192
Views
10
CrossRef citations to date
0
Altmetric
Articles

Juglone as antihypertensive agent acts through multiple vascular mechanisms

, , &
Pages 335-344 | Received 05 Apr 2019, Accepted 07 Aug 2019, Published online: 15 Sep 2019

References

  • Dhalla NS, Temsah RM, Netticadan T. Role of oxidative stress in cardiovascular diseases. J Hypertens. 2000;18:655–73. doi:10.1097/00004872-200018060-00002.
  • Sugamura K, Keaney JF. Reactive oxygen species in cardiovascular disease. Free Radic Biol Med. 2011;51:978–92. doi:10.1016/j.freeradbiomed.2011.04.011.
  • Raedschelder K, Ansley DM, Chen DDY. The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacol Ther. 2012;133:230–55. doi:10.1016/j.pharmthera.2011.11.004.
  • Patwardhan B, Vaidya ADB, Chorghade M. Ayurveda and natural products drug discovery. Curr Sci. 2004;86:789–99.
  • Lahlou M. The success of natural products in drug discovery. Pharmacol Pharm. 2013;04:17–31. doi:10.4236/pp.2013.43A003.
  • Stroer WF. On the mechanism of the hypotensive action of the extract of Juglans regia L. Acta Physiol Pharmacol Neerl. 1986;5:28–39.
  • Perusquia M, Mendoza S, Bye R, Linares E, Mata R. Vasoactive effects of aqueous extracts from five Mexican medicinal plants on isolated rat aorta. J of Ethnopharmacol. 1995;46(1):63–69. doi:10.1016/0378-8741(95)01230-B.
  • Bhakuni D. Infections in systemic lupus erythematosus mimicking disease flare. Indian J Rheumatol. 2009;4:37. doi:10.1016/S0973-3698(10)60165-3.
  • Javadi S, Maham RV. Effect of hydroalcoholic extracts of inner seed paddle of walnut on blood pressure and plasma renin and aldosterone. URMIA Med J. 2013;24:11–16.
  • Ebrahimiyan H, Bahaoddini A, Mohammadi J, Mohammadiyan M. The effect of hydroalcoholic extract of Juglans regia L. leaf on blood pressure and its interaction with adrenergic system of male rats. Tehran Univ Med J TUMS Publ. 2016;73:895–99.
  • Bhatia K, Rahman S, Ali M, Raisuddin S. In vitro antioxidant activity of Juglans regia L. bark extract and its protective effect on cyclophosphamide-induced urotoxicity in mice. Redox Rep. 2006;11:273–79. doi:10.1179/135100006X155030.
  • Stickney J, Hoy P. Toxic action of black walnut. Trans Wis State Hort Soc. 1881;11:166–67.
  • Vogel JA, Reischauer C. About a new organic body in the fruit shells of Juglans regia. Arch Pharm (Weinheim). 1857;141:67–67.
  • TaS NG, Gokmen V. Phenolic compounds in natural and roasted nuts and their skins: a brief review. Curr Opin Food Sci. 2017;14:103–09. doi:10.1016/j.cofs.2017.03.001.
  • Cosmulescu S, Trandafir I, Nour V. Chemical composition and antioxidant activity of walnut pollen samples. Not Bot Horti Agrobot Cluj-Napoca. 2015;43(2):361–65. doi:10.15835/nbha43210090.
  • Dantas B, Ribeiro T, Assis V. Vasorelaxation induced by a new naphthoquinone-oxime is mediated by NO-sGC-cGMP pathway. Molecules. 2004;19:9773–85. doi:10.3390/molecules19079773.
  • Martin S, Andriambeloson E, Takeda K, Andriantsitohaina R. Red wine polyphenols increase calcium in bovine aortic endothelial cells: a basis to elucidate signalling pathways leading to nitric oxide production. Br J Pharmacol. 2002;135:1579–87. doi:10.1038/sj.bjp.0704505.
  • Han X, Shen T, Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci. 2007;8:950–88. doi:10.3390/i8090950.
  • Taqvi SIH, Shah AJ, Gilani AH. Blood pressure lowering and vasomodulator effects of piperine. J Cardiovasc Pharmacol. 2008;52:452–58. doi:10.1097/FJC.0b013e31818a8907.
  • Iozzi D, Schubert R, Kalenchuk VU. Quercetin relaxes rat tail main artery partlyviaa PKG-mediated stimulation of KCa1.1 channels. Acta Physiol. 2013;208:329–39. doi:10.1111/apha.12083.
  • Mokhtar SS, Rasool AH. Plant-derived foods containing polyphenols with endothelial protective effects. Int Food Res J. 2017;24(2):471–82.
  • Jakopic J, Veberic R, Stampar F. Extraction of phenolic compounds from green walnut fruits in different solvents. Acta Agric Slov. 2009;93:11–15. doi:10.2478/v10014-009-0002-4.
  • Auyong TK, Westfall RBA. Pharmacological aspects of juglone. Toxicon. 1963;1:235–39. doi:10.1016/0041-0101(63)90005-9.
  • Soderquist CJ. Juglone and allelopathy. J Chem Educ. 1973;50:782. doi:10.1021/ed050p782.
  • Clark AM, Jurgens TM, Hufford CD. Antimicrobial activity of juglone. Phytother Res. 1990;4:11–14. doi:10.1002/(ISSN)1099-1573.
  • Chobot V, Hadacek F. Milieu-dependent pro- and antioxidant activity of juglone may explain linear and nonlinear effects on seedling development. J Chem Ecol. 2009;35:383–90. doi:10.1007/s10886-009-9609-5.
  • Jin R. A DFT study on the radical scavenging activity of juglone and its derivatives. J Mol Struct Theochem. 2010;939(1):9–13. doi:10.1016/j.theochem.2009.09.024.
  • Wang P, Gao C, Wang W. Juglone induces apoptosis and autophagy via modulation of mitogen-activated protein kinase pathways in human hepatocellular carcinoma cells. Food Chem Toxicol. 2018;116:40–50. doi:10.1016/j.fct.2018.04.004.
  • National Research Council (NRC). Guide for the care and use of laboratory animals. Washington, DC: National Academy Press; 1996.
  • Shah AJ, Gilani AH. Blood pressure lowering and vascular modulator effects of Acorus calamus extract are mediated through multiple path ways. Cardiovasc Pharmacol. 2009;54:38–46. doi:10.1097/FJC.0b013e3181aa5781.
  • Qayyum R, Qamar HMD, Khan S. Mechanisms underlying the antihypertensive properties of Urtica dioica. J Transl Med. 2016;14:254–67. doi:10.1186/s12967-016-1017-3.
  • Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;299:373–76. doi:10.1038/288373a0.
  • Chan SSK, Choi AOK, Jones RL, Lin G. Mechanisms underlying the vasorelaxing effects of butylidenephthalide, an active constituent of Ligusticum chuanxiong, in rat isolated aorta. Eur J Pharmacol. 2006;537:111–17. doi:10.1016/j.ejphar.2006.03.015.
  • Qamar HM, Qayyum R, Salma U, Khan S, Khan T, Shah AJ. Vascular mechanisms underlying the hypotensive effect of Rumex acetosa. Pharm Biol. 2018;56:225–34. doi:10.1080/13880209.2018.1446031.
  • Faraci FM, Heistad DD. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev. 1998;78:53–97.
  • Yam MF, Tan CS, Ahmad M, Ruan S. Vasorelaxant action of the chloroform fraction of Orthosiphon stamineus via NO/cGMP pathway, potassium and calcium channels. Am J Chin Med. 2016;44:1413–39. doi:10.1142/S0192415X16500798.
  • Sonkusare S, Palade PT, Marsh JD. Vascular calcium channels and high blood pressure: pathophysiology and therapeutic implications. Vascul Pharmacol. 2006;44:131–42. doi:10.1016/j.vph.2005.10.005.
  • Senejoux F, Girard C, Kerram P. Mechanisms of vasorelaxation induced by Ziziphora clinopodioides Lam. (Lamiaceae) extract in rat thoracic aorta. J Ethnopharmacol. 2010;132:268–73. doi:10.1016/j.jep.2010.08.028.
  • Khan S, Khan T, Shah AJ. Total phenolic and flavonoid contents and antihypertensive effect of the crude extract and fractions of Calamintha vulgaris. Phytomedicine. 2018;47:174–83. doi:10.1016/j.phymed.2018.04.046.
  • Cole WC, Clement-Chomienne O, Aiello EA. Regulation of 4-aminopyridine-sensitive, delayed rectifier K+ channels in vascular smooth muscle by phosphorylation. Biochem Cell Biol. 1996;74:439–47.
  • Onsa-ard A, Shimbhu D, Tocharus J, Sutheerawattananonda M, Pantan R, Tocharus C. Hypotensive and vasorelaxant effects of sericin-derived oligopeptides in rats. ISRN Pharmacol. 2013;1:1–8. doi:10.1155/2013/717529.
  • Niu LG, Zhang MS, Liu Y, Xue WX, Liu DB, Zhang J. Vasorelaxant effect of taurine is diminished by tetraethylammonium in rat isolated arteries. Eur J Pharmacol. 2008;580(1–2):169–74. doi:10.1016/j.ejphar.2007.10.039.
  • Moncada S, Higgs EA. Molecular mechanisms and therapeutic strategies related to nitric oxide. Faseb J. 1995;9:1319–30. doi:10.1096/fasebj.9.13.7557022.
  • Arunlakshana O, Schild HO. Some quantitative uses of drug antagonists. Br J Pharmacol Chemother. 1959;14:48–58. doi:10.1111/j.1476-5381.1959.tb00928.x.
  • Clozel JP, Danchin N, Genton P, Thomas JL, Cherrier F. Effects of propranolol and of verapamil on heart rate and blood pressure in hyperthyroidism. Clin Pharmacol Ther. 1984;36:64–69. doi:10.1038/clpt.1984.140.
  • Salma U, Khan T, Shah AJ. Antihypertensive effect of the methanolic extract from Eruca sativa Mill., (Brassicaceae) in rats: muscarinic receptor-linked vasorelaxant and cardiotonic effects. J Ethnopharmacol. 2018;224:409–20. doi:10.1016/j.jep.2018.06.013.
  • Jafee EA. Physiologic functions of normal endothelial cells. Ann N Y Acad Sci. 1985;454:279–91.
  • Lo YC, Tsou HH, Lin RJ. Endothelium-dependent and -independent vasorelaxation by a theophylline derivative MCPT: roles of cyclic nucleotides, potassium channel opening and phosphodiesterase inhibition. Life Sci. 2005;76:931–44.
  • Moro MA, Russel RJ. cGMP mediates the vascular and platelet actions of nitric oxide: confirmation using an inhibitor of the soluble guanylyl cyclase. Proc Natl Acad Sci. 1996; 93:1480–85. doi:10.1073/pnas.93.4.1480.
  • Prins BA, Hu RM, Nazario B. Prostaglandin E2 and prostacyclin inhibit the production and secretion of endothelin from cultured endothelial cells. J Biol Chem. 1994;269:11938–44.
  • Roghani-Dehkordi F, Roghani M. The vasorelaxant effect of simvastatin in isolated aorta from diabetic rats. ARYA Atheroscler. 2016;12(2):104–08.
  • Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829–37, 837a–837d. doi:10.1093/eurheartj/ehr304.
  • Gurney AM, Allam M. Inhibition of calcium release from the sarcoplasmic reticulum of rabbit aorta by hydralazine. Br J Pharmacol. 1995;114:238–44. doi:10.1111/j.1476-5381.1995.tb14931.x.
  • Karaki H, Ozaki H, Hori M. Calcium movements, distribution, and functions in smooth muscle. Pharmacol Rev. 1997;49:157–30.
  • Bolton TB. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev. 1979;59:606–18. doi:10.1152/physrev.1979.59.3.606.
  • Wu X, Wang Y, Cheng J, Zhao Y. Calcium channel blocking activity of calycosin, a major active component of Astragali radix, on rat aorta1. Acta Pharmacol Sin. 2006;27:1007–12. doi:10.1111/j.1745-7254.2006.00349.x.
  • Chen. H-C, Bouchie JL. Role of the angiotensin AT1 receptor in rat aortic and cardiac PAI-1 gene expression. Arterioscler Thromb Vasc Biol. 2000;20:2297–02. doi:10.1161/01.atv.20.10.2297.
  • Montezano AC, Nguyen D, Cat A, Rios FJ, Touyz RM. Angiotensin II and vascular injury. Curr Hypertens Rep. 2014;16:431. doi:10.1007/s11906-014-0431-2.
  • Do KH, Kim MS, Kim JH. Angiotensin II-induced aortic ring constriction is mediated by phosphatidylinositol 3-kinase/L-type calcium channel signaling pathway. Exp Mol Med. 2009;41:569–76. doi:10.3858/emm.2009.41.8.062.
  • Touyz RM. The role of angiotensin II in regulating vascular structural and functional changes in hypertension. Curr Hypertens Rep. 2003;5:155–64.
  • Zhu XM, Fang LH, Li YJ, Du GH. Endothelium-dependent and -independent relaxation induced by pinocembrin in rat aortic rings. Vascul Pharmacol. 2007;46:160–65. doi:10.1016/j.vph.2006.09.003.
  • Novakovic A, Bukarica LG, Kanjuh V, Heinle H. Potassium channels-mediated vasorelaxation of rat aorta induced by resveratrol. Basic Clin Pharmacol Toxicol. 2006;99:360–64. doi:10.1111/pto.2006.99.issue-5.
  • Tyml K, Song H, Munoz P, Ouellette Y. Evidence for K± channels involvement in capillary sensing and for bidirectionality in capillary communication. Microvasc Res. 1997;53(3):245–53.
  • Ellis A, Pannirselvam M, Anderson TJ, Triggle CR. Catalase has negligible inhibitory effects on endothelium-dependent relaxations in mouse isolated aorta and small mesenteric artery. Br J Pharmacol. 2003;140(7):1193–200. doi:10.1038/sj.bjp.0705549.
  • Uruno T, Matsumoto R, Okushita K, Sunagane N, Kubota K. Possible mechanisms of inhibitory action of protamine on contractile activity of rat aorta. J Pharm Pharmacol. 1985;37(7):476–80. doi:10.1111/j.2042-7158.1985.tb03043.x.
  • Fauaz G, Feres T, Borges AC, Paiva TB. Alpha-2 adrenoceptors are present in rat aorta smooth muscle cells, and their action is mediated by ATP-sensitive K(±) channels. Br J Pharmacol. 2000;131(4):788–94. doi:10.1038/sj.bjp.0703630.
  • Ghosh D, Syed AU, Prada MP. Calcium channels in vascular smooth muscle. Adv Pharmacol. 2016;78:49–87.
  • Hill K, Fiorito S, Taddeo VA, Schulze A, Leonhardt M, Epifano F, Plumbagin GS. Juglone, and boropinal as novel TRPA1 agonists. J Nat Prod. 2016;79(4):697–03. doi:10.1021/acs.jnatprod.5b00396.
  • Earley S, Heppner TJ, Nelson MT, Brayden JE. TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circ Res. 2005;97(12):1270–79. doi:10.1161/01.RES.0000194321.60300.d6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.