2,880
Views
70
CrossRef citations to date
0
Altmetric
Original Articles

Phytoextraction of Cd-Contaminated Soils: Current Status and Future Challenges

, , , &
Pages 2113-2152 | Published online: 09 Oct 2012

REFERENCES

  • Abe , T. , Fukami , M. and Ogasawara , M. 2008 . Cadmium accumulation in the shoots and roots of 93 weed species . Soil Sci. Plant Nutr. , 54 : 566 – 573 .
  • Abou-Shanab , R. A. , Angle , J. S. , Delorme , T. A. , Chaney , R. L. , van Berkum , P. , Moawad , H. , Ghanem , K. and Ghozlan , H. A. 2003 . Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale . New Phytol. , 158 : 219 – 224 .
  • Adriano , D. C. , Wenzel , W. W. , Vangronsveld , J. and Bolan , N. S. 2004 . Role of assisted natural remediation in environmental cleanup . Geoderma , 122 : 121 – 142 .
  • Almås , Å.R. and Singh , B. R. 2001 . Plant uptake of cadmium-109 and zinc-65 at different temperature and organic matter levels . J. Environ. Qual. , 30 : 869 – 877 .
  • Arao , T. , Kawasaki , A. , Baba , K. , Mori , S. and Matsumoto , S. 2009 . Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice . Environ. Sci. Technol. , 43 : 9361 – 9367 .
  • Arnold , M. A. and McDonald , G. V. 1999 . Accelerator containers alter plant growth and the root zone environment . J. Environ. Hort. , 17 : 168 – 173 .
  • Assunção , A. G.L. , Schat , H. and Aarts , M. 2003a . Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants . New Phytol. , 159 : 351 – 360 .
  • Assunção , A. G.L. , ten Bookum , W. M. , Nelissen , H. J.M. , Vooijs , R. , Schat , H. and Ernst , W. H.O. 2003b . Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types . New Phytol. , 159 : 411 – 419 .
  • Baghour , M. , Moreno , D. A. , Víllora , G. , Hernández , J. , Castilla , N. and Romero , L. 2001 . Phytoextraction of Cd and Pb and physiological effects in potato plants (Solanum tuberosum var. Spunta): Importance of root temperature . J. Agric. Food Chem. , 49 : 5356 – 5363 .
  • Baker , A. J.M. , Brooks , R. and Reeves , R. 1988 . Growing for gold…and copper…and zinc . New Sci. , 117 : 44 – 48 .
  • Baker , A. J.M. , McGrath , S. P. , Reeves , R. D. and Smith , J. A.C. 2000 . “ Metal hyperaccumulator plants: A review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils ” . In Phytoremediation of Contaminated Soil and Water , Edited by: Terry , N. and Bañuelos , G. 85 – 107 . Florida : Lewis Publishers .
  • Baker , A. J.M. , Reeves , R. D. and Hajar , A. S.M. 1994 . Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. and C. Presl (Brassicaceae) . New Phytol. , 127 : 61 – 68 .
  • Baker , A. J.M. and Whiting , S. N. 2002 . In search of the Holy Grail: A further step in understanding metal hyperaccumulation? . New Phytol. , 155 : 1 – 4 .
  • Barrutia , O. , Epelde , L. , García-Plazaola , J. I. , Garbisu , C. and Becerril , J. M. 2009 . Phytoextraction potential of two Rumex acetosa L. accessions collected from metalliferous and non-metalliferous sites: Effect of fertilization . Chemosphere , 74 : 259 – 264 .
  • Basta , N. and Gradwohl , R. 2000 . Estimation of Cd, Pb and Zn bioavailability in smelter-contaminated soils by a sequential extraction procedure . Soil Sed. Contam. , 9 : 149 – 164 .
  • Bennett , L. E. , Burkhead , J. L. , Hale , K. L. , Terry , N. , Pilon , M. and Pilon-Smits , E. A.H. 2003 . Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings . J. Environ. Qual. , 32 : 432 – 440 .
  • Berg , G. 2009 . Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture . Appl. Microbiol. Biotechnol. , 84 : 11 – 18 .
  • Bert , V. , Bonnin , I. , Saumitou-Laprade , P. , de Laguérie , P. and Petit , D. 2002 . Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? . New Phytol. , 155 : 47 – 57 .
  • Borowiec , M. , Hoffmann , K. and Hoffmann , J. 2009 . The determination of the degree of zinc complexation by chelating agents with differential pulse voltammetry . Int. J. Environ. Anal. Chem. , 89 : 717 – 725 .
  • Brooks , R. R. 1998 . Plants that hyperaccumulate heavy metals: Their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining , New York , NY : CAB International .
  • Çakmakçi , R. , Dönmez , F. , Aydm , A. and Şahin , F. 2006 . Growth promotion of plants by plant growth promoting rhizobacteria under greenhouse and two different field soil conditions . Soil Biol. Biochem. , 38 : 1482 – 1487 .
  • Cao , L. X. , Jiang , M. , Zeng , Z. R. , Du , A. X. , Tan , H. M. and Liu , Y. H. 2008 . Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassica juncea (L.) Coss. var. foliosa Bailey) in Cd, Ni contaminated soils . Chemosphere , 71 : 1769 – 1773 .
  • Catherine , S. , Christophe , S. and Louis , M. J. 2006 . Response of Thlaspi caerulescens to nitrogen, phosphorus and sulfur fertilization . Int. J. Phytoremed. , 8 : 149 – 161 .
  • Chaney , R. L. 1983 . “ Plant uptake of inorganic waste constituents ” . In Land treatment of hazardous wastes , Edited by: Parr , J. F. , Marsh , P. B. and Kla , J. M. 50 – 76 . Park Ridge , NJ : Noyes Data Corporation .
  • Chaney , R. L. , Angle , J. S. , Broadhurst , C. L. , Peters , C. A. , Tappero , R. V. and Sparks , D. L. 2007 . Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies . J. Environ. Qual. , 36 : 1429 – 1443 .
  • Chen , H. and Cutright , T. 2001 . EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus . Chemosphere , 45 : 21 – 28 .
  • Cherian , S. and Oliveira , M. M. 2005 . Transgenic plants in phytoremediation: Recent advances and new possibilities . Environ. Sci. Technol. , 39 : 9377 – 9390 .
  • Chlopecka , A. 1996 . Assessment of form of Cd, Zn and Pb in contaminated calcareous and gleyed soils in Southwest Poland . Sci. Total Environ. , 188 : 253 – 262 .
  • Ciura , J. , Poniedziałek , M. , Sękara , A. and Jędrszczyk , E. 2005 . The possibility of using crops as metal phytoremediants . Pol. J. Environ. Stud. , 14 : 17 – 22 .
  • Cui , S. , Zhou , Q. X. and Chao , L. 2007 . Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China . Environ. Geol. , 51 : 1043 – 1048 .
  • Cui , Y. S. , Dong , Y. T. , Li , H. F. and Wang , Q. R. 2004 . Effect of elemental sulphur on solubility of soil heavy metals and their uptake by maize . Environ. Int. , 30 : 323 – 328 .
  • Culbard , E. B. , Thornton , I. , Watt , J. , Weatley , M. , Moorcraft , S. and Thompson , M. 1988 . Metal contamination in British suburban dusts and soils . J. Environ. Qual. , 17 : 226 – 23 .
  • Cunningham , S. D. and Ow , D. W. 1996 . Promises and prospects of phytoremediation . Plant Physiol. , 110 : 715 – 719 .
  • dal Corso , G. , Borgato , L. and Furini , A. 2005 . In vitro plant regeneration of the heavy metal tolerant and hyperaccumulator Arabidopsis halleri (Brassicaceae) . Plant Cell Tissue Organ Cult. , 82 : 267 – 270 .
  • Dell’Amico , E. , Cavalca , L. and Andreoni , V. 2005 . Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria . FEMS Microbial. Ecol. , 52 : 153 – 162 .
  • Demirezen , D. and Aksoy , A. 2006 . Heavy metal levels in vegetables in Turkey are within safe limits for Cu, Zn, Ni and exceeded for Cd and Pb . J. Food Qual. , 29 : 252 – 265 .
  • Díaz-Pérez , J. C. 2009 . Root zone temperature, plant growth and yield of broccoli [Brassica oleracea (Plenck) var. italica] as affected by plastic film mulches . Scientia Hort. , 123 : 156 – 163 .
  • Dickinson , N. M. , Baker , A. J.M. , Doronila , A. , Laidlaw , S. and Reeves , R. D. 2009 . Phytoremediation of inorganics: Realism and synergies . Int. J. Phytoremed. , 11 : 97 – 114 .
  • Dickinson , N. M. and Pulford , I. D. 2005 . Cadmium phytoextraction using short-rotation coppice Salix: The evidence trail . Environ. Int. , 31 : 609 – 613 .
  • do Nascimento , C. W. , Amarasiriwardena , D. and Xing , B. 2006 . Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil . Environ. Pollut. , 140 : 114 – 123 .
  • Dos Santos Utmazian , M. N. and Wenzel , W. W. 2007 . Cadmium and zinc accumulation in willow and poplar species grown on polluted soils . J. Plant Nutr. Soil Sci. , 170 : 265 – 272 .
  • Doty , S. L. 2008 . Enhancing phytoremediation through the use of transgenics and endophytes . New Phytol. , 179 : 318 – 333 .
  • Doumett , S. , Lamperi , L. , Checchini , L. , Azzarello , E. , Mugnai , S. , Mancuso , S. , Petruzzelli , G. and Del Bubba , M. 2008 . Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: Influence of different complexing agents . Chemosphere , 72 : 1481 – 1490 .
  • Ebbs , S. D. and Kochian , L. V. 1998 . Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea) . Environ. Sci. Technol. , 32 : 802 – 806 .
  • Ercolia , L. , Mariottib , M. , Masonib , A. and Bonaria , E. 1999 . Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of Miscanthus . Field Crop. Res. , 63 : 3 – 11 .
  • Ernst , W. H.O. 1996 . Bioavailability of heavy metals and decontamination of soils by plants . Appl. Geochem. , 11 : 163 – 167 .
  • Ernst , W. H.O. 2005 . Phytoextraction of mine wastes: Options and impossibilities . Chem. Erde-Geochem. , 65 : 29 – 42 .
  • European Union . 2000 . Working document on sludge, 3rd draft, ENV.E.3/LM , Brussels , , Belgium : EU .
  • Evangelou , M. W.H. , Bauer , U. , Ebel , M. and Schaeffer , A. 2007 . The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum . Chemosphere , 68 : 345 – 353 .
  • Farinati , S. , DalCorso , G. , Varotto , S. and Furini , A. 2010 . The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants . New Phytol. , 185 : 964 – 978 .
  • Food and Agriculture Organization of the United Nations . 2009 . State of food insecurity in the world 2009 , Rome , , Italy : FAO .
  • Fischerová , Z. , Tlustoš , P. , Száková , J. and Šichorová , K. 2006 . A comparison of phytoremediation capability of selected plant species for given trace elements . Environ. Pollut. , 144 : 93 – 100 .
  • Fritioff , Å. , Kautsky , L. and Greger , M. 2005 . Influence of temperature and salinity on heavy metal uptake by submersed plants . Environ. Pollut. , 133 : 265 – 274 .
  • Fuksová , Z. , Száková , J. and Tlustoš , P. 2009 . Effects of co-cropping on bioaccumulation of trace elements in Thlaspi caerulescens and Salix dasyclados . Plant Soil Environ. , 55 : 461 – 467 .
  • Gadd , G. M. 2004 . Microbial influence on metal mobility and application for bioremediation . Geoderma , 122 : 109 – 119 .
  • Ghosh , M. and Singh , S. P. 2005 . A comparative study of cadmium phytoextraction by accumulator and weed species . Environ. Pollut. , 133 : 365 – 371 .
  • Gove , B. , Hutchinson , J. J. , Young , S. D. , Craigon , J. and McGrath , S. P. 2002 . Uptake of metals by plants sharing rhizosphere with the hyperaccumulator Thlaspi caerulescens . Int. J. Phytoremed. , 4 : 267 – 281 .
  • Grandlic , C. J. , Mendez , M. O. , Chorover , J. , Machado , B. and Maier , R. M. 2008 . Plant grow-promoting bacteria for phytostabilization of mine tailings . Environ. Sci. Technol. , 42 : 2079 – 2084 .
  • Grandlic , C. J. , Palmer , M. W. and Maier , R. M. 2009 . Optimization of plant-promoting bacteria-assisted phytostablization of mine tailings . Soil Biol. Biochem. , 41 : 1734 – 1740 .
  • Grispen , V. M.J. , Nelissen , H. J.M. and Verkleij , J. A.C. 2006 . Phytoextration with Brassica napus L.: A tool for sustainable management of heavy metal contaminated soils . Environ. Pollut. , 144 : 77 – 83 .
  • Grundler , O. J. , van der Steen , A. T. M. and Wilmot , J. 2005 . “ Overview of the European risk assessment on EDTA ” . In Biogeochemistry of chelating agents; ACS Symposium Series Vol. 910 , Edited by: Nowack , B. and VanBriesen , J. M. 336 – 347 . Washington , DC : American Chemical Society .
  • Haghiri , F. 1973 . Cadmium uptake by plants . J. Environ. Qual. , 2 : 93 – 95 .
  • Hammer , D. and Keller , C. 2003 . Phytoextraction of Cd and Zn with Thlaspi caerulescens in field trials . Soil Use Manag. , 19 : 144 – 149 .
  • Hammer , D. , Kayser , A. and Keller , C. 2003 . Phytoextraction of Cd and Zn with Salix viminalis in field trials . Soil Use Manag. , 19 : 187 – 192 .
  • Hanikenne , M. , Talke , I. N. , Haydon , M. J. , Lanz , C. , Nolte , A. , Motte , P. , Kroymann , J. , Weigel , D. and Kramer , U. 2008 . Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4 . Nature , 453 : 391 – 395 .
  • He , L. Y. , Chen , Z. J. , Ren , G. D. , Zhang , Y. F. , Qian , M. and Sheng , X. F. 2009 . Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria . Ecotoxicol. Environ. Saf. , 72 : 1343 – 1348 .
  • Hernández-Allica , J. , Becerril , J. M. and Garbisu , C. 2008 . Assessment of the phytoextraction potential of high biomass crop plants . Environ. Pollut. , 152 : 32 – 40 .
  • Huang , J. W. , Chen , J. J. , Berti , W. R. and Cunningham , S. D. 1997 . Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction . Environ. Sci. Technol. , 31 : 800 – 805 .
  • Ibaraki , T. , Kuroyanagi , N. and Murakami , M. 2009 . Practical phytoextraction in cadmium-polluted paddy fields using a high cadmium accumulating rice plant cultured by early drainage of irrigation water . Soil Sci. Plant Nutr. , 55 : 421 – 427 .
  • Idris , R. , Trifonova , R. , Puschenreiter , M. , Wenzel , W. W. and Sessitsch , A. 2004 . Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense . Appl. Environ. Microbiol. , 70 : 2667 – 2677 .
  • Ikeda , M. , Ezaki , T. , Tsukahara , T. and Moriguchi , J. 2004 . Dietary cadmium intake in polluted and non-polluted area in Japan in past and in the present . Int. Occup. Environ. Health , 77 : 227 – 234 .
  • Janoušková , M. , Pavlíková , D. , Macek , T. and Vosátka , M. 2005 . Arbuscular mycorrhiza decreases cadmium phytoextraction by transgenic tobacco with inserted metallothionein . Plant Soil , 272 : 29 – 40 .
  • Jensen , J. K. , Holm , P. E. , Nejrup , J. , Larsen , M. B. and Borggaard , O. K. 2009 . The potential of willow for remediation of heavy metal polluted calcareous urban soils . Environ. Pollut. , 157 : 931 – 937 .
  • Ji , P. H. , Sun , T. H. , Song , Y. F. , Ackland , M. L. and Liu , Y. 2011 . Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L . Environ. Pollut. , 159 : 762 – 768 .
  • Jiang , C. A. , Wu , Q. T. , Sterckeman , T. , Schwartz , C. , Sirguey , C. , Ouvrard , S. , Perriguey , J. and Morel , J. L. 2010 . Co-planting can phytoextract similar amounts of cadmium and zinc to mono-cropping from contaminated soils . Ecol. Engineer. , 36 : 391 – 395 .
  • Karpenstein-Machan , M. and Stuelpnagel , R. 2000 . Biomass yield and nitrogen fixation of legumes monocropped and intercropped with rye and rotation effects on a subsequent maize crop . Plant Soil , 218 : 215 – 232 .
  • Kawashima , C. G. , Noji , M. , Nakamura , M. , Ogra , Y. , Suzuki , K. T. and Saito , K. 2004 . Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase . Biotech. Lett. , 26 : 153 – 157 .
  • Kayser , A. , Wenger , K. , Keller , A. , Attinger , W. , Felix , H. R. , Gupta , S. K. and Schulin , R. 2000 . Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: The use of NTA and sulfur amendments . Environ. Sci. Technol. , 34 : 1778 – 1783 .
  • Keller , C. , Hammer , D. , Kayser , A. , Richner , W. , Brodbeck , M. and Sennhauser , M. 2003 . Root development and heavy metal phytoextraction efficiency: Comparison of different plant species in the field . Plant Soil , 249 : 67 – 81 .
  • Keller , C. , Ludwig , C. , Davoli , F. and Wochele , J. 2005 . Thermal treatment of metal-enriched biomass produced from heavy metal phytoextraction . Environ. Sci. Technol. , 39 : 3359 – 3367 .
  • Khan , M. S. , Zaidi , A. and Aamil , M. 2002 . Biocontrol of fungal pathogens by the use of plant growth promoting rhizobacteria and nitrogen fixing microorganisms . Ind. J. Bot. Soc. , 81 : 255 – 263 .
  • Khan , M. S. , Zaidi , A. , Wani , P. A. and Oves , M. 2009 . Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils . Environ. Chem. Lett. , 7 : 1 – 19 .
  • Komárek , M. , Tlustoš , P. , Száková , J. and Chrastný , V. 2008 . The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils . Environ. Pollut. , 151 : 27 – 38 .
  • Komárek , M. , Tlustoš , P. , Száková , J. , Chrastný , V. and Ettler , V. 2007 . The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils . Chemosphere , 67 : 640 – 651 .
  • Koopmans , G. F. , Römkens , P. F. , Fokkema , M. J. , Song , J. , Luo , Y. M. , Japenga , J. and Zhao , F. J. 2008 . Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils . Environ. Pollut. , 156 : 905 – 914 .
  • Lane , T. W. and Morel , F. M.M. 2000 . A biological function for Cd in marine diatoms . Proc. Natl. Acad. Sci. USA. , 97 : 4627 – 4631 .
  • Lasat , M. 2000 . Phytoextraction of metals from contaminated soil: A review of plant/soil/metal interaction and assessment of pertinent agronomic issues . J. Hazard. Sub. Res. , 2 : 5 – 25 .
  • Lee , Y. Z. , Suzuki , S. , Kawada , T. , Wang , J. , Koyama , H. , Rivai , I. F. and Herawati , N. 1999 . Content of cadmium in carrots compared with rice in Japan . Bull. Environ. Contam. Toxicol. , 63 : 711 – 719 .
  • Leštan , D. , Luo , C. L. and Li , X. D. 2008 . The use of chelating agents in the remediation of metal-contaminated soils: A review . Environ. Pollut. , 153 : 3 – 13 .
  • Leyval , C. , Turnau , K. and Haselwandter , K. 1997 . Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects . Mycorrhiza , 7 : 139 – 153 .
  • Li , J. T. , Liao , B. , Dai , Z. Y. , Zhu , R. and Shu , W. S. 2009a . Phytoextraction of Cd-contaminated soil by carambola (Averrhoa carambola) in field trials . Chemosphere , 76 : 1233 – 1239 .
  • Li , J. T. , Liao , B. , Lan , C. Y. , Ye , Z. H. , Baker , A. J.M. and Shu , W. S. 2010 . Cadmium accumulation in a high-biomass tropical tree (Averrhoa carambola) and its potential for phytoextraction . J. Environ. Qual. , 39 : 1261 – 1268 .
  • Li , J. T. , Qiu , J. W. , Wang , X. W. , Zhong , Y. , Lan , C. Y. and Shu , W. S. 2006 . Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guangzhou, China . Environ. Pollut. , 143 : 159 – 165 .
  • Li , N. Y. , Li , Z. A. , Zhuang , P. , Zou , B. and McBride , M. 2009b . Cadmium uptake from soil by maize with intercrops . Water Air Soil Pollut. , 199 : 45 – 56 .
  • Licht , L. A. and Isebrands , J. G. 2005 . Linking phytoremediated pollutant removal to biomass economic opportunities . Biomass Bioenerg. , 28 : 203 – 218 .
  • Liu , D. , Islam , E. , Li , T. Q. , Yang , X. E. , Jin , X. F. and Mahmood , Q. 2008 . Comparison of synthetic chelators and low molecular weight organic acids in enhancing phytoextraction of heavy metals by two ecotypes of Sedum alfredii Hance . J. Hazard. Mater. , 153 : 114 – 122 .
  • Liu , L. , Wu , L. H. , Li , N. , Cui , L. Q. , Li , Z. , Jiang , J. P. , Jiang , Y. G. , Qiu , X. Y. and Luo , Y. M. 2009 . Effect of planting densities on yields and zinc and cadmium uptake by Sedum plumbizincicola . Chin. J. Environ. Sci. , 30 : 3422 – 3426 .
  • Liu , W. , Shu , W. S. and Lan , C. Y. 2004 . Viola baoshanensis, a plant that hyperaccumulates cadmium . Chin. Sci. Bull. , 49 : 29 – 32 .
  • Liu , X. M. , Wu , Q. T. and Banks , M. K. 2005 . Effect of simultaneous establishment of Sedum alfredii and Zea mays on heavy metal accumulation in plants . Int. J. Phytoremed. , 7 : 43 – 53 .
  • Lombi , E. , Zhao , F. J. , Dunham , S. J. and McGrath , S. P. 2000 . Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense . New Phytol. , 145 : 11 – 20 .
  • Lombi , E. , Zhao , F. J. , Dunham , S. J. and McGrath , S. P. 2001 . Phytoremediation of heavy metal-contaminated soils: Natural hyperaccumulation versus chemically enhanced phytoextraction . J. Environ. Qual. , 30 : 1919 – 1926 .
  • Luo , C. L. , Shen , Z. G. , Baker , A. J.M. and Li , X. D. 2006 . A novel strategy using biodegradable EDDS for the chemically enhanced phytoextraction of soils contaminated with heavy metals . Plant Soil , 285 : 67 – 80 .
  • Luo , C. L. , Shen , Z. G. and Li , X. D. 2005 . Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS . Chemosphere , 59 : 1 – 11 .
  • Luo , C. L. , Shen , Z. G. and Li , X. D. 2007 . Plant uptake and the leaching of metals during the hot EDDS-enhanced phytoextraction process . Int. J. Phytoremed. , 9 : 181 – 196 .
  • Ma , L. Q. and Rao , G. N. 1997 . Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils . J. Environ. Qual. , 26 : 259 – 264 .
  • Malhi , S. S. , Johnston , A. M. , Schoenau , J. J. , Wang , Z. H. and Vera , C. L. 2007 . Seasonal biomass accumulation and nutrient uptake of canola, mustard, and flax on a black chernozem soil in Saskatchewan . J. Plant Nutr. , 30 : 641 – 658 .
  • Marschner , H. 1995 . Mineral nutrition of higher plants , London , , England : Academic Press .
  • Maxted , A. P. , Black , C. R. , West , H. M. , Crout , N. M.J. , McGrath , S. P. and Young , S. D. 2007 . Phytoextraction of cadmium and zinc by Salix from soil historically amended with sewage sludge . Plant Soil , 290 : 157 – 172 .
  • McGauley , G. N. and Way , M. O. 2002 . Drain and harvest timing affects on rice grain drying and whole-milled grain . Field Crop. Res. , 74 : 163 – 172 .
  • McGrath , S. P. , Lombi , E. , Gray , C. W. , Caille , N. , Dunham , S. J. and Zhao , F. J. 2006 . Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri . Environ. Pollut. , 141 : 115 – 125 .
  • McGrath , S. P. and Zhao , F. J. 2003 . Phytoextraction of metals and metalloids from contaminated soils . Curr. Opin. Biotechnol. , 14 : 277 – 282 .
  • McLaughlin , M. J. , Parker , D. R. and Clarke , J. M. 1999 . Metal and micronutrients – food safety issues . Field Crop. Res. , 60 : 143 – 163 .
  • Meers , E. , Hopgood , M. , Lesage , E. , Vervaeke , P. , Tack , F. M.G. and Verloo , M. G. 2004 . Enhanced phytoextraction: In search of EDTA alternatives . Int. J. Phytoremed. , 6 : 95 – 109 .
  • Meers , E. , Ruttens , A. , Hopgood , M. J. , Samson , D. and Tack , F. M.G. 2005a . Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals . Chemosphere , 58 : 1011 – 1022 .
  • Meers , E. , Unamuno , V. , Vandegehuchte , M. , Vanbroekhoven , K. , Geebelen , W. , Samson , R. , Vangronsveld , J. , Diels , L. , Ruttens , A. , Du Laing , G. and Tack , F. 2005b . Soil-solution speciation of Cd as affected by soil characteristics in unpolluted and polluted soils . Environ. Toxicol. Chem. , 24 : 499 – 509 .
  • Meers , E. , Vandecasteele , B. , Ruttens , A. , Vangronsveld , J. and Tack , F. M.G. 2007 . Potential of five willow species (Salix spp.) for phytoextraction of heavy metals . Environ. Exp. Bot. , 60 : 57 – 68 .
  • Mertens , J. , Vervaeke , P. , Meers , E. and Tack , F. M.F. 2006 . Seasonal changes of metals in willow (Salix sp.) stands for phytoremediation on dredged sediment . Environ. Sci. Technol. , 40 : 1962 – 1968 .
  • Munn , J. , January , M. and Cutright , T. J. 2008 . Greenhouse evaluation of EDTA effectiveness at enhancing Cd, Cr, and Ni uptake in Helianthus annuus and Thlaspi caerulescens . J. Soils Sed. , 8 : 116 – 122 .
  • Murakami , M. , Ae , N. and Ishikawaa , S. 2007 . Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.) . Environ. Pollut. , 145 : 96 – 103 .
  • Murakami , M. , Ae , N. , Ishikawa , S. , Ibaraki , T. and Ito , M. 2008 . Phytoextraction by a high-Cd-accumulating rice: Reduction of Cd content of soybean seeds . Environ. Sci. Technol. , 42 : 6167 – 6172 .
  • Murakami , M. , Nakagawa , F. , Ae , N. , Ito , M. and Arao , T. 2009 . Phytoextraction by rice capable of accumulating Cd at high levels: Reduction of Cd content of rice grain . Environ. Sci. Technol. , 43 : 5878 – 5883 .
  • Nehnevajova , E. , Herzig , R. , Federer , G. and Erismann , K.-H. 2005 . Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis . Int. J. Phytoremed. , 7 : 337 – 349 .
  • Neugschwandtner , R. W. , Tlustoš , P. , Komárek , M. and Száková , J. 2008 . Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes: Laboratory versus field scale measures of efficiency . Geoderma , 144 : 446 – 454 .
  • Nishiyama , Y. , Yanai , J. and Kosaki , T. 2005 . Potential of Thlaspi caerulescens for dadmium phytoremediation: Comparison of two representative soil types in Japan under different planting frequencies . Soil Sci. Plant Nutr. , 51 : 827 – 834 .
  • Nowack , B. , Schulin , R. and Robinson , B. H. 2006 . Critical assessment of chelant-enhanced metal phytoextraction . Environ. Sci. Technol. , 40 : 5225 – 5232 .
  • Papoyan , A. and Kochian , L. V. 2004 . Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase . Plant Physiol. , 136 : 3814 – 3823 .
  • Paulson , M. , Bardos , P. , Harmsen , J. , Wilczek , J. , Barton , M. and Edwards , D. 2003 . The practical use of short rotation coppice in land restoration . Land Contam. Reclam. , 11 : 323 – 338 .
  • Peñalosa , J. M. , Carpena , R. O. , Vázquez , S. , Agha , R. , Granado , A. , Sarro , M. J. and Esteban , E. 2007 . Chelate-assisted phytoextraction of heavy metals in a soil contaminated with a pyritic sludge . Sci. Total Environ. , 378 : 199 – 204 .
  • Perronnet , K. , Schwartz , C. , Gérard , E. and Morel , J. L. 2000 . Availability of cadmium and zinc accumulated in the leaves of Thlaspi caerulescens incorporated into soil . Plant Soil , 227 : 257 – 263 .
  • Pietz , R. I. , Vetter , R. J. , Masarik , D. and McFee , W. W. 1978 . Zinc and cadmium contents of agricultural soils and corn in Northwestern Indiana . J. Environ. Qual. , 7 : 381 – 385 .
  • Pongrac , P. , Zhao , F. J. , Razinger , J. , Zrimec , A. and Regvar , M. 2009 . Physiological responses to Cd and Zn in two Cd/Zn hyperaccumulating Thlaspi species . Environ. Exp. Bot. , 66 : 479 – 486 .
  • Prokop , Z. , Cupr , P. , Zlevorova-Zlamalikova , V. , Komarek , J. , Dusek , L. and Holoubek , I. 2003 . Mobility, bioavailability, and toxic effects of cadmium in soil samples . Environ. Res. , 91 : 119 – 126 .
  • Pulford , I. D. and Watson , C. 2003 . Phytoredediation of heavy metal-contaminated land by trees: A review . Environ. Int. , 29 : 529 – 540 .
  • Quartacci , M. F. , Argilla , A. , Baker , A. J.M. and Navari-Izzo , F. 2006 . Phytoextraction of metals from a multiply contaminated soil by Indian mustard . Chemosphere , 63 : 918 – 925 .
  • Rajkumar , M. and Freitas , H. 2008 . Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals . Chemosphere , 71 : 834 – 842 .
  • Ramah , K. , Santhi , P. and Ponnuswamy , K. 2009 . Irrigation scheduling and water use efficiency in maize (Zea mays L.) based cropping system under drip fertigation . Crop Res. , 38 : 15 – 20 .
  • Raskin , I. , Smith , R. D. and Salt , D. E. 1997 . Phytoremediation of metals: Using plants to remove pollutants from the environment . Curr. Opin. Biotechnol. , 8 : 221 – 226 .
  • Robinson , B. H. , Fernández , J.-E. , Madejón , P. , Marañón , T. , Murillo , J. M. , Green , S. and Clothier , B. 2003 . Phytoextraction: An assessment of biogeochemical and economic viability . Plant Soil , 249 : 117 – 125 .
  • Robinson , B. H. , Schulin , R. , Nowack , B. , Roulier , S. , Menon , M. , Clothier , B. E. , Green , S. R. and Mills , T. M. 2006 . Phytoremediation for the management of metal flux in contaminated sites . For. Snow Landsc. Res. , 80 : 221 – 234 .
  • Rugh , C. L. , Senecoff , J. F. , Meagher , R. B. and Merkle , S. A. 1998 . Development of transgenic yellow poplar for mercury phytoremediation . Nature Biotechnol. , 16 : 925 – 928 .
  • Salt , D. E. , Blaylock , M. , Kumar , N. P.B.A. , Dushenkov , V. , Ensley , B. , Chet , I. and Raskin , I. 1995 . Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants . Nature Biotechnol. , 13 : 468 – 474 .
  • Sanità di Toppi , L. and Gabbrielli , R. 1999 . Response to cadmium in higher plant . Environ. Exp. Bot. , 41 : 105 – 130 .
  • Santos , F. S. , Hernández-Allica , J. , Becerril , J. M. , Amaral-Sobrinho , N. , Mazur , N. and Carlos , G. 2006 . Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens . Chemosphere , 65 : 43 – 50 .
  • Saraswat , S. and Rai , J. P.N. 2011 . Prospective application of Leucaena Leucocephala for phytoextraction of Cd and Zn and nitrogen fixation in metal polluted soils . Intern. J. Phytoremed. , 13 : 271 – 288 .
  • Schmidt , U. 2003 . Enhancing phytoextraction: The effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals . J. Environ. Qual. , 32 : 1939 – 1954 .
  • Schwartz , C. , Echevarria , G. and Morel , J. L. 2003 . Phytoextraction of cadmium with Thlaspi caerulescens . Plant Soil , 249 : 27 – 35 .
  • Schwartz , C. , Sirguey , C. , Peronny , S. , Reeves , R. D. , Bourgaud , F. and Morel , J. L. 2006 . Testing of outstanding individuals of Thlaspi caerulescens for cadmium phytoextraction . Int. J. Phytoremed. , 8 : 339 – 357 .
  • Sell , J. , Kayser , A. , Schulin , R. and Brunner , I. 2005 . Contribution of ectomycorrhizal fungi to cadmium uptake of poplars and willows from a heavily polluted soil . Plant Soil , 277 : 245 – 253 .
  • Selvam , A. and Wong , J. W.C. 2009 . Cadmium uptake potential of Brassica napus cocropped with Brassica parachinensis and Zea mays . J. Hazard. Mater. , 167 : 170 – 178 .
  • Shen , Z. G. , Li , X. D. , Wang , C. C. , Chen , H. M. and Chua , H. 2002 . Lead phytoextraction from contaminated soil with high biomass plant species . J. Environ. Qual. , 31 : 1893 – 1900 .
  • Sheng , X. F. and Xia , J. J. 2006 . Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria . Chemosphere , 64 : 1036 – 1042 .
  • Simmons , R. W. , Pongsakul , P. , Saiyasitpanich , D. and Klinphoklap , S. 2005 . Elevated levels of cadmium and zinc in paddy soils and elevated levels of cadmium in rice grain downstream of a zinc mineralized area in Thailand: Implications for public health . Environ. Geochem. Health , 27 : 501 – 511 .
  • Singh , B. R. and Subramaniam , V. 1997 . Phosphorus supplying capacity of heavily fertilized soils II. Dry matter yield of successive crops and phosphorus uptake at different temperatures . Nutr. Cycl. Agroecosyst. , 47 : 123 – 134 .
  • Smeets , K. , Ruytinx , J. , Semane , B. , van Belleghem , F. , Remans , T. , van Sanden , S. , Vangronsveld , J. and Cuypers , A. 2008 . Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress . Environ. Exp. Bot. , 63 : 1 – 8 .
  • Smith , R. H. 2000 . Plant tissue culture: Techniques and experiments () , 2nd ed. , New York , NY : Academic Press .
  • Song , W. Y. , Sohn , E. J. , Martinoia , E. , Lee , Y. J. , Yang , Y. Y. , Jasinski , M. , Forestier , C. , Hwang , I. and Lee , Y. 2003 . Engineering tolerance and accumulation of lead and cadmium in transgenic plants . Nature Biotechnol. , 21 : 914 – 919 .
  • Soriano , M. A. and Fereres , E. 2003 . Use of crops for in situ phytoremediation of polluted soils following a toxic flood from a mine spill . Plant Soil , 256 : 253 – 264 .
  • Su , D. C. and Wong , J. W.C. 2004 . Phytoremediation potential of oilseed rape (Brassica juncea) for cadmium contaminated soil . Bull. Environ. Contam. Toxicol. , 72 : 991 – 998 .
  • Sun , B. , Zhao , F. J. , Lombi , E. and McGrath , S. P. 2001 . Leaching of heavy metals from contaminated soils using EDTA . Environ. Pollut. , 113 : 111 – 120 .
  • Sun , L. N. , Niu , Z. X. and Sun , T. H. 2007 . Effects of amendments of N, P, Fe on phytoextraction of Cd, Pb, Cu, and Zn in soil of Zhangshi by mustard, cabbage, and sugar beet . Environ. Toxicol. , 22 : 565 – 571 .
  • Sun , Y. B. , Zhou , Q. X. , An , J. , Liu , W. T. and Liu , R. 2009 . Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance) . Geoderma , 150 : 106 – 112 .
  • Tandy , S. , Schulin , R. and Nowack , B. 2006 . Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration . Environ. Sci. Technol. , 40 : 2753 – 2758 .
  • Tang , X. Y. , Zhu , Y. G. , Cui , Y. S. , Duan , J. and Tang , L. 2006 . The effect of ageing on the bioaccessibiliy and fractionation of cadmium in some typical soils of China . Environ. Int. , 32 : 682 – 689 .
  • Thayalakumaran , T. , Robinson , B. H. , Vogeler , I. , Scotter , D. R. , Clothier , B. E. and Percival , H. J. 2003 . Plant uptake and leaching of copper during EDTA-enhanced phytoremediation of repacked and undisturbed soil . Plant Soil , 254 : 415 – 423 .
  • Thewys , T. , Witters , N. , Meers , E. and Vangronsveld , J. 2010b . Economic viability of phytoremediation of a cadmium contaminated agricultural area using energy maize. Part II: Economics of anaerobic digestion of metal contaminated maize in Belgium . Int. J. Phytoremed. , 12 : 663 – 679 .
  • Thewys , T. , Witters , N. , van Slycken , S. , Ruttens , A. , Meers , E. , Tack , F. M. and Vangronsveld , J. 2010a . Economic viability of phytoremediation of a cadmium contaminated agricultural area using energy maize. Part I: Effect on the farmer's income . Int. J. Phytoremed. , 12 : 650 – 662 .
  • U.S. Department of Health and Human Services . 2005 . Eleventh report on carcinogens , Washington , DC : U.S Department of Health and Human Services .
  • Usman , A. R.A. and Mohamed , H. M. 2009 . Effect of microbial inoculation and EDTA on the uptake and translocation of heavy metal by corn and sunflower . Chemosphere , 76 : 893 – 899 .
  • van Nevel , L. , Mertens , J. , Oorts , K. and Verheyen , K. 2007 . Phytoextraction of metals from soils: How far from practice? . Environ. Pollut. , 150 : 34 – 40 .
  • Vangronsveld , J. , Herzig , R. , Weyens , N. , Boulet , J. , Adriaensen , K. , Ruttens , A. , Thewys , T. , Vassilev , A. , Meers , E. , Nehnevajova , E. , van der Lelie , D. and Mench , M. 2009 . Phytoremediation of contaminated soils and groundwater: Lessons from the field . Environ. Sci. Pollut. Res. , 16 : 765 – 794 .
  • Verbruggen , N. , Hermans , C. and Schat , H. 2009 . Mechanisms to cope with arsenic or cadmium excess in plants . Curr. Opin. Plant Biol. , 12 : 364 – 72 .
  • Verret , F. , Gravot , A. , Auroy , P. , Leonhardt , N. , David , P. , Nussaume , L. , Vavasseur , A. and Richaud , P. 2004 . Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance . FEBS Lett. , 576 : 306 – 312 .
  • Vogel-Mikuš , K. , Drobne , D. and Regvar , M. 2005 . Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia . Environ. Pollut. , 133 : 233 – 242 .
  • Vysloužilová , M. , Tlustoš , P. and Száková , J. 2003 . Cadmium and zinc phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soils . Plant Soil Environ. , 49 : 542 – 547 .
  • Wang , A. S. , Angle , J. S. , Chaney , R. L. , Delorme , T. A. and Reeves , R. D. 2006 . Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens . Plant Soil , 281 : 325 – 337 .
  • Wang , F. Y. , Lin , X. G. and Yin , R. 2005 . Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil . Plant Soil , 269 : 225 – 232 .
  • Watanabe , T. , Shimbo , S. , Moon , C. S. , Zhang , Z. W. and Ikeda , M. 1996 . Cadmium contents in rice samples from various areas in the world . Sci. Total Environ. , 184 : 191 – 196 .
  • Wei , S. H. , Zhou , Q. X. and Koval , P. V. 2006 . Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L., and their significance to phytoremediation . Sci. Total Environ. , 369 : 441 – 446 .
  • Wei , S. H. , Teixeira da Silva , J. A. and Zhou , Q. X. 2008 . Agro-improving method of phytoextracting heavy metal contaminated soil . J. Hazard. Mater. , 150 : 662 – 668 .
  • Wei , S. H. , Zhou , Q. X. , Wang , X. , Zhang , K. S. , Guo , G. L. and Ma , L. Q. 2005 . A newly-discovered Cd-hyperaccumulator Solanum nigrum L . Chin. Sci. Bull. , 50 : 33 – 38 .
  • Wei , S. H. , Zhou , Q. X. , Xiao , H. , Yang , C. J. , Hu , Y. H. and Ren , L. P. 2009 . Hyperaccumulative property comparision of 24 weed species to heavy metals using a pot culture experiment . Environ. Monit. Assess. , 152 : 299 – 307 .
  • Weyens , N. , van der Lelie , D. , Taghavi , S. , Newman , L. and Vangronsveld , J. 2009 . Exploiting plant-microbe partnerships to improve biomass production and remediation . Trends Biotechnol. , 27 : 591 – 598 .
  • Whiting , S. N. , de Souza , M. P. and Terry , N. 2001 . Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens . Environ. Sci. Technol. , 35 : 3144 – 3150 .
  • Wieshammer , G. , Unterbrunner , R. , Garcia , T. B. , Zivkovic , M. F. , Puschenreiter , M. and Wenzel , W. W. 2007 . Phytoextraction of Cd and Zn from agricultural soils by Salix ssp., and intercropping of Salix caprea and Arabidopsis halleri . Plant Soil , 298 : 255 – 264 .
  • World Health Organization . 1992 . Environmental health criteria Vol. 134: Cadmium , Geneva , , Switzerland : WHO .
  • Wong , C. K.E. and Cobbett , C. S. 2009 . HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana . New Phytol. , 181 : 71 – 78 .
  • Wong , C. K.E. , Jarvis , R. S. , Sherson , S. M. and Cobbett , C. S. 2009 . Functional analysis of the heavy metal binding domains of the Zn/Cd-transporting ATPase, HMA2, in Arabidopsis thaliana . New Phytol. , 181 : 79 – 88 .
  • Wu , C. H. , Bernard , S. M. , Andersen , G. L. and Chen , W. 2009 . Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration . Microb. Biotechnol. , 2 : 428 – 440 .
  • Wu , F. Z. , Yang , W. Q. , Zhang , J. and Zhou , L. Q. 2010 . Cadmium accumulation and growth responses of a poplar (Populus deltoids × Populus nigra) in cadmium contaminated purple soil and alluvial soil . J. Hazard. Mater. , 177 : 268 – 273 .
  • Wu , Q. T. , Deng , J. C. , Long , X. X. , Morel , J. L. and Schwartz , C. 2006 . Selection of appropriate organic additives for enhancing Zn and Cd phytoextraction by hyperaccumulators . J. Environ. Sci. , 18 : 1113 – 1118 .
  • Wu , Q. T. , Wei , Z. B. and Ouyang , Y. 2007 . Phytoextraction of metal-contaminated soil by Sedum alfredii H: Effects of chelator and co-planting . Water Air Soil Pollut. , 180 : 131 – 139 .
  • Xie , H. L. , Jiang , R. F. , Zhang , F. S. , McGrath , S. P. and Zhao , F. J. 2009 . Effect of nitrogen form on the rhizosphere dynamics and uptake of cadmium and zinc by the hyperaccumulator Thlaspi caerulescens . Plant Soil , 318 : 205 – 215 .
  • Xu , J. , Zhang , Y. X. , Chai , T. Y. , Guan , Z. Q. , Wei , W. , Han , L. and Cong , L. 2008 . In vitro multiplication of heavy metals hyperaccumulator Thlaspi caerulescens . Biol. Plantarum. , 52 : 97 – 100 .
  • Xu , L. S. , Zhou , S. B. , Wu , L. H. , Li , N. , Cui , L. Q. , Luo , Y. M. and Christie , P. 2009 . Cd and Zn tolerance and accumulation by Sedum Jinianum in east China . Int. J. Phytoremed. , 11 : 283 – 295 .
  • Yamato , M. , Yoshida , S. and Iwase , K. 2008 . Cadmium accumulation in Crassocephalum crepidioides (Benth.) S. Moore (Compositae) in heavy-metal polluted soils and Cd-added conditions in hydroponic and pot cultures . Soil Sci. Plant Nutr. , 54 : 738 – 743 .
  • Yanai , J. , Zhao , F. J. , McGrath , S. P. and Kosaki , T. 2006 . Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens . Environ. Pollut. , 139 : 167 – 175 .
  • Yang , X. E. , Long , X. X. , Ye , H. B. , He , Z. L. , Calvert , D. V. and Stoffella , P. J. 2004 . Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance) . Plant Soil , 259 : 181 – 189 .
  • Yu , X. Z. , Cheng , J. M. and Wong , M. H. 2005 . Earthworm–mycorrhiza interaction on Cd uptake and growth of ryegrass . Soil Biol. Biochem. , 37 : 195 – 201 .
  • Zaccheo , P. , Crippa , L. and Pasta , V. D. 2006 . Ammonium nutrition as a strategy for cadmium mobilisation in the rhizosphere of sunflower . Plant Soil , 283 : 43 – 56 .
  • Zhang , H. , Dang , Z. , Zheng , L. C. and Yi , X. Y. 2009 . Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.) . Int. J. Environ. Sci. Technol. , 6 : 249 – 258 .
  • Zhao , F. J. , Lombi , E. and McGrath , S. P. 2003 . Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens . Plant Soil , 249 : 37 – 43 .
  • Zhao , F. J. and McGrath , S. P. 2009 . Biofortification and phytoremediation . Curr. Opin. Plant Biol. , 12 : 373 – 380 .
  • Zhao , S. J. , Zhang , Z. C. , Gao , X. , Tohsun , G. and Qiu , B. S. 2009 . Plant regeneration of the mining ecotype Sedum alfredii and cadmium hyperaccumulation in regenerated plants . Plant Cell Tissue Organ Cult. , 99 : 9 – 16 .
  • Zhuang , P. , Yang , Q. W. , Wang , H. B. and Shu , W. S. 2007 . Phytoextraction of heavy metals by eight plant species in the field . Water Air Soil Pollut. , 184 : 235 – 242 .
  • Ziska , L. H. 1998 . The influence of root zone temperature on photosynthetic acclimation to elevated carbon dioxide concentrations . Ann. Bot. , 81 : 717 – 721 .