58
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of vascular dysregulation in meriones shawi after high-calorie diet feeding

, , &
Pages 353-362 | Received 10 Aug 2017, Accepted 21 Aug 2017, Published online: 08 Feb 2018

References

  • Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37:1595–607.
  • DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14:173–94.
  • Peiris AN, Struve MF, Mueller RA, Lee MB, Kissebah AH. Glucose metabolism in obesity: influence of body fat distribution. J Clin Endocrinol Metab. 1988;67:760–67.
  • Grundy SM, Brewer HB Jr., Cleeman JI, Smith SC Jr., Lenfant C. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109:433–38.
  • Reaven GM. Pathophysiology of insulin resistance in human disease. Physiol Rev. 1995;75:473–86.
  • Lebovitz HE. Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes. 2001;109(Suppl 2):S135–48.
  • Woodfield SL, Lundergan CF, Reiner JS, Greenhouse SW, Thompson MA, Rohrbeck SC, Deychak Y, Simoons ML, Califf RM, Topol EJ, et al. Angiographic findings and outcome in diabetic patients treated with thrombolytic therapy for acute myocardial infarction: the GUSTO-I experience. J Am Coll Cardiol. 1996;28:1661–69.
  • Silva JF, Correa IC, Diniz TF, Lima PM, Santos RL, Cortes SF, Coimbra, CC, Lemos, VS. Obesity, inflammation, and exercise training: relative contribution of iNOS and eNOS in the modulation of vascular function in the mouse aorta. Front Physiol. 2016;7:386.
  • Justo ML, Candiracci M, Dantas AP, De Sotomayor MA, Parrado J, Vila E, Herrera, M D., Rodriguez-Rodriguez, R., et al. Rice bran enzymatic extract restores endothelial function and vascular contractility in obese rats by reducing vascular inflammation and oxidative stress. J Nutr Biochem. 2013;24:1453–61.
  • Rubanyi GM, Vanhoutte PM. Oxygen-derived free radicals, endothelium, and responsiveness of vascular smooth muscle. Am J Physiol. 1986;250:H815–21.
  • Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43:109–42.
  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA. 1987;84:9265–69.
  • Luscher TF, Vanhoutte PM. Endothelium-dependent responses in human blood vessels. Trends Pharmacol Sci. 1988;9:181–84.
  • Hofni A, Shehata Messiha BA, Mangoura SA. Fasudil ameliorates endothelial dysfunction in streptozotocin-induced diabetic rats: a possible role of Rho kinase. Naunyn Schmiedebergs Arch Pharmacol. 2017;390:801–11.
  • Simoes FV, De Batista PR, Botelho T, Ribeiro-Junior RF, Padilha AS, Vassallo DV. Treatment with high dose of atorvastatin reduces vascular injury in diabetic rats. Pharmacol Rep. 2016;68:865–73.
  • Vallance P, Calver A, Collier J. The vascular endothelium in diabetes and hypertension. J Hypertens Suppl. 1992;10:S25–9.
  • Bruno RM, Reesink KD, Ghiadoni L. Advances in the non-invasive assessment of vascular dysfunction in metabolic syndrome and diabetes: focus on endothelium, carotid mechanics and renal vessels. Nutr Metab Cardiovasc Dis. 2016;27:121–28.
  • Kagota S, Yamaguchi Y, Shinozuka K, Kunitomo M. Mechanisms of impairment of endothelium-dependent relaxation to acetylcholine in Watanabe heritable hyperlipidaemic rabbit aortas. Clin Exp Pharmacol Physiol. 1998;25:104–09.
  • Busse R, Fleming I. Endothelial dysfunction in atherosclerosis. J Vasc Res. 1996;33:181–94.
  • Hui Z, Zhou X, Li R. Effect of 3,4-dihydroxyacetophenone on endothelial dysfunction in obese rats. Pharm Biol. 2015;53:1149–54.
  • McNamee CJ, Kappagoda CT, Kunjara R, Russell JC. Defective endothelium-dependent relaxation in the JCR:LA-corpulent rat. Circ Res. 1994;74:1126–32.
  • Wojtala M, Pirola L, Balcerczyk A. Modulation of the vascular endothelium functioning by dietary components, the role of epigenetics. Biofactors. 2017;43:5–16.
  • Bohlen HG, Lash JM. Endothelial-dependent vasodilation is preserved in non-insulin-dependent Zucker fatty diabetic rats. Am J Physiol. 1995;268:H2366–74.
  • Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest. 1996;97:2601–10.
  • Watts GF, O’Brien SF, Silvester W, Millar JA. Impaired endothelium-dependent and independent dilatation of forearm resistance arteries in men with diet-treated non-insulin-dependent diabetes: role of dyslipidaemia. Clin Sci (Lond). 1996;91:567–73.
  • Karatsoreos IN, Bhagat SM, Bowles NP, Weil ZM, Pfaff DW, McEwen BS. Endocrine and physiological changes in response to chronic corticosterone: a potential model of the metabolic syndrome in mouse. Endocrinology. 2010;151:2117–27.
  • Wu KK, Huan Y. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol. 2008;Chapter 5:Unit 5 47.
  • Li X, Lu J, Wang Y, Huo X, Li Z, Zhang S, Li C, Guo M, Du X, Chen Z, et al. Establishment and characterization of a newly established diabetic gerbil line. PLoS One. 2016;11:e0159420.
  • Kennedy AJ, Ellacott KL, King VL, Hasty AH. Mouse models of the metabolic syndrome. Dis Model Mech. 2010;3:156–66.
  • Panchal SK, Brown L. Rodent models for metabolic syndrome research. J Biomed Biotechnol. 2011;2011:1–14.
  • Gilbert M, Magnan C, Turban S, Andre J, Guerre-Millo M. Leptin receptor-deficient obese Zucker rats reduce their food intake in response to a systemic supply of calories from glucose. Diabetes. 2003;52:277–82.
  • Shafrir E, Gutman A. Psammomys obesus of the Jerusalem colony: a model for nutritionally induced, non-insulin-dependent diabetes. J Basic Clin Physiol Pharmacol. 1993;4:83–99.
  • Ziv E, Sahfrir E. Psamommys obesus: nutritionally induced NIDDM-syndrome on a “thrifty gene” background. In: Shafrir E, editor. Lessons from animal diabetes. London: Smith-Gordon; 1995. p. 285–300.
  • Gaamoussi F, Israili ZH, Lyoussi B. Hypoglycemic and hypolipidemic effects of an aqueous extract of Chamaerops humilis leaves in obese, hyperglycemic and hyperlipidemic Meriones shawi rats. Pak J Pharm Sci. 2010;23:212–19.
  • Aissaoui A, Zizi S, Israili ZH, Lyoussi B. Hypoglycemic and hypolipidemic effects of Coriandrum sativum L. In Meriones Shawi Rats. J Ethnopharmacol. 2011;137:652–61.
  • Tahraoui A, Israili Z, Lyoussi B. Hypoglycemic and hypolipidemic effects of aqueous extracts of Ajuga iva and centaurium erythreaeon a rodent model of metabolic syndrome. Nat Prod J. 2017;7:1–11.
  • Berrougui H, Ettaib A, Herrera Gonzalez MD. Alvarez de Sotomayor M, Bennani-Kabchi N, Hmamouchi M. Hypolipidemic and hypocholesterolemic effect of argan oil (Argania spinosa L.) in Meriones shawi rats. J Ethnopharmacol. 2003;89:15–18.
  • Berrada Y, Settaf A, Baddouri K, Cherrah A, Hassar M. [Experimental evidence of an antihypertensive and hypocholesterolemic effect of oil of argan, Argania sideroxylon]. Therapie. 2000;55:375–78.
  • Cacho J, Sevillano J, De Castro J, Herrera E, Ramos MP. Validation of simple indexes to assess insulin sensitivity during pregnancy in Wistar and Sprague-Dawley rats. Am J Physiol Endocrinol Metab. 2008;295:E1269–76.
  • Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med. 2002;8:731–37.
  • El-Bardai S, Wibo M, Hamaide MC, Lyoussi B, Quetin-Leclercq J, Morel N. Characterisation of marrubenol, a diterpene extracted from Marrubium vulgare, as an L-type calcium channel blocker. Br J Pharmacol. 2003;140:1211–16.
  • Krenek P, Hamaide MC, Morel N, Wibo M. A simple method for rapid separation of endothelial and smooth muscle mRNA reveals Na/K+ -ATPase alpha-subunit distribution in rat arteries. J Vasc Res. 2006;43:502–10.
  • Bertuglia S, Colantuoni A. Insulin-induced arteriolar dilation after tyrosine kinase and nitric oxide synthase inhibition in hamster cheek pouch microcirculation. J Vasc Res. 1998;35:250–56.
  • Walker AB, Dores J, Buckingham RE, Savage MW, Williams G. Impaired insulin-induced attenuation of noradrenaline-mediated vasoconstriction in insulin-resistant obese Zucker rats. Clin Sci (Lond). 1997;93:235–41.
  • Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P. Nitric oxide release accounts for insulin’s vascular effects in humans. J Clin Invest. 1994;94:2511–15.
  • Barnard RJ, Roberts CK, Varon SM, Berger JJ. Diet-induced insulin resistance precedes other aspects of the metabolic syndrome. J Appl Physiol. 1998;84:1311–15.
  • Donath MY, Gross DJ, Cerasi E, Kaiser N. Hyperglycemia-induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes. 1999;48:738–44.
  • Salonen JT, Lakka TA, Lakka HM, Valkonen VP, Everson SA, Kaplan GA. Hyperinsulinemia is associated with the incidence of hypertension and dyslipidemia in middle-aged men. Diabetes. 1998;47:270–75.
  • Bhanot S, McNeill JH. Insulin and hypertension: a causal relationship? Cardiovasc Res. 1996;31:212–21.
  • Reaven GM. Relationship between insulin resistance and hypertension. Diabetes Care. 1991;14(Suppl 4):33–38.
  • Reil TD, Barnard RJ, Kashyap VS, Roberts CK, Gelabert HA. Diet-induced changes in endothelial-dependent relaxation of the rat aorta. J Surg Res. 1999;85:96–100.
  • Hilzenrat N, Sikuler E, Yaari A, Maislos M. Hemodynamic characterization of the diabetic Psammomys obesus–an animal model of type II diabetes mellitus. Isr J Med Sci. 1996;32:1074–78.
  • Auguet M, Delaflotte S, Braquet P. Increased influence of endothelium in obese Zucker rat aorta. J Pharm Pharmacol. 1989;41:861–64.
  • Kamata K, Kanie N, Inose A. Mechanisms underlying attenuated contractile response of aortic rings to noradrenaline in fructose-fed mice. Eur J Pharmacol. 2001;428:241–49.
  • Laight DW, Anggard EE, Carrier MJ. Investigation of basal endothelial function in the obese Zucker rat in vitro. Gen Pharmacol. 2000;35:303–09.
  • Zoltowska M, St-Louis J, Ziv E, Sicotte B, Delvin EE, Levy E. Vascular responses to alpha-adrenergic stimulation and depolarization are enhanced in insulin-resistant and diabetic Psammomys obesus. Can J Physiol Pharmacol. 2003;81:704–10.
  • O’Brien SF, McKendrick JD, Radomski MW, Davidge ST, Russell JC. Vascular wall reactivity in conductance and resistance arteries: differential effects of insulin resistance. Can J Physiol Pharmacol. 1998;76:72–76.
  • McVeigh GE, Brennan GM, Johnston GD, McDermott BJ, McGrath LT, Henry WR, et al. Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1992;35:771–76.
  • Enderle MD, Benda N, Schmuelling RM, Haering HU, Pfohl M. Preserved endothelial function in IDDM patients, but not in NIDDM patients, compared with healthy subjects. Diabetes Care. 1998;21:271–77.
  • Kagota S, Yamaguchi Y, Nakamura K, Kunitomo M. Altered endothelium-dependent responsiveness in the aortas and renal arteries of Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model of non-insulin-dependent diabetes mellitus. Gen Pharmacol. 2000;34:201–09.
  • Matsumoto T, Wakabayashi K, Kobayashi T, Kamata K. Alterations in vascular endothelial function in the aorta and mesenteric artery in type II diabetic rats. Can J Physiol Pharmacol. 2004;82:175–82.
  • Miike T, Kunishiro K, Kanda M, Azukizawa S, Kurahashi K, Shirahase H. Impairment of endothelium-dependent ACh-induced relaxation in aorta of diabetic db/db mice-possible dysfunction of receptor and/or receptor-G protein coupling. Naunyn Schmiedebergs Arch Pharmacol. 2008;377:401–10.
  • Andrews TJ, Laight DW, Anggard EE, Carrier MJ. Investigation of endothelial hyperreactivity in the obese Zucker rat in-situ: reversal by vitamin E. J Pharm Pharmacol. 2000;52:83–86.
  • Williams SB, Cusco JA, Roddy MA, Johnstone MT, Creager MA. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1996;27:567–74.
  • Ghisdal P, Godfraind T, Morel N. Effect of nitro-L-arginine on electrical and mechanical responses to acetylcholine in the superior mesenteric artery from stroke-prone hypertensive rat. Br J Pharmacol. 1999;128:1513–23.
  • Baron AD. Hemodynamic actions of insulin. Am J Physiol. 1994;267:E187–202.
  • Montagnani M, Chen H, Barr VA, Quon MJ. Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser1179. J Biol Chem. 2001;276:30392–98.
  • Chaudhuri A, Kanjwal Y, Mohanty P, Rao S. Absence of insulin-induced vasodilation of internal carotid artery in type 2 diabetes. Metab Syndr Relat Disord. 2003;1:69–73.
  • Wong JM, Billiar TR. Regulation and function of inducible nitric oxide synthase during sepsis and acute inflammation. Adv Pharmacol. 1995;34:155–70.
  • Bullo M, Garcia-Lorda P, Megias I, Salas-Salvado J. Systemic inflammation, adipose tissue tumor necrosis factor, and leptin expression. Obes Res. 2003;11:525–31.
  • Torres SH, De Sanctis JB, De LBM, Hernandez N, Finol HJ. Inflammation and nitric oxide production in skeletal muscle of type 2 diabetic patients. J Endocrinol. 2004;181:419–27.
  • Bedard S, Marcotte B, Marette A. Cytokines modulate glucose transport in skeletal muscle by inducing the expression of inducible nitric oxide synthase. Biochem J. 1997;325(Pt 2):487–93.
  • Sugita H, Kaneki M, Tokunaga E, Sugita M, Koike C, Yasuhara S, Tompkins, R G., Martyn, J. A. Jeevendra., et al. Inducible nitric oxide synthase plays a role in LPS-induced hyperglycemia and insulin resistance. Am J Physiol Endocrinol Metab. 2002;282:E386–94.
  • Carvalho-Filho MA, Ueno M, Hirabara SM, Seabra AB, Carvalheira JBC, De Oliveira MG, Velloso, L A., Curi, R., Saad, M. J.A., et al. S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein Kinase B/Akt: a novel mechanism of insulin resistance. Diabetes. 2005;54:959–67.
  • Perreault M, Marette A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat Med. 2001;7:1138–43.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.