147
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Exercise training ameliorates adrenergic control in spontaneously hypertensive rats

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 101-111 | Received 25 Apr 2020, Accepted 18 Aug 2020, Published online: 14 Sep 2020

References

  • Osborn JW, Jacob F, Guzman P. A neural set point for the long-term control of arterial pressure: beyond the arterial baroreceptor reflex. Am J Physiol Regul Integr Comp Physiol. 2005;288:R846–55. doi: 10.1152/ajpregu.00474.2004.
  • Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006; 7:335–46. doi: 10.1038/nrn1902.
  • Berg T, Walaas SI, Roberg BA, Huynh TT, Jensen J. Plasma norepinephrine in hypertensive rats reflects α(2)-adrenoceptor release control only when re-uptake is inhibited. Front Neurol. 2012;3:160. doi: 10.3389/fneur.2012.00160.
  • Gavras I, Manolis AJ, Gavras H. The α2-adrenergic receptors in hypertension and heart failure: experimental and clinical studies. J Hypertens. 2001;19:2115–24. doi: 10.1097/00004872-200112000-00001.
  • Hieble JP, Bondinell WE, Ruffolo Jr. RR. Alpha- and beta-adrenoceptors: from the gene to the clinic. Molecular biology and adrenoceptor subclassification. J Med Chem. 1995;38:3415–44. doi: 10.1021/jm00018a001.
  • Jarajapu YPR, Coats P, Mcgrath JC, Macdonald A, Hillier C. Increased α1- and α2- adrenoceptor-mediated contractile responses of human skeletal muscle resistance arteries in chronic limb ischemia. Cardiovasc Res. 2001;49:218–25. doi: 10.1016/S0008-6363(00)00224-8.
  • Berg T, Jensen J. Tyramine reveals failing α-2 adrenoceptor control of catecholamine release and total peripheral vascular resistance in hypertensive rats. Front Neurol. 2013;4:19. doi: 10.3389/fneur.2013.00019.
  • Brum PC, Da Silva GJJ, Moreira ED, Ida F, Negrão CE, Krieger EM. Exercise training increases baroreceptor gain sensitivity in normal and hypertensive rats. Hypertension. 2000;36:1018–22. doi: 10.1161/01.hyp.36.6.1018.
  • Zucker IH, Patel KP, Schultz HD, Li YF, Wang W, Pliquett RU. Exercise training and sympathetic regulation in experimental heart failure. Exerc Sport Sci Rev. 2004;32:107–11. doi: 10.1097/00003677-200407000-00006.
  • Roveda F, Middlekauff HR, Rondon MU, Reis SF, Souza M, Nastari L, Barretto AC, Krieger EM, Negrão CE. The effects of exercise training on sympathetic neural activation in advanced heart failure: A randomized controlled trial. J Am Coll Cardiol. 2003;42:854–60. doi: 10.1016/s0735-1097(03)00831-3.
  • Kramer JM, Beatty JA, Plowey ED, Waldrop TG. Exercise and hypertension: A model for central neural plasticity. Clin Exp Pharmacol Physiol. 2002;29:122–6. doi: 10.1046/j.1440-1681.2002.03610.x.
  • Thijssen DH, Maiorana AJ, O’Driscoll G, Cable NT, Hopman MT, Green DJ. Impact of inactivity and exercise on the vasculature in humans. Eur J Appl Physiol. 2010;108:845–75. doi: 10.1007/s00421-009-1260-x.
  • Zoccali C, Mallamaci F, Parlongo S, Cutrupi S, Benedetto FA, Tripepi G, Bonanno G, Rapisarda F, Fatuzzo P, Seminara G, et al. Plasma norepinephrine predicts survival and incident cardiovascular event in patients with end-stage renal disease. Circulation. 2002;105:1354–59. doi: 10.1161/hc1102.105261.
  • Seo TB, Han LS, Yoon JH, Hong KE, Yoon SJ, Namgung U. Involvement of Cdc2 in axonal regeneration enhanced by exercise training in rats. Med Sci Sports Exerc. 2006;38:1267–76. doi: 10.1249/01.mss.0000227311.00976.68.
  • Gobatto CA, De Mello MA, Sibuya CY, De Azevedo JR, Dos Santos LA, Kokubun E. Maximal lactate steady state in rats submitted to swimming exercise. Comp Biochem Physiol A Mol Integr Physiol. 2001;130:21–7. doi: 10.1016/s1095-6433(01)00362-2.
  • Mizuno M, Kawada T, Kamiya A, Miyamoto T, Shimizu S, Shishido T, Smith SA, Sugimachi M. Exercise training augments the dynamic heart rate response to vagal but not sympathetic stimulation in rats. Am J Physiol Regul Integr. 2011;300:969–77. doi: 10.1152/ajpregu.00768.2010.
  • Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84:482–92. doi: 10.1161/01.cir.84.2.482.
  • Rubini R, Porta A, Baselli G, Cerutti S, Paro M. Power spectrum analysis of cardiovascular variability monitored by telemetry in conscious unrestrained rats. J Auton Nerv Syst. 1993;45:181–90. doi: 10.1016/0165-1838(93)90050-5.
  • Tezini GC, Silveira LC, Villa-Clé PG, Jacinto CP, Di Sacco TH, Souza HC. The effect of the aerobic physical training on cardiac autonomic control of rats submitted to ovariectomy. Menopause. 2009;16:110–6. doi: 10.1097/GME.0b013e318182d352.
  • Takauchi Y, Yamazaki T, Akiyama T. Tyramine-induced noradrenaline efflux from in situ cardiac sympathetic nerve ending in cats. Acta Physiol Scand. 2000;168:287–93. doi: 10.1046/j.1365-201x.2000.00664.x.
  • Goldberger JJ. Sympathovagal balance: how should we measure it? Am J Physiol. 1999;276:H1273–80. doi: 10.1152/ajpheart.1999.276.4.H1273.
  • Véras-Silva A, Mattos K, Gava N, Brum PC, Negrão CE, Krieger EM. Low intensity exercise training decreases cardiac output and hypertension in spontaneously hypertensive rats. Am J Physiol. 1997;273:2627–31. doi: 10.1152/ajpheart.1997.273.6.H2627.
  • Leosco D, Rengo G, Iaccarino G, Filippelli A, Lymperopoulos A, Zincarelli C, Fortunato F, Golino L, Marchese M, Esposito G, et al. Exercise and β-blocker treatment ameliorateage-impaired β-adrenergic receptor signaling and enhance cardiac responsiveness to adrenergic stimulation. Am J Physiol Heart Circ Physiol. 2007;293:H1596–H1603.doi: 10.1152/ajpheart.00308.2007
  • Jendzjowsky NG, DeLorey DS. Short-term exercise training augments alpha2-adrenoreceptor-mediated sympathetic vasoconstriction in resting and contracting skeletal muscle. J. Physiol. 2013;591:5221–33.
  • Donato AJ, Lesniewski LA, Delp MD. Ageing and exercise training alter adrenergic vasomotor responses of rat skeletal muscle arterioles. J Physiol. 2007;579:115–25. doi: 10.1113/jphysiol.2006.120055.
  • Mortensen SP, Nyberg M, Gliemann L, Thaning P, Saltin B, Hellsten Y. Exercise training modulates functional sympatholysis and α-adrenergic vasoconstrictor responsiveness in hypertensive and normotensive individuals. J Physiol. 2014;592:3063–73. doi: 10.1113/jphysiol.2014.273722.
  • Jendzjowsky NG, DeLorey DS. Short-term exercise training augments sympathetic vasoconstrictor responsiveness and endothelium-dependent vasodilation in resting skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2012;303:R332–R339.
  • Jendzjowsky NG, Just TP, DeLorey DS. Exercise training augments neuronal nitric oxide synthase-mediated inhibition of sympathetic vasoconstriction in contracting skeletal muscle of rats. J Physiol. 2014;592:4789–4802.
  • Mizuno M, Iwamoto GA, Vongpatanasin W, Mitchell JH, Smith SA. Exercise training improves functional sympatholysis in spontaneously hypertensive rats through a nitric oxide-dependent mechanism. Am J Physiol Heart Circ Physiol. 2014;307:H242–H251.
  • Berg T, Piercey BW, Jensen J. Role of beta1-3-adrenoceptors in blood pressure control at rest and during tyramine-induced norepinephrine release in spontaneously hypertensive rats. Hypertension. 2010;55:1224–30. doi: 10.1161/HYPERTENSIONAHA.109.149286.
  • Just TP, Cooper IR, DeLorey DS. Sympathetic Vasoconstriction in Skeletal Muscle: Adaptations to Exercise Training. Exerc Sport Sci Rev. 2016;44:137–43. doi: 10.1249/JES.0000000000000085.
  • Zugck C, Lossnitzer D, Backs J, Kristen A, Kinscherf R, Haass M. Increased cardiac norepinephrine release in spontaneously hypertensive rats: role of presynaptic alpha-2A adrenoceptors. J Hypertens. 2003;21:1363–69.
  • Chakravarthy MV, Joyner MJ, Booth FW. An obligation for primary care physicians to prescribe physical activity to sedentary patients to reduce the risk of chronic health conditions. Mayo Clin Proc. 2002;77:165–73. doi: 10.4065/77.2.165.
  • Zago AS, Zanesco A. Nitric oxide: cardiovascular disease and physical exercise. Arq Bras Cardiol. 2006;81:264–70. doi: 10.1590/S0066-782X2006001900029.
  • Dessy C, Moniotte S, Ghisdal P, Havaux X, Noirhomme P, Balligand JL. Endothelial beta3-adrenoceptors mediate vasorelaxation of human coronary microarteries through nitric oxide and endothelium-dependent hyperpolarization. Circulation. 2004;110:948–54. doi: 10.1161/01.CIR.0000139331.85766.AF.
  • Patil RD, Di Carlo SE, Collins HL. Acute exercise enhances nitric oxide modulation of vascular response to phenylephrine. Am J Physiol Heart Circ Physiol. 1993;265:H1184–88. doi: 10.1152/ajpheart.1993.265.4.H1184.
  • Pohl U, Herlan K, Huang A, Bassenge E. EDRF-mediated shear-induced dilatation opposes myogenic vasoconstriction in small rabbit arteries. Am J Physiol Heart Circ Physiol. 1991;261:H2016–23. doi: 10.1152/ajpheart.1991.261.6.H2016.
  • Krieger EM, Brum PC, Negrao CE. State-of-the-Art lecture: influence of exercise training on neurogenic control of blood pressure in spontaneously hypertensive rats. Hypertension. 1999;34:720–3. doi: 10.1161/01.hyp.34.4.720.
  • Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014;11:1804–14. doi: 10.1161/CIRCRESAHA.114.302524.
  • Agarwal D, Elks CM, Reed SD, Mariappan N, Majid DS, Francis J. Chronic exercise preserves renal structure and hemodynamics in spontaneously hypertensive rats. Antioxid Redox Signal. 2012;2:139–152. doi: 10.1089/ars.2011.3967.
  • Laterza MC, Rondon MU, Negrão CE. The anti-hypertensive effect of exercise. Rev Bras Hipertens. 2007;2:104–11.
  • Medeiros A, Oliveira EM, Gianolla RM, Casarini DE, Negrão CE, Brum PC. Swimming training increases cardiac vagal activity and induces cardiac hypertrophy in rats. Braz J Med Biol Res. 2004;37:1909–17. doi: 10.1590/s0100-879x2004001200018.
  • Vanderlei LC, Pastre CM, Hoshi RA, Carvalho TD, Godoy MF. Basic notions of heart rate variability and its clinical applicability. Rev Bras Cir Cardiovasc. 2009;2:205–17. doi: 10.1590/S0102-76382009000200018.
  • Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Heart Rate Variability Standards of Measurement, Physiological Interpretation, and Clinical Use. Circulation. 1996;93:1043–65. doi: 10.1161/01.CIR.93.5.1043.
  • Cambria E, Schuller B, Xia Y, Havasi C. New Avenues in Opinion Mining and Sentiment Analysis. IEEE Intell Syst. 2013;28:15–21. doi: 10.1109/MIS.2013.30.
  • Nolan J, Batin PD, Andrews R, Lindsay SJ, Brooksby P, Mullen M, Baig W, Flapan AD, Cowley A, Prescott RJ, et al. Prospective study of heart rate variability and mortality in chronic heart failure: results of the United Kingdom Heart Failure Evaluation and Assessment of Risk Trial. Circulation. 1998;98:1510–16. doi: 10.1161/01.cir.98.15.1510.
  • Xie GL, Wang J, Zhou Y, Xu H, Sun JH, Yang SR. Association of High Blood Pressure with Heart Rate Variability in Children. Iran J Pediatr. 2013;23:37–44.
  • Stauss HM. Identification of blood pressure control mechanisms by power spectral analysis. Clin Exp Pharmacol Physiol. 2007;34:362–8. doi: 10.1109/TBME.2009.2016845.
  • Japundzic N, Grichois ML, Zitoun P, Laude, D, Elghozi JL. Spectral analysis of blood pressure and heart rate in conscious rats: effects of autonomic blockers. J Auton New Syst. 1990;30:91–100. doi.org/10.1016/0165-1838(90)90132-3.
  • Zhang R, Iwasaki K, Zuckerman JH, Behbehani K, Crandall CG, Levine BD. Mechanism of blood pressure and R–R variability: insights from ganglion blockade in humans. J Physiol. 2002;543:337–48. doi:10.1113/jphysiol.2001.013398.
  • Lai HY, Yang CC, Huang FY, Lee Y, Kuo YL, Kuo TB. Respiratory-related arterial pressure variability as an indicator of graded blood loss: involvement of the autonomic nervous system. Clin Sci (Lond). 2003;105:491–497. doi: 10.1042/CS20030080.
  • Yoshimoto T, Eguchi K, Sakurai H, Ohmichi Y, Hashimoto T, Ohmichi M, Morimoto A, Yamaguchi Y, Ushida T, Iwase S, et al. Frequency components of systolic blood pressure variability reflect vasomotor and cardiac sympathetic functions in conscious rats. J Physiol Sci. 2011;61:373–83. doi.org/10.1007/s12576-011-0158-7.
  • Haider AW, Larson MG, Franklin SS, Levy D. Systolic blood pressure, diastolic blood pressure, and pulse pressure as predictors of risk for congestive heart failure in the Framingham Heart Study. Ann Intern Med. 2003;138;1:10–6. doi:10.7326/0003-4819-138-1-200301070-00006.
  • Goto S, Ohara M, Osaka N, Fujikawa T, Kohata Y, Nagaike H, Fukase A, Kushima H, Hiromura M, Yamamoto T, et al. Associations of Glucose and Blood Pressure Variability with Cardiac Diastolic Function in Patients with Type 2 Diabetes Mellitus and Hypertension: A Retrospective Observational Study. Showa University j med sci. doi:2019;31:139–49. 10.15369/sujms.31.139.
  • Pagani M, Montano N, Porta A, Malliani A, Abboud FM, Birkett C, Somers VK. Relationship between spectral components of cardiovascular variabilities and direct measures of muscle sympathetic nerve activity in humans. Circulation. 1997;95:1441–8. doi:10.1161/01.cir.95.6.1441.
  • Aletti F, Bassani T, Lucini D, Pagani M, Baselli G. Multivariate decomposition of arterial blood pressure variability for the assessment of arterial control of circulation IEEE Trans Biomed Eng. 2009;56:1781–90. doi 10.1109/TBME.2009.2016845.
  • Barcellos FC, Del Vecchio FB, Reges A, Mielke G, Santos IS, Umpierre D, Bohlke M, Hallal PC. Effects of exercise on kidney function among non-diabetic patients with hypertension and renal disease: randomized controlled trial. BMC Nephrology. 2012;13:90. doi: 10.1186/1471-2369-13-90.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.