92
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Probabilistic analysis on the lateral capacity of suction caissons in spatially variable soils

, , , , &
Pages 1011-1022 | Received 12 Mar 2023, Accepted 09 Jul 2023, Published online: 14 Sep 2023

References

  • Aubeny, C., S. W. Han, and J. D. Murff. 2003. Suction Caisson Capacity in Anisotropic, Purely Cohesive Soil. International Journal of Geomechanics 3 (2): 225–235. https://doi.org/10.1061/(ASCE)1532-3641(2003)3:2(225)
  • Cami, B., S. Javankhoshdel, K. K. Phoon, and J. Ching. 2020. Scale of Fluctuation for Spatially Varying Soils: Estimation Methods and Values. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A 6 (4): 03120002. https://doi.org/10.1061/AJRUA6.0001083
  • Cassidy, M. J., M. Uzielli, and Y. Tian. 2013. Probabilistic Combined Loading Failure Envelopes of a Strip Footing on Spatially Variable Soil. Computers and Geotechnics 49: 191–205. https://doi.org/10.1016/j.compgeo.2012.10.008
  • Cheng, P., J. Guo, K. Yao, and X. Chen. 2022. Numerical Investigation on Pullout Capacity of Helical Piles under Combined Loading in Spatially Random Clay. Marine Georesources & Geotechnology 1–14. https://doi.org/10.1080/1064119X.2022.2120843
  • Ching, J., W. H. Huang, and K. K. Phoon. 2020. 3D Probabilistic Site Characterization by Sparse Bayesian Learning. Journal of Engineering Mechanics 146 (12): 04020134. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001859
  • Deng, W., J. P. Carter, and H. Taiebat. 2000. Prediction of the Lateral Capacity of Suction Caissons. Proceedings, 10th International Conference of the International Association for Computer Methods and Advances in Geomechanics, pp. 33–38.
  • Efthymiou, G., and G. Gazetas. 2022. Sidewall Shell Contribution to the Lateral Capacity of Offshore Suction Caissons in Clay. Journal of Geotechnical and Geoenvironmental Engineering 148 (11): 04022085. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002898
  • Faizi, K., A. Faramarzi, S. Dirar, and D. Chapman. 2020. Development of an Analytical Model for Predicting the Lateral Bearing Capacity of Caisson Foundations in Cohesionless Soils. Ocean Engineering 218: 108112. https://doi.org/10.1016/j.oceaneng.2020.108112
  • Fenton, G. A., and D. V. Griffiths. 2003. Bearing-Capacity Prediction of Spatially Random c-φ Soils. Canadian Geotechnical Journal 40 (1): 54–65. https://doi.org/10.1139/t02-086
  • Gibson, R. E. 1974. The Analytical Method in Soil Mechanics. Géotechnique 24 (2): 115–140. https://doi.org/10.1680/geot.1974.24.2.115
  • Johari, A., and H. Fooladi. 2020. Comparative Study of Stochastic Slope Stability Analysis Based on Conditional and Unconditional Random Field. Computers and Geotechnics 125: 103707. https://doi.org/10.1016/j.compgeo.2020.103707
  • Kawa, M., and W. Puła. 2020. 3D Bearing Capacity Probabilistic Analyses of Footings on Spatially Variable c–φ Soil. Acta Geotechnica 15 (6): 1453–1466. https://doi.org/10.1007/s11440-019-00853-3
  • Latini, C., and V. Zania. 2017. Dynamic Lateral Response of Suction Caissons. Soil Dynamics and Earthquake Engineering 100: 59–71. https://doi.org/10.1016/j.soildyn.2017.05.020
  • Li, D. Q., S. H. Jiang, Z. J. Cao, W. Zhou, C. B. Zhou, and L. M. Zhang. 2015a. A Multiple Response-Surface Method for Slope Reliability Analysis considering Spatial Variability of Soil Properties. Engineering Geology 187: 60–72. https://doi.org/10.1016/j.enggeo.2014.12.003
  • Li, J., W. Luo, Y. Tian, Y. Wang, and M. J. Cassidy. 2021. Modeling of Large Deformation Problem considering Spatially Variable Soils in Offshore Engineering. Marine Georesources & Geotechnology 39 (8): 906–918. https://doi.org/10.1080/1064119X.2020.1779444
  • Li, D. Q., X. H. Qi, Z. J. Cao, X. S. Tang, W. Zhou, K. K. Phoon, and C. B. Zhou. 2015b. Reliability Analysis of Strip Footing considering Spatially Variable Undrained Shear Strength That Linearly Increases with Depth. Soils and Foundations 55 (4): 866–880. https://doi.org/10.1016/j.sandf.2015.06.017
  • Liu, W. F., and Y. F. Leung. 2018. Characterising Three-Dimensional Anisotropic Spatial Correlation of Soil Properties through in Situ Test Results. Géotechnique 68 (9): 805–819. https://doi.org/10.1680/jgeot.16.P.336
  • Liu, Y., W. Zhang, L. Zhang, Z. Zhu, J. Hu, and H. Wei. 2018. Probabilistic Stability Analyses of Undrained Slopes by 3D Random Fields and Finite Element Methods. Geoscience Frontiers 9 (6): 1657–1664. https://doi.org/10.1016/j.gsf.2017.09.003
  • Li, D. Q., T. Xiao, L. M. Zhang, and Z. J. Cao. 2019. Stepwise Covariance Matrix Decomposition for Efficient Simulation of Multivariate Large-Scale Three-Dimensional Random Fields. Applied Mathematical Modelling 68: 169–181. https://doi.org/10.1016/j.apm.2018.11.011
  • Li, D., Y. Zhang, L. Feng, and Y. Gao. 2015. Capacity of Modified Suction Caissons in Marine Sand under Static Horizontal Loading. Ocean Engineering 102: 1–16. https://doi.org/10.1016/j.oceaneng.2015.04.033
  • Lumb, P. 1966. The Variability of Natural Soils. Canadian Geotechnical Journal 3 (2): 74–97. https://doi.org/10.1139/t66-009
  • Pan, Q., and D. Dias. 2017. Probabilistic Evaluation of Tunnel Face Stability in Spatially Random Soils Using Sparse Polynomial Chaos Expansion with Global Sensitivity Analysis. Acta Geotechnica 12 (6): 1415–1429. https://doi.org/10.1007/s11440-017-0541-5
  • Pan, Y., Y. Liu, H. Xiao, F. H. Lee, and K. K. Phoon. 2018. Effect of Spatial Variability on Short-and Long-Term Behaviour of Axially-Loaded Cement-Admixed Marine Clay Column. Computers and Geotechnics 94: 150–168. https://doi.org/10.1016/j.compgeo.2017.09.006
  • Phoon, K. K., J. Ching, and T. Shuku. 2022. Challenges in Data-Driven Site Characterization. Georisk 16 (1): 114–126. https://doi.org/10.1080/17499518.2021.1896005
  • Randolph, M., and S. Gourvenec. 2017. Offshore Geotechnical Engineering. Houston, Texas: CRC Press.
  • Randolph, M. F., and A. R. House. 2002. Analysis of suction caisson capacity in clay. Offshore technology conference. Onepetro. https://doi.org/10.4043/14236-MS
  • Shen, Z., D. Jin, Q. Pan, H. Yang, and S. C. Chian. 2020. Probabilistic Analysis of Strip Footings on Spatially Variable Soils with Linearly Increasing Shear Strength. Computers and Geotechnics 126: 103653. https://doi.org/10.1016/j.compgeo.2020.103653
  • Shen, Z., D. Jin, Q. Pan, H. Yang, and S. C. Chian. 2021. Effect of Soil Spatial Variability on Failure Mechanisms and Undrained Capacities of Strip Foundations under Uniaxial Loading. Computers and Geotechnics 139: 104387. https://doi.org/10.1016/j.compgeo.2021.104387
  • Shen, Z., Q. Pan, S. C. Chian, S. Gourvenec, and Y. Tian. 2022. Probabilistic Failure Envelopes of Strip Foundations on Soils with Non-Stationary Characteristics of Undrained Shear Strength. Géotechnique 73 (8): 716–735. https://doi.org/10.1680/jgeot.21.00169
  • Sudret, B., and A. Der Kiureghian. 2000. Stochastic Finite Element Methods and Reliability: A State-of-the-Art Report, 18–34. Berkeley: Department of Civil and Environmental Engineering, University of California.
  • Sukumaran, B., W. O. McCarron, P. Jeanjean, and H. Abouseeda. 1999. Efficient Finite Element Techniques for Limit Analysis of Suction Caissons under Lateral Loads. Computers and Geotechnics 24 (2): 89–107. https://doi.org/10.1016/S0266-352X(98)00036-6
  • Sun, L., Y. Zhang, X. Feng, S. Gourvenec, and S. Li. 2022. Upper-Bound Solutions for Inclined Capacity of Suction Caissons in a Trenched Seabed. Géotechnique 1–13. https://doi.org/10.1680/jgeot.22.00133
  • Tabarroki, M., F. Ahmad, R. Banaki, S. K. Jha, and J. Ching. 2013. Determining the Factors of Safety of Spatially Variable Slopes Modeled by Random Fields. Journal of Geotechnical and Geoenvironmental Engineering 139 (12): 2082–2095. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000955
  • Wang, M. Y., Y. Liu, Y. N. Ding, and B. L. Yi. 2020. Probabilistic Stability Analyses of Multi-Stage Soil Slopes by Bivariate Random Fields and Finite Element Methods. Computers and Geotechnics 122: 103529. https://doi.org/10.1016/j.compgeo.2020.103529
  • Wang, L. Z., H. Wang, B. Zhu, and Y. Hong. 2018. Comparison of Monotonic and Cyclic Lateral Response between Monopod and Tripod Bucket Foundations in Medium Dense Sand. Ocean Engineering 155: 88–105. https://doi.org/10.1016/j.oceaneng.2017.12.006
  • Wang, X., X. Yang, and X. Zeng. 2017. Lateral Capacity Assessment of Offshore Wind Suction Bucket Foundation in Clay via Centrifuge Modelling. Journal of Renewable and Sustainable Energy 9 (3): 033308. https://doi.org/10.1063/1.4990831
  • Wu, Y., Q. Yang, D. Li, and Y. Zhang. 2022. Limit Equilibrium Solutions to anti-Overturning Bearing Capacity of Suction Caissons in Uniform and Linearly Increasing Strength Clays. Canadian Geotechnical Journal 59 (2): 304–313. https://doi.org/10.1139/cgj-2020-0557
  • Xiao, T., D. Q. Li, Z. J. Cao, and L. M. Zhang. 2018. CPT-Based Probabilistic Characterization of Three-Dimensional Spatial Variability Using MLE. Journal of Geotechnical and Geoenvironmental Engineering 144 (5): 04018023. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001875
  • Yang, Z., and J. Ching. 2021. Simulation of Three-Dimensional Random Field Conditioning on Incomplete Site Data. Engineering Geology 281: 105987. https://doi.org/10.1016/j.enggeo.2020.105987
  • Yang, H. Q., L. Zhang, and D. Q. Li. 2018. Efficient Method for Probabilistic Estimation of Spatially Varied Hydraulic Properties in a Soil Slope Based on Field Responses: A Bayesian Approach. Computers and Geotechnics 102: 262–272. https://doi.org/10.1016/j.compgeo.2017.11.012
  • Zhu, B., J. L. Dai, D. Q. Kong, L. Y. Feng, and Y. M. Chen. 2020. Centrifuge Modelling of Uplift Response of Suction Caisson Groups in Soft Clay. Canadian Geotechnical Journal 57 (9): 1294–1303. https://doi.org/10.1139/cgj-2018-0838
  • Zhu, B., T. Hiraishi, H. Mase, Y. Baba, H. Pei, and Q. Yang. 2021. A 3-D Numerical Study of the Random Wave-Induced Response in a Spatially Heterogenous Seabed. Computers and Geotechnics 135: 104159. https://doi.org/10.1016/j.compgeo.2021.104159
  • Zhu, B., H. Pei, and Q. Yang. 2019. Reliability Analysis of Submarine Slope considering the Spatial Variability of the Sediment Strength Using Random Fields. Applied Ocean Research 86: 340–350. https://doi.org/10.1016/j.apor.2019.03.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.