130
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Circulating circular RNAs as biomarkers for the diagnosis of essential hypertension with carotid plaque

, , , , , , & show all
Pages 601-609 | Received 23 May 2022, Accepted 02 Jun 2022, Published online: 05 Jul 2022

References

  • Cohuet G, Struijker-Boudier H. 2006. Mechanisms of target organ damage caused by hypertension: therapeutic potential. Pharmacol Ther. 111(1):81–98. doi:10.1016/j.pharmthera.2005.09.002.
  • Sillesen H, Sartori S, Sandholt B, Baber U, Mehran R, Fuster V. 2018. Carotid plaque thickness and carotid plaque burden predict future cardiovascular events in asymptomatic adult Americans. Eur Heart J Cardiovasc Imaging. 19(9):1042–50. doi:10.1093/ehjci/jex239.
  • Chen LL. 2020. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 21(8):475–90. doi:10.1038/s41580-020-0243-y.
  • Lu Y, Li Z, Lin C, Zhang J, Shen Z. 2021. Translation role of circRNAs in cancers. J Clin Lab Anal. 35(7):e23866. doi:10.1002/jcla.23866.
  • Li Z, Ruan Y, Zhang H, Shen Y, Li T, Xiao B. 2019. Tumor-suppressive circular RNAs: mechanisms underlying their suppression of tumor occurrence and use as therapeutic targets. Cancer Sci. 110(12):3630–38. doi:10.1111/cas.14211.
  • Zhou WY, Cai ZR, Liu J, Wang DS, Ju HQ, Xu RH. 2020. Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer. 19(1):172. doi:10.1186/s12943-020-01286-3.
  • Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. 2011. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 146(3):353–58. doi:10.1016/j.cell.2011.07.014.
  • Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141–57. doi:10.1261/rna.035667.112.
  • Wu N, Qadir J, Yang BB. 2022. CircRNA perspective: new strategies for RNA therapy. Trends Mol Med. 28(4):343–44. doi:10.1016/j.molmed.2022.02.002.
  • Chen W, Yu F, Di M, Li M, Chen Y, Zhang Y, Liu X, Huang X, Zhang M. MicroRNA-124-3p inhibits collagen synthesis in atherosclerotic plaques by targeting prolyl 4-hydroxylase subunit alpha-1 (P4HA1) in vascular smooth muscle cells. Atherosclerosis. 2018;277:98–107. doi:10.1016/j.atherosclerosis.2018.08.034.
  • Bao H, Li HP, Shi Q, Huang K, Chen XH, Chen YX, Han Y, Xiao Q, Yao QP, Qi YX. Lamin A/C negatively regulated by miR-124-3p modulates apoptosis of vascular smooth muscle cells during cyclic stretch application in rats. Acta Physiol (Oxf). 2020;228(3):e13374. doi:10.1111/apha.13374.
  • Ye C, Tong Y, Wu N, Wan GW, Zheng F, Chen JY, Lei JZ, Zhou H, Chen AD, Wang JJ, et al. Inhibition of miR-135a-5p attenuates vascular smooth muscle cell proliferation and vascular remodeling in hypertensive rats. Acta Pharmacol Sin. 2021;42(11):1798–807. doi:10.1038/s41401-020-00608-x.
  • Bao X, Zheng S, Mao S, Gu T, Liu S, Sun J, and Zhang L. A potential risk factor of essential hypertension in case-control study: circular RNA hsa_circ_0037911. Biochem Biophys Res Commun. 2018;498(4):789–94. doi:10.1016/j.bbrc.2018.03.059.
  • Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the american college of cardiology/American heart association task force on clinical practice guidelines. Hypertension. 2018;71(6):e13–e115. doi:10.1161/HYP.0000000000000065.
  • Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N, Csiba L, Desvarieux M, Ebrahim S, Fatar M, et al. Mannheim carotid intima-media thickness consensus (2004-2006). an update on behalf of the advisory board of the 3rd and 4th watching the risk symposium, 13th and 15th European stroke conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc Dis. 2007;23(1):75–80. doi:10.1159/000097034.
  • John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. 2004. Human MicroRNA targets. PLoS Biol. 2(11):e363. doi:10.1371/journal.pbio.0020363.
  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. doi:10.1101/gr.1239303.
  • Tokar T, Pastrello C, Rossos AEM, Abovsky M, Hauschild AC, Tsay M, Lu R, Jurisica I. mirDIP 4.1-integrative database of human microRNA target predictions. Nucleic Acids Res. 2018;46(D1):D360–D70. doi:10.1093/nar/gkx1144.
  • Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, Imamichi T, Chang W. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. [cited 2022 Mar 23]. Epub ahead of print. doi:10.1093/nar/gkac194.
  • Perrone-Filardi P, Coca A, Galderisi M, Paolillo S, Alpendurada F, de Simone G, Donal E, Kahan T, Mancia G, Redon J, et al. Non-invasive cardiovascular imaging for evaluating subclinical target organ damage in hypertensive patients: a consensus paper from the European association of cardiovascular imaging (EACVI), the European society of Cardiology council on hypertension, and the European society of hypertension (ESH). Eur Heart J Cardiovasc Imaging. 2017;18(9):945–60. doi:10.1093/ehjci/jex094.
  • Piskorz D. 2020. Hypertensive mediated organ damage and hypertension management. how to assess Beneficial effects of antihypertensive treatments? High Blood Press Cardiovasc Prev. 27(1):9–17. doi:10.1007/s40292-020-00361-6.
  • Song P, Fang Z, Wang H, Cai Y, Rahimi K, Zhu Y, Fowkes FGR, Fowkes FJI, Rudan I. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: a systematic review, meta-analysis, and modelling study. Lancet Glob Health. 2020;8(5):e721–e9. doi:10.1016/S2214-109X(20)30117-0.
  • Chen X, Zhou M, Yant L, Huang C. Circular RNA in disease: basic properties and biomedical relevance. Wiley Interdiscip Rev RNA. 2022;e1723. doi:10.1002/wrna.1723.
  • Fasolo F, Di Gregoli K, Maegdefessel L, Johnson JL. 2019. Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovasc Res. 115(12):1732–56. doi:10.1093/cvr/cvz203
  • Peng W, Li S, Chen S, Yang J, Sun Z. Hsa_circ_0003204 knockdown weakens Ox-LDL-Induced cell injury by regulating miR-188-3p/TRPC6 axis in human carotid artery endothelial cells and THP-1 cells. Front Cardiovasc Med. 2021;8:731890. doi:10.3389/fcvm.2021.731890.
  • Luo L, Wang Y, Hu P, Wu J. Long non-coding RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) promotes hypertension by modulating the Hsa-miR-124-3p/nuclear receptor subfamily 3, group C, member 2 (NR3C2) and Hsa-miR-135a-5p/NR3C2 axis. Med Sci Monit. 2020;26:e920478. doi:10.12659/MSM.920478.
  • Wen G, Zhou T, Gu W. 2021. The potential of using blood circular RNA as liquid biopsy biomarker for human diseases. Protein Cell. 12(12):911–46. doi:10.1007/s13238-020-00799-3.
  • Liu Y, Li Y, Zang J, Zhang T, Li Y, Tan Z, Ma D, Zhang T, Wang S, Zhang Y, et al. CircOGDH is a penumbra biomarker and therapeutic target in acute ischemic stroke. Circ Res. 2022;130(6):907–24. doi:10.1161/CIRCRESAHA.121.319412.
  • Zuo L, Zhang L, Zu J, Wang Z, Han B, Chen B, Cheng M, Ju M, Li M, Shu G, et al. Circulating circular RNAs as biomarkers for the diagnosis and prediction of outcomes in acute ischemic stroke. Stroke. 2020;51(1):319–23. doi:10.1161/STROKEAHA.119.027348.
  • Wang L, Shen C, Wang Y, Zou T, Zhu H, Lu X, Li L, Yang B, Chen J, Chen S, et al. Identification of circular RNA Hsa_circ_0001879 and Hsa_circ_0004104 as novel biomarkers for coronary artery disease. Atherosclerosis. 2019;286:88–96. doi:10.3389/fcell.2021.652032.
  • Yuan P, Wu WH, Gong SG, Jiang R, Zhao QH, Pudasaini B, Sun YY, Li JL, Liu JM, Wang L, et al. Impact of circGSAP in peripheral blood mononuclear cells on idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2021;203(12):1579–83. doi:10.1164/rccm.202005-2052LE.
  • Bauer M, Caviezel S, Teynor A, Erbel R, Mahabadi AA, Schmidt-Trucksass A. Carotid intima-media thickness as a biomarker of subclinical atherosclerosis. Swiss Med Wkly. 2012;142:w13705. doi:10.4414/smw.2012.13705.
  • Takiuchi S, Kamide K, Miwa Y, Tomiyama M, Yoshii M, Matayoshi T, Horio T, Kawano Y. Diagnostic value of carotid intima-media thickness and plaque score for predicting target organ damage in patients with essential hypertension. J Hum Hypertens. 2004;18(1):17–23. doi:10.1038/sj.jhh.1001628.
  • Willeit P, Tschiderer L, Allara E, Reuber K, Seekircher L, Gao L, Liao X, Lonn E, Gerstein HC, Yusuf S, et al. Carotid intima-media thickness progression as surrogate marker for cardiovascular risk: meta-analysis of 119 clinical trials involving 100 667 patients. Circulation. 2020;142(7):621–42. doi:10.1161/CIRCULATIONAHA.120.046361.
  • Tay Y, Rinn J, and Pandolfi PP. 2014. The multilayered complexity of ceRNA crosstalk and competition. Nature. 505(7483):344–52. doi:10.1038/nature12986.
  • Fuster JJ, MacLauchlan S, Zuriaga MA, Polackal MN, Ostriker AC, Chakraborty R, Wu CL, Sano S, Muralidharan S, Rius C, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science. 2017;355(6327):842–47. doi:10.1126/science.aag1381.
  • de Bruin RG, Shiue L, Prins J, de Boer HC, Singh A, Fagg WS, van Gils JM, Duijs JM, Katzman S, Kraaijeveld AO, et al. Quaking promotes monocyte differentiation into pro-atherogenic macrophages by controlling pre-mRNA splicing and gene expression. Nat Commun. 2016;7:10846 doi:10.1038/ncomms10846.
  • Du H, Yang L, Zhang H, Zhang X, Shao H. LncRNA TUG1 silencing enhances proliferation and migration of ox-LDL-treated human umbilical vein endothelial cells and promotes atherosclerotic vascular injury repairing via the Runx2/ANPEP axis. Int J Cardiol. 2021;338:204–14. doi:10.1016/j.ijcard.2021.05.014.
  • Centa M, Jin H, Hofste L, Hellberg S, Busch A, Baumgartner R, Verzaal, NJ, Lind Enoksson S, Perisic Matic L, Boddul SV, et al. Germinal center-derived antibodies promote atherosclerosis plaque size and stability. Circulation. 2019;139(21):2466–82. doi:10.1161/CIRCULATIONAHA.118.038534.
  • Guo J, Mei H, Sheng Z, Meng Q, Veniant MM, and Yin H. 2020. Hsa-miRNA-23a-3p promotes atherogenesis in a novel mouse model of atherosclerosis. J Lipid Res. 61(12):1764–75. doi:10.1194/jlr.RA120001121.
  • Prestel M, Prell-Schicker C, Webb T, Malik R, Lindner B, Ziesch N, Rex-Haffner M, Röh S, Viturawong T, Lehm M, et al. The atherosclerosis risk variant rs2107595 mediates allele-specific transcriptional regulation of HDAC9 via E2F3 and Rb1. Stroke. 2019;50(10):2651–60. doi:10.1161/STROKEAHA.119.026112.
  • Bobryshev YV, Shchelkunova TA, Morozov IA, Rubtsov PM, Sobenin IA, Orekhov AN, Smirnov AN. Changes of lysosomes in the earliest stages of the development of atherosclerosis. J Cell Mol Med. 2013;17(5):626–35. doi:10.1111/jcmm.12042.
  • Huang T, Zhao HY, Zhang XB, Gao XL, Peng WP, Zhou Y, Zhao WH, Yang HF. LncRNA ANRIL regulates cell proliferation and migration via sponging miR-339-5p and regulating FRS2 expression in atherosclerosis. Eur Rev Med Pharmacol Sci. 2020;24(4):1956–69. doi:10.26355/eurrev_202002_20373.
  • Pirillo A, Svecla M, Catapano AL, Holleboom AG, and Norata GD. 2021. Impact of protein glycosylation on lipoprotein metabolism and atherosclerosis. Cardiovasc Res. 117(4):1033–45. doi:10.1093/cvr/cvaa252.
  • Ye Z, Guo H, Wang L, Li Y, Xu M, Zhao X, Song, X, Chen Z, Huang R. GALNT4 primes monocytes adhesion and transmigration by regulating O-Glycosylation of PSGL-1 in atherosclerosis. J Mol Cell Cardiol. 2022;165:54–63. doi:10.1016/j.yjmcc.2021.12.012.
  • Plummer AM, Culbertson AT, Liao M. The ABCs of Sterol Transport. Annu Rev Physiol. 2021;83:153–81. doi:10.1146/annurev-physiol-031620-094944.
  • Xu F, Shen L, Chen H, Wang R, Zang T, Qian J, Ge J. circDENND1B participates in the antiatherosclerotic effect of IL-1beta monoclonal antibody in mouse by promoting cholesterol efflux via miR-17-5p/Abca1 Axis. Front Cell Dev Biol. 2021;9:652032. doi:10.3389/fcell.2021.652032.
  • Yu Z, Peng Q, Huang Y. 2019. Potential therapeutic targets for atherosclerosis in sphingolipid metabolism. Clin Sci (Lond). 133(6):763–76. doi:10.1042/CS20180911
  • Hannun YA, Obeid LM. 2018. Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol. 19(3):175–91. doi:10.1038/nrm.2017.107.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.