114
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Gradient boosting trees with Bayesian optimization to predict activity from other geotechnical parameters

ORCID Icon & ORCID Icon
Pages 1075-1085 | Received 10 Jul 2023, Accepted 19 Aug 2023, Published online: 30 Aug 2023

References

  • Al-Rawas, A. A. 1999. The Factors Controlling the Expansive Nature of the Soils and Rocks of Northern Oman. Engineering Geology 53 (3–4): 327–350. https://doi.org/10.1016/S0013-7952(98)00085-4
  • Arifin, Y. F. 2008. Thermo-hydro-mechanical behavior of compacted bentonite-sand mixtures: An experimental study. https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20081006-14288. https://doi.org/10.25643/bauhaus-universitaet.852
  • Breiman, L. I., J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and Regression Trees (Cart). Encyclopedia of Ecology 40: 582–588.
  • Cerato, A. 2001. Influence of Specific Surface Area on Geotechnical Characteristics of Fine-Grained Soils. Unpublished MSc Thesis, Department of Civil and Environmental Engineering, University of Massachusetts.
  • Cerato, A. B., and A. J. Lutenegger. 2002. Determination of Surface Area of Fine-grained Soils by the Ethylene Glycol Monoethyl Ether (EGME) Method. Geotechnical Testing Journal 25: 315–321.
  • Cerato, A. B., and A. J. Lutenegger. 2004. Determining Intrinsic Compressibility of Fine-Grained Soils. Journal of Geotechnical and Geoenvironmental Engineering 130 (8): 872–877. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(872)
  • Cerato, A. B., and A. J. Lutenegger. 2005. Activity, Relative Activity and Specific Surface Area of Fine-Grained Soils. Proceedings of the International Conference on Soil Mechanics and Geotechnical Engineering. AA Balkema Publishers, 325.
  • Chittoori, B., and A. J. Puppala. 2011. Quantitative Estimation of Clay Mineralogy in Fine-Grained Soils. Journal of Geotechnical and Geoenvironmental Engineering 137 (11): 997–1008. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000521
  • Christidis, G. E. 1998. Physical and Chemical Properties of Some Bentonite Deposits of Kimolos Island, Greece. Applied Clay Science 13 (2): 79–98. https://doi.org/10.1016/S0169-1317(98)00023-4
  • Devore, J. L., N. R. Farnum, and J. A. Doi. 2013. Applied Statistics for Engineers and Scientists. Cengage Learning.
  • Díaz, E., and R. Tomás. 2021. Upgrading the Prediction of Jet Grouting Column Diameter Using Deep Learning with an Emphasis on High Energies. Acta Geotechnica 16 (5): 1627–1633. https://doi.org/10.1007/s11440-020-01091-8
  • Díaz, E., J. Pastor, Á. Rabat, and R. Tomás. 2021. Machine Learning Techniques for Relating Liquid Limit Obtained by Casagrande Cup and Fall Cone Test in Low-Medium Plasticity Fine Grained Soils. Engineering Geology 294: 106381. https://doi.org/10.1016/j.enggeo.2021.106381
  • Díaz, E., V. Brotons, and R. Tomás. 2018. Use of Artificial Neural Networks to Predict 3-D Elastic Settlement of Foundations on Soils with Inclined Bedrock. Soils and Foundations 58 (6): 1414–1422. https://doi.org/10.1016/j.sandf.2018.08.001
  • Eriksson, D., M. Pearce, J. Gardner, R. D. Turner, and M. Poloczek. 2019. Scalable Global Optimization via Local Bayesian Optimization. Advances in Neural Information Processing Systems 32.
  • Freund, Y. 1995. Boosting a Weak Learning Algorithm by Majority. Information and Computation 121 (2): 256–285. https://doi.org/10.1006/inco.1995.1136
  • Freund, Y., and R. E. Schapire. 1996. Experiments with a New Boosting Algorithm. ICML Citeseer 96: 148–156.
  • Friedman, JHJAos. 2001. Greedy Function Approximation: A Gradient Boosting Machine. 1189–1232.
  • Gelman, A., and J. Hill. 2006. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge, UK: Cambridge University Press.
  • Head, T., M. Kumar, H. Nahrstaedt, G. Louppe, and I. Shcherbatyi. 2020. Scikit-optimize/scikit-optimize: V 0. 8.1. Zenodo.
  • Hollander, M., D. A. Wolfe, and E. Chicken. 2015. Nonparametric Statistical Methods. Hoboken, NJ: John Wiley & Sons.
  • Jones, D. E., Jr, and W. G. Holtz. 1973. Expansive Soils-the Hidden Disaster. Civil Engineering 43: 49–51.
  • Jones, D. R. 2001. A Taxonomy of Global Optimization Methods Based on Response Surfaces. Journal of Global Optimization 21 (4): 345–383. https://doi.org/10.1023/A:1012771025575
  • Kar, K. K. 2021. Handbook of Fly Ash. Butterworth-Heinemann.
  • Lambe, T. W. 1960. The Character and Identification of Expansive Soils: A Report Completed for the Technical Studies Program of the Federal Housing Administration. Federal Housing Administration
  • Li, D., Z. Liu, P. Xiao, J. Zhou, and D. Jahed Armaghani. 2022. Intelligent Rockburst Prediction Model with Sample Category Balance Using Feedforward Neural Network and Bayesian Optimization. Underground Space 7 (5): 833–846. https://doi.org/10.1016/j.undsp.2021.12.009
  • Low, P. F. 1987. Structural Component of the Swelling Pressure of Clays. Langmuir 3 (1): 18–25. https://doi.org/10.1021/la00073a004
  • Marcial, D. 2013. Measuring Water Retention Properties of a Series of Bentonite Clays a Wide Range of Suctions. Advances in Unsaturated Soils, 135–140. London: Taylor Francis Group.
  • Mishra, A. K., M. Ohtsubo, L. Y. Li, and T. Higashi. 2012. Influence of Various Factors on the Difference in the Liquid Limit Values Determined by Casagrande’s and Fall Cone Method. Environmental Earth Sciences 65 (1): 21–27. https://doi.org/10.1007/s12665-011-1061-5
  • Mitchell, J. K., and K. Soga. 2005. Fundamentals of Soil Behavior. Hoboken, NJ: John Wiley & Sons.
  • Moore, D. S., and G. P. McCabe. 1989. Introduction to the Practice of Statistics. New York, USA: WH Freeman/Times Books/Henry Holt & Co.
  • Muhunthan, B. 1991. Liquid Limit and Surface Area of Clays. Géotechnique 41 (1): 135–138. https://doi.org/10.1680/geot.1991.41.1.135
  • Nelson, J. D., K. C. Chao, D. D. Overton, and E. J. Nelson. 2015. Foundation Engineering for Expansive Soils. Hoboken, NJ: John Wiley & Sons.
  • Peck, R. B., W. E. Hanson, and T. H. Thornburn. 1974. Foundation Engineering. Hoboken, NJ: John Wiley & Sons.
  • Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-Learn: Machine Learning in Python. Journal of Machine Learning Research 12: 2825–2830.
  • Phoon, K.-K., and W. Zhang. 2023. Future of Machine Learning in Geotechnics. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 17 (1): 7–22. https://doi.org/10.1080/17499518.2022.2087884
  • Polidori, E. 2009. Reappraisal of the Activity of Clays. Activity Chart. Soils and Foundations 49 (3): 431–441. https://doi.org/10.3208/sandf.49.431
  • Salvatore, E., G. Modoni, G. Spagnoli, M. Arciero, M. C. Mascolo, and M. Ochmański. 2022. Conditioning Clayey Soils with a Dispersant Agent for Deep Soil Mixing Application: Laboratory Experiments and Artificial Neural Network Interpretation. Acta Geotechnica 17 (11): 5073–5087. https://doi.org/10.1007/s11440-022-01505-9
  • Santhoshkumar, T., B. Abraham, A. Sridharan, and B. Jose. 2016. Role of Bentonite in Improving the Efficiency of Cement Grouting in Coarse Sand. Geotechnical Engineering Journal of the SEAGS & AGSSEA 47: 1–8.
  • Schapire, R. E. 1990. The Strength of Weak Learnability. Machine Learning 5 (2): 197–227. https://doi.org/10.1007/BF00116037
  • Schwing, M., Z. Chen, A. Scheuermann, and N. Wagner. 2013. Dielectric Properties of a Clay Soil Determined in the Frequency Range from 1 MHz to 40 GHz. Proc 10th Int. Conf. Electromagn. Wave Interact. Water and Moist Substances, 242–250.
  • Shahriari, B., K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas. 2016. Taking the Human out of the Loop: A Review of Bayesian Optimization. Proceedings of the IEEE 104 (1): 148–175. https://doi.org/10.1109/JPROC.2015.2494218
  • Sivapullaiah, P. V., B. G. Prasad, and M. M. Allam. 2008. Methylene Blue Surface Area Method to Correlate with Specific Soil Properties. Geotechnical Testing Journal 31 (6): 503–512.
  • Skempton, A. 1953. The Colloidal Activity of Clays. Selected Papers on Soil Mechanics 1: 57–61.
  • Snoek, J., H. Larochelle, and R. P. Adams. 2012. Practical Bayesian Optimization of Machine Learning Algorithms. Advances in Neural Information Processing Systems 25: 2951–2959.
  • Spagnoli, G., and S. Shimobe. 2019. A Statistical Reappraisal of the Relationship between Liquid Limit and Specific Surface Area, Cation Exchange Capacity and Activity of Clays. Journal of Rock Mechanics and Geotechnical Engineering 11 (4): 874–881. https://doi.org/10.1016/j.jrmge.2018.11.007
  • Spagnoli, G., M. Feinendegen, and D. Rubinos. 2013. Modification of Clay Adhesion to Improve Tunnelling Excavation. Proceedings of the Institution of Civil Engineers – Ground Improvement 166 (1): 21–31. https://doi.org/10.1680/grim.11.00017
  • Stephens, M. A. 1974. EDF Statistics for Goodness of Fit and Some Comparisons. Journal of the American Statistical Association 69 (347): 730–737. https://doi.org/10.1080/01621459.1974.10480196
  • Stone, M. 1974. Cross‐Validatory Choice and Assessment of Statistical Predictions. Journal of the Royal Statistical Society: Series B (Methodological) 36 (2): 111–133. https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
  • Wackerly, D., W. Mendenhall, and R. L. Scheaffer. 2014. Mathematical Statistics with Applications. Cengage Learning.
  • Wang, L., C. Wu, L. Tang, W. Zhang, S. Lacasse, H. Liu, and L. Gao. 2020. Efficient Reliability Analysis of Earth Dam Slope Stability Using Extreme Gradient Boosting Method. Acta Geotechnica 15 (11): 3135–3150. https://doi.org/10.1007/s11440-020-00962-4
  • Warkentin, B. 1972. Use of the Liquid Limit in Characterizing Clay Soils. Canadian Journal of Soil Science 52 (3): 457–464. https://doi.org/10.4141/cjss72-057
  • Yao, H-l., Y. Yang, and P. Cheng. 2004. Standard Moisture Absorption Water Content of Soil and Its Testing Standard. Rock and Soil Mechanics-WUHAN 25: 856–859.
  • Zapata, C., S. Houston, W. Houston, and H. Dye. 2006. Expansion Index and Its Relationship with Other Index Properties. Unsaturated Soils 2006: 2133–2137. https://doi.org/10.1061/40802(189)180
  • Zhang, W., C. Wu, H. Zhong, Y. Li, and L. Wang. 2021. Prediction of Undrained Shear Strength Using Extreme Gradient Boosting and Random Forest Based on Bayesian Optimization. Geoscience Frontiers 12 (1): 469–477. https://doi.org/10.1016/j.gsf.2020.03.007
  • Zhang, W., R. Zhang, C. Wu, A. T. Goh, and L. Wang. 2022b. Assessment of Basal Heave Stability for Braced Excavations in Anisotropic Clay Using Extreme Gradient Boosting and Random Forest Regression. Underground Space 7 (2): 233–241. https://doi.org/10.1016/j.undsp.2020.03.001
  • Zhang, W., X. Gu, L. Tang, Y. Yin, D. Liu, and Y. Zhang. 2022a. Application of Machine Learning, Deep Learning and Optimization Algorithms in Geoengineering and Geoscience: Comprehensive Review and Future Challenge. Gondwana Research 109: 1–17. https://doi.org/10.1016/j.gr.2022.03.015
  • Zhang, W., Y. He, L. Wang, S. Liu, and X. Meng. 2023. Landslide Susceptibility Mapping Using Random Forest and Extreme Gradient Boosting: A Case Study of Fengjie, Chongqing. Geological Journal 58 (6): 2372–2387. https://doi.org/10.1002/gj.4683
  • Zhang, Y., Y. Qu, G. Liu, and S. Wu. 2003. Engineering Geological Properties of Miocene Hard Clays along the Middle Line of the North–South Diversion Water Project in China. Bulletin of Engineering Geology and the Environment 62 (3): 213–219. https://doi.org/10.1007/s10064-003-0195-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.