69
Views
2
CrossRef citations to date
0
Altmetric
Research

Feasibility Study for the Potential Use of Biocatalytic Systems to Destroy Chlorofluorocarbons (CFCs)

, &
Pages 87-111 | Published online: 11 Jul 2013

  • Alvarez-CohenL. and McCartyP. L. 1991. Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transfromation by methanotrophic resting cells. Appl. Environm. Microbiol. 57: 228–235.
  • Alvarez-CohenL., McCartyP. L., BoulyginaE., HansonR. S., BrusseauG. A., and TsienH. C. 1992. Characterization of a methane-utilizing bacterium from a bacterial consortium that rapidly degrades trichloroethylene and chloroform. Appl. Environ. Microbiol. 58: 1886–1893.
  • AndersM. W. 1991. Metabolism and toxicity of hydrochlorofluorocarbons: current knowledge and needs for the future. Environ. Health Perspect. 96: 185–191.
  • BaekN. H. and JaffeP. R. 1989. The degradation of trichloroethylene in mixed methanogenic cultures. J. Environ. Qual. 18: 515–518.
  • BagleyD. M. and GossettJ. M. 1990. Tetrachloroethene transformation to trichloroethene and cis- 1,2-dichloroethene by sulfate-reducing enrichment cultures. Appl. Environ. Microbiol. 56: 2511–2516.
  • Barrio-LageG., ParsonsF. Z., NarbaitzR. M., and LorenzonP. A. 1990. Enhanced anaerobic biodegradation of vinyl chloride in ground water. Environ. Toxicol. Chem. 9: 403–415.
  • BartnickiE. W. and CastroC. E. 1994. Biodehalogenation: rapid oxidative metabolism of mono- and polyhalomethanes by Methylosinus trichosporium OB-3b. Environ. Toxicol. Chem. 13: 241–245.
  • BeemanR. E., HowellJ. E., ShoemakerS. H., SalazarE. A., and ButtramJ. R. 1994. A field evaluation of in situ microbial reductive dehalogenation by the biotransformation of chlorinated ethenes. In: Bio remediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds, pp. 14–27. (HincheeR. E., LeesonA., SempriniL., and OngS. K., Eds.) New York, McGraw-Hill.
  • BenigniR., Cotta-RamusinoM., and AndreoliC. 1991. Relationship between chlorofluorocarbon chemical structure and their Salmonella mutagenicity. J. Toxicol. Environ. Health 34: 397–407.
  • BouwerE. J. and McCartyP. L. 1983a. Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl. Environ. Microbiol. 45: 1286–1294.
  • BouwerE. J. and McCartyP. L. 1983b. Transformations of halogenated organic compounds under denitrification conditions. Appl. Environ. Microbiol. 45: 1295–1299.
  • BouwerE. J. and WrightJ. P. 1988. Transformations of trace halogenated aliphatics in anoxic biofilm columns. J. Contam. Hydrol. 2: 155–169.
  • BrunnerW., StaubD., and LeisingerT. 1980. Bacterial degradation of dichloromethane. Appl. Environ. Microbiol. 40: 950–958.
  • CastroC. E. 1964. The rapid oxidation of iron(II) porphyrins by alkyl halides. A possible mode of intoxication of organisms by alkyl halides. J. Am Chem. Soc. 86: 2310–2311.
  • CastroC. E. 1993. Biodehalogenation: the kinetics and rates of the microbial cleavage of carbon-halogen bonds. Environ. Toxicol. Chem. 12: 1609–1618.
  • CastroC. E. and BelserN. O. 1968. Biodehalogenation. Reductive dehalogenation of the biocides ethylene dibromide, 1,2-dibromo-3-chloropropane, and 2,3-dibromobutane in soil. Environ. Sci. Technol. 2: 779–783.
  • CastroC. E., HelvenstonM. C., and BelserN. O. 1994. Biodehalogenation, reductive dehalogenation by Methanobacterium thermoautotrophicum, comparison with nickel(I)octaethylisobacteriochlorin anion and F-430 model. Environ. Toxicol. Chem., 13: 429–433.
  • CastroC. E., WadeR. S., and BelserN. O. 1985. Biodehalogenation: reactions of cytochrome P-450 with polyhalomethanes. Biochemistry 24: 204–210.
  • CoulterC., HamiltonJ. T. G., and HarperD. B. 1993. Evidence for the existence of independent chloromethane- and S-adenosylmethionine-utilizing systems for methylation in Phanerochaete chrysosporium. Appl. Environ. Microbiol. 59: 1461–1466.
  • CoxE. E., ActonD. W., and MajorD. W. 1994a. Evaluating in situ trichloroethylene biotransformation using in situ microcosms. In: Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds, pp. 314–319. (HincheeR. E., LeesonA., SempriniL., and OngS. K., Eds.) New York, McGraw-Hill.
  • CoxE. E., MajorD. W., ActonD. W., PhelpsT. J., and WhiteD. C. 1994b. Evaluating trichloroethene biodegradation by measuring the in situ status and activities of microbial populations. In: Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds, pp. 37–49. (HincheeR. E., LeesonA., SempriniL., and OngS. K., Eds.) New York, McGraw-Hill.
  • CoyleC. G. 1994. Phenol-induced TCE degradation by pure and mixed cultures in batch studies and continuous-flow reactors. In: Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds, pp. 339–343. (HincheeR. E., LeesonA., SempriniL., and OngS. K., Eds.) New York, McGraw-Hill.
  • CriddleC. S., McCartyP. L., ElliottM. C., and BarkerJ. F. 1986. Reduction of hexachloroethane to tetrachloroethylene in ground water. J. Contam. Hydrol. 1: 133–142.
  • CriddleC. S., DeWittJ. T., and McCartyP. L. 1990. Reductive dehalogenation of carbon tetrachloride by Escherichia coli K-12. Appl. Environ. Microbiol. 56: 3247–3254.
  • DeflaunM. F., EnsleyB. D., and SteffanR. J. 1992. Biological oxidation of hydrochlorofluorocarbons (HCFCs) by a methanotrophic bacterium. Biotechnology 10: 1576.
  • DenovanB. A. and StrandS. E. 1992. Biological degradation of chlorofluorocarbons in anaerobic environments. Chemosphere 24: 935–940.
  • DickermanJ. C., EmmelT. E., HarrisG. E., and HummelK. E. 1989. Technologies for CFC/Halon Destruction. EPA/600/7–89/011, U.S. Environmental Protection Agency.
  • DobbinsJ. C., PeltolaJ., KistritzJ. M., ChresandT. J., and PrestonJ. C. 1995. Pilot-scale demonstration of a two-stage methanotrophic bioreactor for biodegradation of trichloroethylene in groundwater. J. Air Waste Manage. Assoc. 45: 12–19.
  • DolanM. E. and McCartyP. L. 1994. Factors affecting transformation of chlorinated aliphatic hydrocarbons by methanotrophs. In: Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds, pp. 303–308. (HincheeR. E., LeesonA., SempriniL., and OngS. K., Eds.) New York, McGraw-Hill.
  • DragunJ. 1988. The Soil Chemistry of Hazardous Materials, p. 458. Silver SpringsMD, Hazardous Materials Control Research Institute.
  • EmberL. R., LaymanP. L., LepkowskiW., and ZurerP. S. 1986. Tending the global commons. Chem. Eng. News November 24: 14–64.
  • EnsignS. A., HymanM. R., and ArpD. J. 1992. Cometabolic degradation of chlorinated alkenes by alkene monoxygenase in a propylene-grown Xanthobacter strain. Appl. Environ. Microbiol. 58: 3028–3046.
  • ErgasS. J., KinneyK., FullerM. E., and ScowK. M. 1994. Characterization of a compost biofiltration system degrading dichloromethane. Biotechnol. Bioeng. 44: 1048–1054.
  • FathepureB. Z. and BoydS. A. 1988. Reductive dechlorination of perchloroethylene and the role of methanogens. FEMS Microbiol. Lett. 49: 149.
  • FisherD. A., HalesC. H., FilkinD. L., KoM. K. W., SzeD. N., ConnellP. S., WuebblesD. J., IsaksenI. S. A., and StordalF. 1990. Model calculation of relative effects of CFCs and their replacements on stratospheric ozone. Nature (London) 344: 508.
  • FliermansC. B., PhelpsT. J., RingelbergD., MikellA. T., and WhiteD. C. 1988. Mineralization of trichloroethylene by heterotrophic enrichment cultures. Appl. Environ. Microbiol. 54: 1709–1714.
  • FogelM. M., TaddioA. R., and FogelS. 1986. Biodegradation of chlorinated ethenes by a methaneutilizing mixed culture. Appl. Environ. Microbiol. 51: 720–724.
  • FoxB. G., BomemanJ. G., WackettL. P., and LipscombJ. D. 1990. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 29: 6419–6427.
  • FrankenS. M., RozeboomH. J., KalkK. H., and DijkstraB. W. 1991. Crystal structure of haloalkane dehalogenase: an enzyme to detoxify halogenated alkanes. EMBO J. 10: 1297–1302.
  • FreedmanD. L. and GossettJ. M. 1989. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl. Environ. Microbiol. 55: 2144–2151.
  • GantzerC. J. and WackettL. P. 1991. Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environ. Sci. Technol. 25: 715–722.
  • HansenE. J., JohnstonD. L., FredericksonJ. K., and BrounsT. M. 1994. Transformation of tetrachloromethane under denitrifying conditions by a subsurface bacterial consortium and its isolates. In: Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds, pp. 293–297. (HincheeR. E., LeesonA., SempriniL., and OngS. K., Eds.) New York, McGraw-Hill.
  • HartmanS., SchmudkleA. CookA. M., and LeisungerT. 1986. Methyl chloride: naturally occurring toxicant and C-l growth substrate. J. Gen. Microbiol. 132: 1139–1142.
  • HensonM. J., YatesM. V., CochraneJ. W., and ShacklefordD. L. 1988. Microbial removal of halogenated methanes, ethanes, and ethylenes in an aerobic soil exposed to methane. EMS Microbiol. Ecol. 53: 193–201.
  • HookerB. S., SkeenR. S., and PertersenJ. N. 1994. Biological destruction of CC14. II. Kinetic modeling. Biotechnol. Bioeng. 44: 211–218.
  • HutH. G., SadowskyM. J., and WackettL. P. 1994. Metabolism of chlorofluorocarbons and polybrominated compounds by Pseudomonas putida G786(pHG-2) via an engineered metabolic pathway. Appl. Environ. Microbiol. 60: 4148–4154.
  • JanssenD. B., PriesF., Van der PloegJ., KazemierB., TerpstraP., and WitholtB. 1989. Cloning of 1,2-dichloroethane degradation genes of Xanthobacter autotrophicus GJ10 and expression and sequencing of the dhlA gene. J. Bacteriol. 171: 6791–6799.
  • JanssenD. B., ScheperA., DijkhuizenL., and WitholtB. 1985. Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus Gj10. Appl. Environ. Microbiol. 49: 673–677.
  • KeuningS., JanssenD. B., and WiltholtB. 1985. Purification and characterization of hydrolytic haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. J. Bacteriol. 163: 635–639.
  • KleopferR. D., EasleyD. M., HaasB. B., DeihlT. G., JacksonD. E., and WurreyC. J. 1985. Anaerobic degradation of trichloroethylene in soil. Environ. Sci. Technol. 19: 277–280.
  • KobayashiH. and RittmanB. E. 1982. Microbial removal of hazardous organic compounds. Environ. Sci. Technol. 16: 170A–181A.
  • KohnS.-C., BowmanJ. P., and SaylorG. S. 1994. Soluble methane monooxygenase activity in Methylomonas methanica 68–1 isolated from a trichloroethylene-contaminated aquifer. In: Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds, pp. 327–332. (HincheeR. E., LeesonA., SempriniL., and OngS. K., Eds.) New York, McGraw-Hill.
  • KroneU. E., ThauerR. K., and HogenkampH. P. C. 1989. Reductive dehalogenation of chlorinated Cl-hydrocarbons mediated by corrinoids. Biochemistry 28: 4908–1914.
  • KroneU. E., ThauerR. K., HogenkampH. P. C., and SteinbachK. 1991. Reductive formation of carbon monoxide from CC14 and FREONs 11, 12, and 13 catalyzed by corrinoids. Biochemistry 30: 2713–2719.
  • KroneU. E. and ThauerR. K. 1992. Dehalogenation of trichlorofluoromethane (CFC-11) by Methanosarcina barkeri. FEMS Microbiol. Lett. 90: 201–204.
  • LarocheS. D. and LeisingerT. 1991. Sequence analysis and expression of the bacterial dichloromethane dehalogenase structural gene, a member of the glutathione S-transferase supergene family. J. Bacteriol. 172: 164–171.
  • LavertyD. M. and FennemaO. 1985. Effect of anaesthetics and dichlorodifluoromethane on the viability of the cells of Escherichia coli and the activities of some of its enzymes. Microbios 44: 7–20.
  • LegrandR. 1994. Comparison of methanotrophic and anaerobic bioremediation of chlorinated ethenes in groundwater. In: Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds, pp. 344–348. (HincheeR. E., LeesonA., SempriniL., and OngS. K., Eds.) New York, McGraw-Hill.
  • LeisingerT. and BaderR. 1993. Microbial dehalogenation of synthetic organohalogen compounds: hydrolytic dehalogenases. Chimia 47: 116–121.
  • LesageS., BrownS. and HosierK. R. 1992. Degradation of chlorofluorocarbon-113 under anaerobic conditions. Chemosphere 24: 1225–1243.
  • LiS. and WackettL. P. 1993. Reductive dehalogenation by cytochrome P450CAM: substrate binding and catalysis. Biochemistry 32: 9355.
  • LiangL. N. and Grbic-GalicD. 1993. Biotransformation of chlorinated aliphatic solvents in the presence of aromatic compounds under methanogenic conditions. Environ. Toxicol. Chem. 12: 1377–1393.
  • LittleC. D., PalumboA. V., HerbesS. E., LidstromM. E., TyndallR. L., and GilmerP. J. 1988. Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl. Environ. Microbiol. 54: 951–956.
  • LovleyD. R. and WoodwardJ. C. 1992. Consumption of freons CFC-11 and CFC-12 by anaerobic sediments and soils. Environ. Sci. Technol. 26: 925–929.
  • LuW. P., HarderS. R., and RagsdaleS. W. 1990. Controlled potential enzymology of methyl transfer reactions involved in acetyl-CoA synthesis by CO dehydrogenase and the corrinoid/iron-sulfur protein from Clostridium thermoaceticum. J. Biol. Chem. 265: 3124–3133.
  • MacraeI. C., RaghuK., and BautistaE. M. 1969. Anaerobic degradation of the insecticide lindane by Clostridium sp. Nature (London) 221: 859.
  • MalachowskyK. J., PhelpsT. J., TeboliA. B., MinnikinD. E., and WhiteD. C. 1994. Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by Rhodococcus species. Appl. Environ. Microbiol. 60: 542–548.
  • MauleA., PlyteS., and QuirkA. V. 1987. Dehalogenation of organochlorine insecticides by mixed anaerobic microbial populations. Pestic. Biochem. Physiol. 27: 229.
  • McFarlandM. and KayeJ. 1992. Chlorofluorocarbons and ozone. Photochem. Photobiol. 55: 911–929.
  • MilesJ. R. W., TuC. M., and HarrisC. R. 1969. Metabolism of heptachlor and its degradation products by soil microorganisms. J. Econ. Entomol. 62: 1334–1338.
  • MillerR. E. and GuengerichF. P. 1982. Oxidation of trichloroethylene by liver microsomal cytochrome P-450: evidence for chlorine migration in a transition state not involving trichloroethylene oxide. Biochemistry 21: 1090–1097.
  • MohnW. W. and TiedjeJ. M. 1992. Microbial reductive dehalogenation. Microbiol. Rev. 56: 482–507.
  • MurrayW. D. and RichardsonM. 1993. Progress toward the biological treatment of C1 and C2 halogenated hydrocarbons. Crit. Rev. Environ. Sci. Technol. 23(3): 195–217.
  • NelsonM. J. K., MontgomeryS. O., MahaffeyW. R., and PritchardP. H. 1987. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Appl. Environ. Microbiol. 53: 949–954.
  • ParsonsF., Barrio-LageG., and RiceR. 1985. Biotransformation of chlorinated organic solvents in static microcosms. Environ. Toxicol. Chem. 4: 739–742.
  • PriesF., Van der PloegJ. R., Van Den WijngaardA. J., PoosR., and JanssenD. B. 1994. Adaptation of bacteria to chlorinated hydrocarbon degradation. In: Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds, pp. 259–265. (HincheeR. E., LeesonA., SempriniL., and OngS. K., Eds.) New York, McGraw-Hill.
  • RaagR. and PoulosT. L. 1991. Crystal structures of cytochrome P-450CAM complexed with camphane, thiocamphor, and adamantane: factors controlling P-450 substrate hydroxylation. Biochemistry 30: 2674–2684.
  • RascheM. E., HymanM. R., and ArpD. J. 1990. Biodegradation of halogenated hydrocarbon fumigants by nitrifying bacteria. Appl. Environ. Microbiol. 56: 2568–2571.
  • RasmussenG., KomisarS. J., and FergussonJ. F. 1994. Transformation of tetrachloroethene to ethene in mixed methanogenic cultures: effect of electron donor, biomass levels, and inhibitors. In: Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds, pp. 309–313. (HincheeR. E., LeesonA., SempriniL., and OngS. K., Eds.) New York, McGraw-Hill.
  • SafeS. H. 1994. Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit. Rev. Toxicol. 24: 87–149.
  • SahngD. and WoodT. K. 1994. Trichloroethylene and chloroform degradation by a recombinant pseudomonad expressing soluble methane monooxygenase from Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 60: 2473–2482.
  • SalehM. A. and CasidaJ. E. 1978. Reductive dechlorination of the toxaphene component 2,2,5-endo,6-exo8,9,10-heptachlorobomane in various chemical, photochemical, and metabolic systems. J. Agric. Food Chem. 26: 583–590.
  • SallisP. J., ArmfieldS. J., BullA. T., and HardmanD. J. 1990. Isolation and characterization of a haloalkane halidohydrolase from Rhodococcus erythropolis Y2. J. Gen. Microbiol. 136: 115–120.
  • ScholtzR., LeisingerT., SuterF., and CookA. M. 1987. Characterization of 1-chlorohexane halidohydrolase, a dehalogenase of wide substrate range from an Arthrobacter sp. J. Bacteriol. 169: 5016–5021.
  • Scholz-MuramatsuH., SzewzykR., SzewzykU., and GaiserS. 1990. Tetrachloroethylene as electron acceptor for the anaerobic degradation of benzoate. FEMS Microbiol. Lett. 66: 81.
  • SempriniL., HopkinsG. D., McCartyP. L. and RobertsP. V. 1992. In-situ transformation of carbon tetrachloride and other halogenated compounds resulting from biostimulation under anoxic conditions. Environ. Sci. Technol. 26: 2454–2461.
  • ShieldsM. S., ReaginM. J., GergerR. R., SomervilleC., SchaubhutR., CampbellR. and Hu-PrimmerJ. 1994. Constitutive degradation of trichloroethylene by an altered bacterium in a gas-phase bioreactor. In: Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds, pp. 50–65. (HincheeR. E., LeesonA., SempriniL., and OngS. K., Eds.) New York, McGraw-Hill.
  • ShimomuraT., OkadaF., MishimaK., UchiyamaH. and YagiO. 1994. Change in trichloroethylene decomposition activity of Methylocystis sp. M. during batch culture. In: Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds, pp. 298–302. (HincheeR. E., LeesonA., SempriniL., and OngS. K., Eds.) New York, McGraw-Hill.
  • SonierD. N., DuranN. L., and SmithG. B. 1994. Dechlorination of trichlorofluoromethane (CFC-11) by sulfate-reducing bacteria from an aquifer contaminated with halogenated aliphatic compounds. Appl. Environ. Microbiol. 60: 4567–4572.
  • SpeitelG. E.Jr. and LeonardJ. M. 1992. A sequencing biofilm reactor for the treatment of chlorinated solvents using methanotrophs. Water Environ. Res. 64: 712.
  • SpeitelG. E., Jr., SegarR. L., and De WysS. L. 1994. Trichloroethylene cometabolism by phenoldegrading bacteria in sequencing biofilm reactors. In: Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds, pp. 333–338. (HincheeR. E., LeesonA., SempriniL., and OngS. K., Eds.) New York, McGraw-Hill.
  • SuflitaJ. M., GibsonS. A., and BeemanR. E. 1988. Anaerobic biotransformations of pollutant chemicals in aquifers. J. Ind. Microbiol. 3: 179–194.
  • SylvestreM. 1995. Biphenyl/chlorobiphenyls catabolic pathway of Comamonas testosteroni B-356: prospect for use in bioremediation. Int. Biodet. Biodegr. 35: 189–211.
  • ThauerR. K., Moller-ZinkhanD., and SpormannA. M. 1989. Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu. Rev. Microbiol 41: 43–67.
  • TruexM. J., SkeenR. S., CaleyS. M., and WorkmanD. J. 1994. Comparative efficiency of microbial systems for destroying carbon tetrachloride contamination in Hanford groundwater. In: Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds, pp. 80–85. (HincheeR. E., LeesonA., SempriniL., and OngS. K., Eds.) New York, McGraw-Hill.
  • U.S. EPA. 1975. Report on the Problem of Halogenated Air Pollutants and Stratospheric Ozone. Research Triangle ParkN.C., U.S. Environmental Protection Agency, Office of Research and Development, EPA-600/9075–008.
  • Van AukenO. W., HealyJ., and KaufmannA. J. 1975. Comparison of the effects of three fluorocarbons on certain bacteria. Can. J. Microbiol. 21: 221.
  • Van Der PloegJ., PriesF., Van Der WijngaardA., KennesC., and JanssenD. B. 1992. Genetic adaptation of bacteria towards chlorinated hydrocarbon degradation. In: Proceedings of the 2nd International Symposium on the BioSafety Results of Field Tests of Genetically Modified Plants and Microorganisms, p. 163.
  • VogelT. M. and McCartyP. L. 1987. Abiotic and biotic transformations of 1,1,1-trichloroethane under methanogenic conditions. Environ. Sci. Technol. 21: 1208–1213.
  • VogelT. M. and McCartyP. L. 1985. Biotransformation of tetrachloroethylene to'trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl. Environ. Microbiol. 49: 1080–1083.
  • VogelT. M., CriddleC. S., and McCartyP. L. 1987. Transformations of halogenated aliphatic compounds — oxidation, reduction, substitution, and dehydrohalogenation reactions occur abiotically or in microbial and mammalian systems. Environ. Sci. Technol. 21: 722–736.
  • WackettL. P. and GibsonD. T. 1988. Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida FI. Appl. Environ. Microbiol. 54: 1703–1708.
  • WackettL. P. 1991. Dehalogenation reactions catalyzed by bacteria. In: Biological Degradation of Wastes, p. 187. Elsevier.
  • WackettL. P., BrusseauG. A., HouseholderS. R., and HansonR. S. 1989. Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria. Appl. Environ. Microbiol. 55: 2960–2964.
  • WackettL. P., SadowskyM. J., NewmanL. M., HurH-G., and LiS. 1994. Metabolism of polyhalogenated compounds by a genetically engineered bacterium. Nature (London) 368: 627.
  • WallingtonT. J., SchneiderW. F., WorsnopD. R., NielsenO. J., SehestedJ., DebruynW. J., ShorterJ. A. 1994. The environmental impact of CFC replacements: HFCs and HCFCs. Environ. Sci. Technol. 28: 320–326.
  • WHO. 1990. Environmental Health Criteria 113. Fully Halogenated Chlorofluorocarbons. Geneva, World Health Organization.
  • WilsonB. H., SmithG. B., and ReesJ. F. 1986. Biotransformations of selected alkylbenzenes and halogenated aliphatic hydrocarbons in methanogenic aquifer material: a microcosm study. Environ. Sci. Technol. 20: 997–1002.
  • WinterR. B., YenK. M., and EnsleyB. D. 1989. Efficient degradation of trichloroethylene by a recombinant Escherichia coli. Biotechnology 7: 282–285.
  • WinterR. D. and EnsleyB. D. 1990. Proceedings of the 6th International Symposium on Genetics of Industrial Microorganisms. Gim 90, p. 1047. (HeslotH., DaviesJ., FlorentJ., BobichonL., DurandG., and PenasseL., Eds.) StrasbourgFrance. August 12 to 18.
  • YagiO., UchiyamaH., IwasakiK., KikumaM., and IshizukaK. 1994. Bioremediation of trichloroethylene-contaminated soils by a methane-utilizing bacterium Methylocystis sp. M. In: Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds, pp. 28–36. (HincheeR. E., LeesonA., SempriniL., and OngS. K., Eds.) New York, McGraw-Hill.
  • YokotaT., OmoriT., and KodamaT. 1987. Purification and properties of haloalkane dehalogenase from Corynebacterium sp. strain ml5–3. J. Bacteriol. 169: 4049–4054.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.