Applied Water Science 9 (8): 186. doi:10.1007/s13201-019-1056-z.
  • Khozani, Z. S., K. Khosravi, M. Torabi, A. Mosavi, B. Rezaei, and T. Rabczuk. 2021. Shear Stress Distribution Prediction in Symmetric Compound Channels Using Data Mining and Machine Learning Models. Frontiers of Structural and Civil Engineering 14 (5): 1097–1109. doi:10.1007/s11709-020-0634-3.
  • Lecun, Y., Y. Bengio, and G. Hinton. 2015. Deep Learning. Nature 521 (7553): 436–444. doi:10.1038/nature14539.
  • Li, Xiang, Ling Peng, Xiaojing Yao, Shaolong Cui, Yuan Hu, Chengzeng You, Tianhe Chi, et al. 2017. Long Short-Term Memory Neural Network for Air Pollutant Concentration Predictions: Method Development and Evaluation. Environmental Pollution (Barking, Essex: 1987) 231 (Pt 1): 997–1004. doi:10.1016/j.envpol.2017.08.114.
  • Li, Songzhou, Gang Xie, Jinchang Ren, Lei Guo, Yunyun Yang, and Xinying Xu. 2020. Urban PM2.5 Concentration Prediction via Attention-Based CNN–LSTM. Applied Sciences 10 (6): 1953. doi:10.3390/app10061953.
  • Liang, L., M. Liu, C. Martin, and W. Sun. 2018. A Deep Learning Approach to Estimate Stress Distribution: A Fast and Accurate Surrogate of Finite-Element Analysis. Journal of the Royal Society, Interface 15 (138): 20170844. doi:10.1098/rsif.2017.0844
  • Masood, A., and K. Ahmad. 2021. A Review on Emerging Artificial Intelligence (AI) Techniques for Air Pollution Forecasting: Fundamentals, Application and Performance. Journal of Cleaner Production 322: 129072. doi:10.1016/j.jclepro.2021.129072.
  • Mohammad, Z., M. Amin, A. Meysam, et al. 2020. On the Complexities of Sediment Load Modeling Using Integrative Machine Learning: An Application to the Great River of Loíza in Puerto Rico. Journal of Hydrology 585: 124759.
  • Mohammad, Z., K. Ozgur, F. Jan, et al. 2016. Evaluation of Data Driven Models for River Suspended Sediment Concentration Modeling. Journal of Hydrology 535: 457–472.
  • Mohanta, Abinash, Arpan Pradhan, Monalisa Mallick, and K. C. Patra. 2021. Assessment of Shear Stress Distribution in Meandering Compound Channels with Differential Roughness through Various Artificial Intelligence Approach. Water Resources Management 35 (13): 4535–4559. doi:10.1007/s11269-021-02966-5.
  • Moum, J. N., and J. D. Nash. 2008. Seafloor Pressure Measurements of Nonlinear Internal Waves. Journal of Physical Oceanography 38 (2): 481–491. doi:10.1175/2007JPO3736.1.
  • Musumeci, Rosaria Ester, Vincenzo Marletta, Bruno Ando, Salvatore Baglio, and Enrico Foti. 2015. Measurement of Wave Near-Bed Velocity and Bottom Shear Stress by Ferrofluids. IEEE Transactions on Instrumentation and Measurement 64 (5): 1224–1231. doi:10.1109/TIM.2014.2359521.
  • Olsthoorn, J., M. Stastna, and N. Soontiens. 2012. Fluid Circulation and Seepage in Lake Sediment Due to Propagating and Trapped Internal Waves. Water Resource Research 48: W11520.
  • Pak, U., C. Kim, U. Ryu, K. Sok, and S. Pak. 2018. A Hybrid Model Based on Convolutional Neural Networks and Long Short-Term Memory for Ozone Concentration Prediction. Air Quality, Atmosphere & Health 11 (8): 883–895. doi:10.1007/s11869-018-0585-1.
  • Pujara, N., and L. F. Liu. 2014. Direct Measurements of Local Bed Shear Stress in the Presence of Pressure Gradients. Experiments in Fluids 55 (7): 1767. doi:10.1007/s00348-014-1767-8.
  • Qin, Yang, Gang Zeng, Ryo Kurachi, Yixiao Li, Yutaka Matsubara, and Hiroaki Takada. 2019. A Novel Combined Prediction Scheme Based on CNN and LSTM for Urban PM2.5 Concentration. IEEE Access: 7: 20050–20059. doi:10.1109/ACCESS.2019.2897028.
  • Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986. Learning Representations by Back-Propagating Errors. Nature 323 (6088): 533–536. doi:10.1038/323533a0.
  • Sainath, T. N., A. Mohamed, B. Kingsbury, and B. Ramabhadran. 2013. Deep Convolutional Neural Networks for LVCSR. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 8614–8618.
  • Singh, J., H. V. Knapp, and M. Demissie. 2004. Hydrologic Modeling of the Iroquois River Watershed Using HSPF and SWAT. Contract Report-Illinois State Water Survey: 2004–2008.
  • Suk, J., P. D. Haan, P. Lippe, et al. 2021. Mesh Convolutional Neural Networks for Wall Shear Stress Estimation in 3D Artery Models. International Workshop on Statistical Atlases and Computational Models of the Heart 13131: 93–102. doi:10.48550/arXiv.2109.04797.
  • Thomas, J. A., J. A. Lerczak, and J. N. Moum. 2016. Horizontal Variability of High-Frequency Nonlinear Internal Waves in Massachusetts Bay Detected by an Array of Seafloor Pressure Sensors. Journal of Geophysical Research: Oceans 121 (8): 5587–5607. doi:10.1002/2016JC011866.
  • Tian, Zhuangcai, Tian Chen, Le Yu, Xiujun Guo, and Yonggang Jia. 2019a. Penetration Depth of the Dynamic Response of Seabed Induced by Internal Solitary Waves. Applied Ocean Research 90: 101867. doi:10.1016/j.apor.2019.101867.
  • Tian, Zhuangcai, Yonggang Jia, Jiangxin Chen, J. Paul Liu, Shaotong Zhang, Chunsheng Ji, Xiaolei Liu, et al. 2021a. Internal Solitary Waves Induced Deep-Water Nepheloid Layers and Seafloor Geomorphic Changes on the Continental Slope of the Northern South China Sea. Physics of Fluids 33 (5): 053312. doi:10.1063/5.0045124.
  • Tian, Zhuangcai, Yonggang Jia, Qizhi Du, Shaotong Zhang, Xiujun Guo, Wenwen Tian, Mingwei Zhang, et al. 2021b. Shearing Stress of Shoaling Internal Solitary Waves over the Slope. Ocean Engineering 241 (5): 110046. doi:10.1016/j.oceaneng.
  • Tian, Zhuangcai, Yonggang Jia, Shaotong Zhang, Xiaojiang Zhang, Yang Li, and Xiujun Guo. 2019b. Bottom and Intermediate Nepheloid Layer Induced by Shoaling Internal Solitary Waves: Impacts of the Angle of the Wave Group Velocity Vector and Slope Gradients. Journal of Geophysical Research: Oceans 124 (8): 5686–5699. doi:10.1029/2018JC014721.
  • Tian, Zhuangcai, Shaotong Zhang, Xiujun Guo, Le Yu, and Yonggang Jia. 2019c. Experimental Investigation of Sediment Dynamics in Response to Breaking High-Frequency Internal Solitary Wave Packets over a Steep Slope. Journal of Marine Systems 199: 103191. doi:10.1016/j.jmarsys.2019.103191.
  • Vapnik, V., et al. 1997. Support Vector Method for Function Approximation, Regression Estimation and Signal Processing. Advances in Neural Information Processing Systems 9: 281–287.
  • Williams, S. J., and D. S. Jeng. 2007. The Effects of a Porous-Elastic Seabed on Interfacial Wave Propagation. Ocean Engineering 34 (13): 1818–1831. doi:10.1016/j.oceaneng.2007.02.002.
  • Yan, R., J. Liao, J. Yang, W. Sun, M. Nong, and F. Li. 2021. Multi-Hour and Multi-Site Air Quality Index Forecasting in Beijing Using CNN, LSTM, CNN-LSTM, and Spatiotemporal Clustering. Expert Systems with Applications 169: 114513. doi:10.1016/j.eswa.2020.114513.
  • Ying, J., K. Liang, Q. Wu, M. Xie, X. Jin, Q. Ye, and Z. Yang. 2020. Calculation of Suspended Sediment Concentration Based on Deep Learning and OBS Turbidity. Journal of Coastal Research: 115(SI): 627–630. doi:10.2112/JCR-SI115-166.1.
  • Zeng, Y., G. Chen, and W. Huai. 2013. Predicting Apparent Shear Stress in Prismatic Compound Open Channels Using Artificial Neural Networks. Journal of Hydroinformatics 15 (1): 138–146. doi:10.2166/hydro.2012.193.
  • Zhang, Shaotong, Jinran Wu, Yonggang Jia, You-Gan Wang, Yaqi Zhang, and Qibin Duan. 2021. A Temporal LASSO Regression Model for the Emergency Forecasting of the Suspended Sediment Concentrations in Coastal Oceans: Accuracy and Interpretability. Engineering Applications of Artificial Intelligence 100: 104206. doi:10.1016/j.engappai.2021.104206.
  • Zhang, Shaotong, Jinran Wu, You-Gan Wang, Dong-Sheng Jeng, and Guangxue Li. 2022. A Physics-Informed Statistical Learning Framework for Forecasting Local Suspended Sediment Concentrations in Marine Environment. Water Research 218: 118518. doi:10.1016/j.watres.2022.118518.
  • Zhao, J., F. Deng, Y. Cai, and J. Chen. 2019. Long Short-Term Memory - Fully Connected (LSTM-FC) Neural Network for PM2.5 Concentration Prediction. Chemosphere 220: 486–492. doi:10.1016/j.chemosphere.2018.12.128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.