573
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Anaerobic Granule Technologies for Hydrogen Recovery from Wastes: The Way Forward

&
Pages 1246-1280 | Published online: 08 May 2013

REFERENCES

  • Abreu , A. A. , Costa , J. C. , Araya-Kroff , P. , Ferreira , E. C. and Alves , M. M. 2007 . Quantitative image analysis as a diagnostic tool for identifying structural changes during a revival process of anaerobic granular sludge . Water Res. , 41 : 1473 – 1480 .
  • Agler , M. T. , Wrenn , B. A. , Zinder , S. H. and Angenent , L. T. 2011 . Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform . Trends Biotechnol. , 29 : 70 – 78 .
  • Ahn , Y. H. 2000 . Physicochemical and microbial aspects of anaerobic granular biopellets . Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering , 35 : 1617 – 1635 .
  • Ahn , Y. H. , Song , Y. J. , Lee , Y. J. and Park , S. 2002 . Physicochemical characterization of UASB sludge with different size distributions . Environ. Technol. , 23 : 889 – 897 .
  • Akutsu , Y. , Lee , D. Y. , Chi , Y. Z. , Li , Y. Y. , Harada , H. and Yu , H. Q. 2009a . Thermophilic fermentative hydrogen production from starch-wastewater with bio-granules . Int. J. Hydrogen Energy , 34 : 5061 – 5071 .
  • Akutsu , Y. , Li , Y. Y. , Harada , H. and Yu , H. Q. 2009b . Effects of temperature and substrate concentration on biological hydrogen production from starch . Int. J. Hydrogen Energy , 34 : 2558 – 2566 .
  • Alibhai , K. R.K. and Forstera , C. F. 1986 . Physicochemical and biological characteristics of sludges produced in anaerobic upflow sludge blanket reactors . Enzyme Microb. Technol. , 8 : 601 – 606 .
  • Amaral , A. L. , Pereira , M. A. , da Motta , M. , Pons , M. N. , Mota , M. , Ferreira , E. C. and Alves , M. M. 2004 . Development of image analysis techniques as a tool to detect and quantify morphological changes in anaerobic sludge. II. Application to a granule deterioration process triggered by contact with oleic acid . Biotechnol. Bioeng. , 87 : 194 – 199 .
  • Andersch , W. , Bahl , H. and Gottschalk , G. 1983 . Level of enzymes involved in acetate, butyrate, acetone and butanol formation by Clostridium acetobutylicum . Appl. Microbiol. Biotechnol. , 18 : 327 – 332 .
  • Angenent , L. T. , Karim , K. , Al-Dahhan , M. H. , Wrenn , B. A. and Domiguez-Espinosa , R. 2004 . Production of bioenergy and biochemicals from industrial and agricultural wastewater . Trends Biotechnol. , 22 : 477 – 485 .
  • Araya-Kroff , P. , Amaral , A. L. , Neves , L. , Ferreira , E. C. , Pons , M. N. , Mota , M. and Alves , M. M. 2004 . Development of image analysis techniques as a tool to detect and quantify morphological changes in anaerobic sludge: I. Application to a granulation process . Biotechnol. Bioeng. , 87 : 184 – 193 .
  • Argun , H. and Kargi , F. 2009 . Effects of sludge pre-treatment method on bio-hydrogen production by dark fermentation of waste ground wheat . Int. J. Hydrogen Energy , 34 : 8543 – 8548 .
  • Banerjee , I. , Modak , J. M. , Bandopadhyay , K. , Das , D. and Maiti , B. R. 2001 . Mathematical model for evaluation of mass transfer limitations in phenol biodegradation by immobilized Pseudomonas putida . J. Biotechnol. , 87 : 211 – 223 .
  • Barros , A. R. , Cavalcante de Amorim , E. L. , Reis , C. M. , Shida , G. M. and Silva , E. L. 2010 . Biohydrogen production in anaerobic fluidized bed reactors: Effect of support material and hydraulic retention time . Int. J. Hydrogen Energy , 35 : 3379 – 3388 .
  • Bhunia , P. and Ghangrekar , M. M. 2008 . Effects of cationic polymer on performance of UASB reactors treating low strength wastewater . Bioresour. Technol. , 99 : 350 – 358 .
  • Cavalcante de Amorim , E. L. , Barros , A. R. , Rissato Zamariolli Damianovic , M. H. and Silva , E. L. 2009a . Anaerobic fluidized bed reactor with expanded clay as support for hydrogen production through dark fermentation of glucose . Int. J. Hydrogen Energy , 34 : 783 – 790 .
  • Cavalcante de Amorim , E. L. , Barros , A. R. , Rissato , Z. D.M.H. and Silva , E. L. 2009b . Anaerobic fluidized bed reactor with expanded clay as support for hydrogen production through dark fermentation of glucose . Int. J. Hydrogen Energy , 34 : 783 – 790 .
  • Chang , F. Y. and Lin , C. Y. 2004 . Biohydrogen production using an up-flow anaerobic sludge blanket reactor . Int. J. Hydrogen Energy , 29 : 33 – 39 .
  • Chang , J. S. , Lee , K. S. and Lin , P. J. 2002 . Biohydrogen production with fixed-bed bioreactors . Int. J. Hydrogen Energy , 27 : 1167 – 1174 .
  • Chen , C. C. , Lin , C. Y. and Lin , M. C. 2002 . Acid-base enrichment enhances anaerobic hydrogen production process . Appl. Microbiol. Biotechnol. , 58 : 224 – 228 .
  • Cheng , J. , Su , H. , Zhou , J. , Song , W. and Cen , K. 2011 . Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark- and photo-fermentation . Int. J. Hydrogen Energy , 36 : 2093 – 2101 .
  • Chidthaisong , A. and Conrad , R. 2000 . Specificity of chloroform, 2-bromoetha nesulfonate and fluoroacetate to inhibit methanogenesis and other anaerobic processes in anoxic rice field soil . Soil Biol. Biochem. , 32 : 977 – 988 .
  • Costa , J. , Moita , I. , Abreu , A. , Ferreira , E. and Alves , M. 2009 . Advanced monitoring of high-rate anaerobic reactors through quantitative image analysis of granular sludge and multivariate statistical analysis , Vol. 102 , 445 – 456 . Wiley Subscription Services, Inc. .
  • Das , D. 2009 . Advances in biohydrogen production processes: An approach toward commercialization . Int. J. Hydrogen Energy , 34 : 7349 – 7357 .
  • Dashtban , M. , Schraft , H. and Qin , W. S. 2009 . Fungal bioconversion of lignocellulosic residues: opportunities & perspectives . Int. J. Biol. Sci. , 5 : 578 – 595 .
  • Davila-Vazquez , G. , Arriaga , S. , Alatriste-Mondragón , F. , de León-Rodríguez , A. , Rosales-Colunga , L. and Razo-Flores , E. 2008 . Fermentative biohydrogen production: trends and perspectives . Reviews in Environmental Science and Biotechnology , 7 : 27 – 45 .
  • De los Reyes , F. L III . 2010 . Challenges in determining causation in structure-function studies using molecular biological techniques . Water Res. , 44 : 4948 – 4957 .
  • Dictor , M. C. , Joulian , C. , Touz , S. , Ignatiadis , I. and Guyonnet , D. 2010 . Electro-stimulated biological production of hydrogen from municipal solid waste . Int. J. Hydrogen Energy , 35 : 10682 – 10692 .
  • Ding , J. , Liu , B. F. , Ren , N. Q. , Xing , D. F. , Guo , W. Q. , Xu , J. F. and Xie , G. J. 2009 . Hydrogen production from glucose by co-culture of Clostridium Butyricum and immobilized Rhodopseudomonas faecalis RLD-53 . Int. J. Hydrogen Energy , 34 : 3647 – 3652 .
  • Ding , J. , Wang , X. , Zhou , X. F. , Ren , N. Q. and Guo , W. Q. 2010 . CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production . Bioresour. Technol. , 101 : 7005 – 7013 .
  • Dong , L. , Zhenhong , Y. , Yongming , S. , Xiaoying , K. and Yu , Z. 2009 . Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation . Int. J. Hydrogen Energy , 34 : 812 – 820 .
  • Elbeshbishy , E. , Hafez , H. and Nakhla , G. 2010 . Enhancement of biohydrogen producing using ultrasonication . Int. J. Hydrogen Energy , 35 : 6184 – 6193 .
  • Fang , H. H.P. , Liu , H. and Zhang , T. 2002 . Characterization of a hydrogen-producing granular sludge . Biotechnol. Bioeng. , 78 : 44 – 52 .
  • Ferng , Y. M. and Su , A. 2007 . A three-dimensional full-cell CFD model used to investigate the effects of different flow channel designs on PEMFC performance . Int. J. Hydrogen Energy , 32 : 4466 – 4476 .
  • Frigon , J. C. and Guiot , S. R. 1995 . Impact of liquid-to-gas hydrogen mass transfer on substrate conversion efficiency of an upflow anaerobic sludge bed and filter reactor . Enzyme Microb. Technol. , 17 : 1080 – 1086 .
  • Fritsch , M. , Hartmeier , W. and Chang , J. S. 2008 . Enhancing hydrogen production of Clostridium butyricum using a column reactor with square-structured ceramic fittings . Int. J. Hydrogen Energy , 33 : 6549 – 6557 .
  • Gößner , A. S. , Picardal , F. , Tanner , R. S. and Drake , H. L. 2008 . Carbon metabolism of the moderately acid-tolerant acetogen Clostridium drakei isolated from peat . FEMS Microbiol. Lett. , 287 : 236 – 242 .
  • Görner , T. , de Donato , P. , Ameil , M.-H. , Montarges-Pelletier , E. and Lartiges , B. S. 2003 . Activated sludge exopolymers: separation and identification using size exclusion chromatography and infrared micro-spectroscopy . Water Res. , 37 : 2388 – 2393 .
  • Gavala , H. N. , Skiadas , I. V. and Ahring , B. K. 2006 . Biological hydrogen production in suspended and attached growth anaerobic reactor systems . Int. J. Hydrogen Energy , 31 : 1164 – 1175 .
  • George , H. A. and Chen , J. S. 1983 . Acidic conditions are not obligatory for onset of butanol formation by Clostridium beijerinckii (Synonym C. butylicum) . Appl. Environ. Microbiol. , 46 : 321 – 327 .
  • Guo , L. , Li , X. M. , Bo , X. , Yang , Q. , Zeng , G. M. , Liao , D. X. and Liu , J. J. 2008a . Impacts of sterilization, microwave and ultrasonication pretreatment on hydrogen producing using waste sludge . Bioresour. Technol. , 99 : 3651 – 3658 .
  • Guo , W. Q. , Ren , N. Q. , Chen , Z. B. , Liu , B. F. , Wang , X. J. , Xiang , W. S. and Ding , J. 2008b . Simultaneous biohydrogen production and starch wastewater treatment in an acidogenic expanded granular sludge bed reactor by mixed culture for long-term operation . Int. J. Hydrogen Energy , 33 : 7397 – 7404 .
  • Guo , W. Q. , Ren , N. Q. , Wang , X. J. and Xiang , W. S. 2010a . Accelerated startup of biological hydrogen production process by addition of Ethanoligenens harbinense B49 in a biofilm-based column reactor . Int. J. Hydrogen Energy , 35 : 13407 – 13412 .
  • Guo , W. Q. , Ren , N. Q. , Wang , X. J. , Xiang , W. S. , Meng , Z. H. , Ding , J. , Qu , Y. Y. and Zhang , L. S. 2008c . Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor . Int. J. Hydrogen Energy , 33 : 4981 – 4988 .
  • Guo , X. M. , Trably , E. , Latrille , E. , Carrere , H. and Steyer , J. P. 2010b . Hydrogen production from agricultural waste by dark fermentation: A review . Int. J. Hydrogen Energy , 35 : 10660 – 10673 .
  • Hallenbeck , P. C. and Ghosh , D. 2009 . Advances in fermentative biohydrogen production: The way forward? . Trends Biotechnol. , 27 : 287 – 297 .
  • Hawkes , F. R. , Hussy , I. , Kyazze , G. , Dinsdale , R. and Hawkes , D. L. 2007 . Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress . Int. J. Hydrogen Energy , 32 : 172 – 184 .
  • Holladay , J. D. , Hu , J. , King , D. L. and Wang , Y. 2009 . An overview of hydrogen production technologies . Catal. Today , 139 : 244 – 260 .
  • Horn , M. A. , Matthies , C. , Kusel , K. , Schramm , A. and Drake , H. L. 2003 . Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat . Appl. Environ. Microbiol. , 69 : 74 – 83 .
  • Hu , B. and Chen , S. L. 2007 . Pretreatment of methanogenic granules for immobilized hydrogen fermentation . Int. J. Hydrogen Energy , 32 : 3266 – 3273 .
  • Hu , B. , Zhou , X. , Forney , L. and Chen , S. L. 2009 . Changes in microbial community composition following treatment of methanogenic granules with chloroform . Environmental Progress & Sustainable Energy , 28 : 60 – 71 .
  • Hulshoff Pol , L. W. , de Castro Lopes , S. I. , Lettinga , G. and Lens , P. N.L. 2004 . Anaerobic sludge granulation . Water Res. , 38 : 1376 – 1389 .
  • Hulshoff Pol , L. W. , De Zeeuw , W. J. , Velzeboer , C. T.M. and Lettinga , G. 1983 . Granulation in UASB reactors . Water Sci. Technol. , 15 : 291 – 304 .
  • Hung , C. H. , Cheng , C. H. , Guan , D. W. , Wang , S. T. , Hsu , S. C. , Liang , C. M. and Lin , C. Y. 2011 . Interactions between Clostridium sp. and other facultative anaerobes in a self-formed granular sludge hydrogen-producing bioreactor . Int. J. Hydrogen Energy , 36 : 8704 – 8711 .
  • Hung , C. H. , Lee , K. S. , Cheng , L. H. , Huang , Y. H. , Lin , P. J. and Chang , J. S. 2007 . Quantitative analysis of a high-rate hydrogen-producing microbial community in anaerobic agitated granular sludge bed bioreactors using glucose as substrate . Appl. Microbiol. Biotechnol. , 75 : 693 – 701 .
  • Jin , B. , Wilen , B. M. and Lant , P. 2003 . A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge . Chem. Eng. J. , 95 : 221 – 234 .
  • Jo , J. H. , Lee , D. S. , Park , D. and Park , J. M. 2008 . Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process . Bioresour. Technol. , 99 : 6666 – 6672 .
  • Jones , D. T. and Woods , D. R. 1986 . Acetone-butanol fermentation revisited . Microb. Rev , 50 : 484 – 524 .
  • Jones , P. R. 2008 . Improving fermentative biomass-derived H2-production by engineering microbial metabolism . Int. J. Hydrogen Energy , 33 : 5122 – 5130 .
  • Jung , K. W. , Kim , D. H. and Shin , H. S. 2010a . Continuous fermentative hydrogen production from coffee drink manufacturing wastewater by applying UASB reactor . Int. J. Hydrogen Energy , 35 : 13370 – 13378 .
  • Jung , K. W. , Kim , D. H. and Shin , H. S. 2010b . A simple method to reduce the start-up period in a H2-producing UASB reactor . Int. J. Hydrogen Energy , doi:10.1016/j.ijhydene.2010.09.095
  • Kawaguchi , H. , Hashimoto , K. and Hirata , K. K.M. 2001 . H2 production from algal biomass by mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus . J. Biosci. Bioeng. , 91 : 277 – 282 .
  • Kim , D. H. , Han , S. K. , Kim , S. H. and Shin , H. S. 2006a . Effect of gas sparging on continuous fermentative hydrogen production . Int. J. Hydrogen Energy , 31 : 2158 – 2169 .
  • Kim , J. O. , Kim , Y. H. , Ryu , J. Y. , Song , B. K. , Kim , I. H. and Yeom , S. H. 2005 . Immobilization methods for continuous hydrogen gas production biofilm formation versus granulation . Process Biochem. , 40 : 1331 – 1337 .
  • Kim , J. O. , Kim , Y. H. , Yeom , S. H. , Song , B. K. and Kim , I. H. 2006b . Enhancing continuous hydrogen gas production by the addition of nitrate into an anaerobic reactor . Process Biochem. , 41 : 1208 – 1212 .
  • Koskinen , P. E.P. , Kaksonen , A. H. and Puhakka , J. A. 2007 . The relationship between instability of H2 production and compositions of bacterial communities within a dark fermentation fluidized-bed bioreactor . Biotechnology and Bioengeering , 97 : 742 – 758 .
  • Kotsopoulos , T. A. , Zeng , R. J. and Angelidaki , I. 2006 . Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyper-thermophilic temperature (70°C) . Biotechnol. Bioeng. , 94 : 296 – 302 .
  • Kraemer , J. and Bagley , D. 2006 . Supersaturation of dissolved H2 and CO2 during fermentative hydrogen production with N2 sparging . Biotechnol. Lett. , 28 : 1485 – 1491 .
  • Kuhar , S. , Nair , L. M. and Kuhad , R. C. 2008 . Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol . Can. J. Microbiol. , 54 : 305 – 313 .
  • Kumar , N. and Das , D. 2001 . Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices . Enzyme Microb. Technol. , 29 : 280 – 287 .
  • Kumar , N. , Ghosh , A. and Das , D. 2001 . Redirection of biochemical pathways for the enhancement of H2 production by Enterobacter cloacae . Biotechnol. Lett. , 23 : 537 – 541 .
  • Lee , H. S. , Salerno , M. B. and Rittmann , B. E. 2008 . Thermodynamic evaluation on H2 production in glucose fermentation . Environ. Sci. Technol. , 42 : 2401 – 2407 .
  • Lee , H. S. , Vermaas , W. F.J. and Rittmann , B. E. 2010 . Biological hydrogen production: prospects and challenges . Trends Biotechnol. , 28 : 262 – 271 .
  • Lee , K. S. , Lin , P. J. and Chang , J. S. 2006a . Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers . Int. J. Hydrogen Energy , 31 : 465 – 472 .
  • Lee , K. S. , Lin , P. J. , Fangchiang , K. and Chang , J. S. 2007 . Continuous hydrogen production by anaerobic mixed microflora using a hollow-fiber microfiltration membrane bioreactor . Int. J. Hydrogen Energy , 32 : 950 – 957 .
  • Lee , K. S. , Lo , Y. C. , Lin , P. J. and Chang , J. S. 2006b . Improving biohydrogen production in a carrier-induced granular sludge bed by altering physical configuration and agitation pattern of the bioreactor . Int. J. Hydrogen Energy , 31 : 1648 – 1657 .
  • Lee , K. S. , Lo , Y. S. , Lo , Y. C. , Lin , P. J. and Chang , J. S. 2004a . Operation strategies for biohydrogen production with a high-rate anaerobic granular sludge bed bioreactor . Enzyme Microb. Technol. , 35 : 605 – 612 .
  • Lee , K. S. , Wu , J. F. , Lo , Y. S. , Lo , Y. C. , Lin , P. J. and Chang , J. S. 2004b . Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor . Biotechnology and Bioengeering , 87 : 648 – 657 .
  • Li , C. L. and Fang , H. H.P. 2007 . Fermentative hydrogen production from wastewater and solid wastes by mixed cultures . Crit. Rev. Environ. Sci. Technol. , 37 : 1 – 39 .
  • Li , S. L. , Kuo , S. C. , Lin , J. S. , Lee , Z. K. , Wang , Y. H. and Cheng , S. S. 2008 . Process performance evaluation of intermittent-continuous stirred tank reactor for anaerobic hydrogen fermentation with kitchen waste . Int. J. Hydrogen Energy , 33 : 1522 – 1531 .
  • Li , W. W. , Sheng , G. P. , Liu , X. W. , Cai , P. J. , Sun , M. , Xiao , X. , Wang , Y. K. , Tong , Z. H. , Dong , F. and Yu , H. Q. 2011 . Impact of a static magnetic field on the electricity production of Shewanella-inoculated microbial fuel cells . Biosensors Bioelectron. , 26 : 3987 – 3992 .
  • Li , W. W. and Yu , H. Q. 2011a . “ Biohydrogen production with high-rate bioreactors ” . In Biofuels , 537 – 567 . Academic Press .
  • Li , W. W. and Yu , H. Q. 2011b . Physicochemical characteristics of anaerobic H2-producing granular sludge . Bioresour. Technol. , doi:10.1016/j.bior tech.2011.02.110
  • Li , Y. F. , Hui , Y. M. , Yao , X. , Wang , L. , Song , Q. W. , Liu , S. and Dong , S. M. 2010 . Continuous fermentative hydrogen production from brown sugar using EGSB reactor . Advanced Materials Research , 113–116 : 1132 – 1137 .
  • Liang , D. W. , Shayegan , S. S. , Ng , W. J. and He , J. 2010 . Development and characteristics of rapidly formed hydrogen-producing granules in an acidic anaerobic sequencing batch reactor (AnSBR) . Biochem. Eng. J. , 49 : 119 – 125 .
  • Lin , C. N. , Wu , S. Y. and Chang , J. S. 2006a . Fermentative hydrogen production with a draft tube fluidized bed reactor containing silicone-gel-immobilized anaerobic sludge . Int. J. Hydrogen Energy , 31 : 2200 – 2210 .
  • Lin , C. Y. , Hung , C. H. , Chen , C. H. , Chung , W. T. and Cheng , L. H. 2006b . Effects of initial cultivation pH on fermentative hydrogen production from xylose using natural mixed cultures . Process Biochem. , 41 : 1383 – 1390 .
  • Lin , C. Y. , Wu , C. C. and Hung , C. H. 2008 . Temperature effects on fermentative hydrogen production from xylose using mixed anaerobic cultures . Int. J. Hydrogen Energy , 33 : 43 – 50 .
  • Liu , B. F. , Ren , N. Q. , Xing , D. F. , Ding , J. , Zheng , G. X. , Guo , W. Q. , Xu , J. F. and Xie , G. J. 2009a . Hydrogen production by immobilized R. faecalis RLD-53 using soluble metabolites from ethanol fermentation bacteria E. harbinense B49 . Bioresour. Technol. , 100 : 2719 – 2723 .
  • Liu , C. Z. and Cheng , X. Y. 2010 . Improved hydrogen production via thermophilic fermentation of corn stover by microwave-assisted acid pretreatment . Int. J. Hydrogen Energy , 35 : 8945 – 8952 .
  • Liu , H. and Fang , H. H.P. 2003 . Hydrogen production from wastewater by acidogenic granular sludge . Water Sci. Technol. , 47 : 153 – 158 .
  • Liu , X. W. , Sheng , G. P. and Yu , H. Q. 2009b . Physicochemical characteristics of microbial granules . Biotechnol. Adv. , 27 : 1061 – 1070 .
  • Liu , Y. and Tay , J.-H. 2002 . The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge . Water Res. , 36 : 1653 – 1665 .
  • Liu , Y. and Tay , J.-H. 2004 . State of the art of biogranulation technology for wastewater treatment . Biotechnol. Adv. , 22 : 533 – 563 .
  • Liu , Y. , Yu , P. , Song , X. and Qu , Y. B. 2008 . Hydrogen production from cellulose by coculture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17 . Int. J. Hydrogen Energy , 33 : 2927 – 2933 .
  • Liu , Y. , Zhang , Y. , Quan , X. , Chen , S. and Zhao , H. 2010 . Applying an electric field in a built-in zero valent iron anaerobic reactor for enhancement of sludge granulation . Water Res. , 45 : 1258 – 1266 .
  • Lo , Y. C. , Lee , K. S. , Lin , P. J. and Chang , J. S. 2009 . Bioreactors configured with distributors and carriers enhance the performance of continuous dark hydrogen fermentation . Bioresour. Technol. , 100 : 4381 – 4387 .
  • Luo , G. , Xie , L. , Zou , Z. , Wang , W. , Zhou , Q. and Shim , H. 2010a . Anaerobic treatment of cassava stillage for hydrogen and methane production in continuously stirred tank reactor (CSTR) under high organic loading rate (OLR) . Int. J. Hydrogen Energy , 35 : 11733 – 11737 .
  • Luo , G. , Xie , L. , Zou , Z. H. , Zhou , Q. and Wang , J. Y. 2010b . Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: Effects of temperature and pH . Applied Energy , 87 : 3710 – 3717 .
  • Maeda , T. , Sanchez-Torres , V. and Wood , T. K. 2007a . Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli . Appl. Microbiol. Biotechnol. , 77 : 879 – 890 .
  • Maeda , T. , Sanchez-Torres , V. and Wood , T. K. 2007b . Metabolic engineering to enhance bacterial hydrogen production . Microbial Biotechnology , 1 : 30 – 39 .
  • Malherbe , S. and Cloete , T. E. 2002 . Lignocellulose biodegradation: fundamentals and applications . Rev. Environ. Sci. Biotechnol. , 1 : 105 – 114 .
  • Mathews , J. and Wang , G. 2009 . Metabolic pathway engineering for enhanced biohydrogen production . Int. J. Hydrogen Energy , 34 : 7404 – 7416 .
  • McNeely , K. , Xu , Y. , Bennette , N. , Bryant , D. A. and Dismukes , G. C. 2010 . Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium . Appl. Environ. Microbiol. , 76 : 5032 – 5038 .
  • Morgan , J. W. , Forster , C. F. and Evison , L. 1990 . A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges . Water Res. , 24 : 743 – 750 .
  • Mu , Y. and Yu , H. Q. 2006a . Biological hydrogen production in a UASB reactor with granules. I: Physicochemical characteristics of hydrogen-producing granules . Biotechnol. Bioeng. , 94 : 980 – 987 .
  • Mu , Y. and Yu , H. Q. 2006b . Rheological and fractal characteristics of granular sludge in an upflow anaerobic reactor . Water Res. , 40 : 3596 – 3602 .
  • Mu , Y. and Yu , H. Q. 2007 . Simulation of biological hydrogen production in a UASB reactor using neural network and genetic algorithm . Int. J. Hydrogen Energy , 32 : 3308 – 3314 .
  • Mu , Y. , Yu , H. Q. and Wang , Y. 2006 . The role of pH in the fermentative H2 production from an acidogenic granule-based reactor . Chemosphere , 64 : 350 – 358 .
  • Mu , Y. , Zheng , X.-J. and Yu , H.-Q. 2009 . Determining optimum conditions for hydrogen production from glucose by an anaerobic culture using response surface methodology (RSM) . Int. J. Hydrogen Energy , 34 : 7959 – 7963 .
  • Nath , K. , Chittibabu , G. and Das , D. Continuous hydrogen production by immobilized Enterobacter cloacae DM11 using cane molasses as feedstock . Proceedings International Hydrogen Energy Congress and Exhibition IHEC, Istanbul, Turkey ,
  • Nath , K. and Das , D. 2004 . Improvement of fermentative hydrogen production: various approaches . Appl. Microbiol. Biotechnol. , 65 : 520 – 529 .
  • Oh , S. E. , Van Ginkel , S. and Logan , B. E. 2003 . The Relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production . Environ. Sci. Technol. , 37 : 5186 – 5190 .
  • Patel , S. K.S. , Purohit , H. J. and Kalia , V. C. 2010 . Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on ligno-cellulosic waste materials . Int. J. Hydrogen Energy , 35 : 10674 – 10681 .
  • Peintner , C. , Zeidan , A. A. and Schnitzhofer , W. 2010 . Bioreactor systems for thermophilic fermentative hydrogen production: evaluation and comparison of appropriate systems . J. Cleaner Prod. , 18 : S15 – S22 .
  • Pulvin , S. and Bourdillon , C. 1986 . Kinetic studies of the hydrogen production by an hydrogenase reactor . Enzyme Microb. Technol. , 8 : 137 – 140 .
  • Ren , N. , Wang , A. , Cao , G. , Xu , J. and Gao , L. 2009 . Bioconversion of lignocellulosic biomass to hydrogen: Potential and challenges . Biotechnol. Adv. , 27 : 1051 – 1060 .
  • Ren , N. Q. , Tang , J. , Liu , B. F. and Guo , W. Q. 2010a . Biological hydrogen production in continuous stirred tank reactor systems with suspended and attached microbial growth . Int. J. Hydrogen Energy , 35 : 2807 – 2813 .
  • Ren , Z. , Ramasamy , R. P. , Cloud-Owen , S. R. , Yan , H. , Mench , M. M. and Regan , J. M. 2010b . Time-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells . Bioresour. Technol. , 102 : 416 – 421 .
  • Schmidt , J. E. and Ahring , B. K. 1996 . Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors . Biotechnol. Bioeng. , 49 : 229 – 246 .
  • Shen , C. F. , Kosaric , N. and Blaszczyk , R. 1993 . The effect of selected heavy metals (Ni, Co and Fe) on anaerobic granules and their Extracellular Polymeric Substance (EPS) . Water Res. , 27 : 25 – 33 .
  • Sheng , G. P. and Yu , H. Q. 2006a . Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy . Water Res. , 40 : 1233 – 1239 .
  • Sheng , G. P. and Yu , H. Q. 2006b . Relationship between the extracellular polymeric substances and surface characteristics of Rhodopseudomonas acidophila . Appl. Microbiol. Biotechnol. , 72 : 126 – 131 .
  • Sheng , G. P. , Yu , H. Q. and Li , X. Y. 2010 . Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review . Biotechnol. Adv. , 28 : 882 – 894 .
  • Shervedani , R. K. , Hemmatian , Z. and Hatefi-Mehrjardi , A. 2009 . Immobilization of l-lysine [alpha]-oxidase on gold-mercaptopropionic acid self-assembled monolayer: Preparation and electrochemical characterization . Bioelectrochemistry; , 75 : 124 – 129 .
  • Shida , G. M. , Barros , A. R. , Reis , C. M.D. , Amorim , E. L.C.D. , Rissato Zamariolli Damianovic , M. H. and Silva , E. L. 2009 . Long-term stability of hydrogen and organic acids production in an anaerobic fluidized-bed reactor using heat treated anaerobic sludge inoculum . Int. J. Hydrogen Energy , 34 : 3679 – 3688 .
  • Shin , H. S. , Youn , J. H. and Kim , S. H. 2004 . Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis . Int. J. Hydrogen Energy , 29 : 1355 – 1363 .
  • Show , K. Y. , Zhang , Z. P. , Tay , J. H. , Liang , D. T. , Lee , D. J. and Jiang , W. J. 2007 . Production of hydrogen in a granular sludge-based anaerobic continuous stirred tank reactor . Int. J. Hydrogen Energy , 32 : 4744 – 4753 .
  • Show , K. Y. , Zhang , Z. P. , Tay , J. H. , Liang , D. T. , Lee , D. J. , Ren , N. and Wang , A. 2010a . Critical assessment of anaerobic processes for continuous biohydrogen production from organic wastewater . Int. J. Hydrogen Energy , 35 : 13350 – 13355 .
  • Show , K. Y. , Zhang , Z. P. , Tay , J. H. , Liang , D. T. , Lee , D. J. , Ren , N. and Wang , A. 2010b . Critical assessment of anaerobic processes for continuous biohydrogen production from organic wastewater . Int. J. Hydrogen Energy , 35 : 13350 – 13355 .
  • Su , H. B. , Cheng , J. , Zhou , J. H. , Song , W. L. and Cen , K. F. 2010a . Hydrogen production from water hyacinth through dark- and photo- fermentation . Int. J. Hydrogen Energy , 35 : 8929 – 8937 .
  • Su , Z. , Kang , R. , Shi , S. , Cong , W. and Cai , Z. 2010b . Study on the destabilization mixing in the flat plate photobioreactor by means of CFD . Biomass Bioenergy , 34 : 1879 – 1884 .
  • Tront , J. M. , Fortner , J. D. , Plötze , M. , Hughes , J. B. and Puzrin , A. M. 2008 . Microbial fuel cell biosensor for in situ assessment of microbial activity . Biosensors Bioelectron. , 24 : 586 – 590 .
  • Valdez-Vazquez , I. and Poggi-Varaldo , H. M. 2009 . Hydrogen production by fermentative consortia . Renew. Sustain. Energy Rev. , 13 : 1000 – 1013 .
  • Valdez-Vazquez , I. , Rios-Leal , E. , Carmona-Martinez , A. , Munoz-Paez , K. M. and Poggi-Varaldo , H. M. 2006 . Improvement of biohydrogen production from solid wastes by intermittent venting and gas flushing of batch reactors headspace . Environ. Sci. Technol. , 40 : 3409 – 3415 .
  • Valdez-Vazquez , I. , Rlvirs-Leal , E. , Esparza-Garcia , F. , Cecchi , F. and Poggi-Varaldo , H. M. 2005a . Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: Mesophilic versus thermophilic regime . Int. J. Hydrogen Energy , 30 : 1383 – 1391 .
  • Valdez-Vazquez , I. , Sparling , R. , Risbey , D. , Rinderknecht-Seijas , N. and Poggi-Varaldo , H. M. 2005b . Hydrogen generation via anaerobic fermentation of paper mill wastes . Bioresour. Technol. , 96 : 1907 – 1913 .
  • Vardar-Schara , G. , Maeda , T. and Wood , T. K. 2008 . Metabolically engineered bacteria for producing hydrogen via fermentation . Microbial Biotechnology , 1 : 107 – 125 .
  • Vijayaraghavan , K. , Ahmad , D. , Khairil Bin Ibrahim , M. and Naemmah Binti Herman , H. 2006 . Isolation of hydrogen generating microflora from cow dung for seeding anaerobic digester . Int. J. Hydrogen Energy , 31 : 708 – 720 .
  • Wang , J. and Wan , W. 2008 . Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge . Int. J. Hydrogen Energy , 33 : 2934 – 2941 .
  • Wang , J. and Wan , W. 2009 . Kinetic models for fermentative hydrogen production: A review . Int. J. Hydrogen Energy , 34 : 3313 – 3323 .
  • Wang , X. , Ding , J. , Ren , N. Q. , Liu , B. F. and Guo , W. Q. 2009 . CFD simulation of an expanded granular sludge bed (EGSB) reactor for biohydrogen production . Int. J. Hydrogen Energy , 34 : 9686 – 9695 .
  • Wang , Y. Z. , Liao , Q. , Zhu , X. , Tian , X. and Zhang , C. 2010 . Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor . Bioresour. Technol. , 101 : 4034 – 4041 .
  • Williams , R. T. and Crawford , R. L. 1985 . Methanogenic bacteria, including an acid-tolerrant strain, from peatlands . Appl. Environ. Microbiol. , 50 : 1542 – 1544 .
  • Wu , J. , Zhou , H. M. , Li , H. Z. , Zhang , P. C. and Jiang , J. 2009 . Impacts of hydrodynamic shear force on nucleation of flocculent sludge in anaerobic reactor . Water Res. , 43 : 3029 – 3036 .
  • Wu , K. J. , Chang , C. F. and Chang , J. S. 2007 . Simultaneous production of biohydrogen and bioethanol with fluidized-bed and packed-bed bioreactors containing immobilized anaerobic sludge . Process Biochem. , 42 : 1165 – 1171 .
  • Wu , S. Y. , Hung , C. H. , Lin , C. N. , Chen , H. W. , Lee , A. S. and Chang , J. S. 2006 . Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge . Biotechnol. Bioeng. , 93 : 934 – 946 .
  • Wu , S. Y. , Hung , C. H. , Lin , C. Y. , Lin , P. J. , Lee , K. S. , Lin , C. N. , Chang , F. Y. and Chang , J. S. 2008a . HRT-dependent hydrogen production and bacterial community structure of mixed anaerobic microflora in suspended, granular and immobilized sludge systems using glucose as the carbon substrate . Int. J. Hydrogen Energy , 33 : 1542 – 1549 .
  • Wu , S. Y. , Lin , C. N. and Chang , J. S. 2003 . Hydrogen production with immobilized sewage sludge in three-phase fluidized-bed bioreactors . Biotechnol. Prog. , 19 : 828 – 832 .
  • Wu , S. Y. , Lin , C. Y. , Lee , K. S. , Hung , C. H. , Chang , J. S. , Lin , P. J. and Chang , F. Y. 2008b . Dark fermentative hydrogen production from xylose in different bioreactors using sewage sludge microflora . Energy & Fuels , 22 : 113 – 119 .
  • Xiao , F. , Yang , S. F. and Li , X. Y. 2008 . Physical and hydrodynamic properties of aerobic granules produced in sequencing batch reactors . Sep. Purif. Technol. , 63 : 634 – 641 .
  • Yu , H. Q. 2008 . Characteristics of aerobic granules for biological wastewater treatment . J. Biotechnol. , 136 : S605 – S605 .
  • Yu , H. Q. and Mu , Y. 2006 . Biological hydrogen production in a UASB reactor with granules. II: Reactor performance in 3-year operation . Biotechnol. Bioeng. , 94 : 988 – 995 .
  • Yu , H. Q. , Tay , J. H. and Fang , H. H.P. 1999 . Effects of added powdered and granular activated carbons on start-up performance of UASB reactors . Environ. Technol. , 20 : 1095 – 1101 .
  • Yu , H. Q. , Tay , J. H. and Fang , H. H.P. 2001 . The roles of calcium in sludge granulation during uasb reactor start-up . Water Res. , 35 : 1052 – 1060 .
  • Yu , H. Q. , Zhu , Z. H. , Hu , W. R. and Zhang , H. S. 2002 . Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures . Int. J. Hydrogen Energy , 27 : 1359 – 1365 .
  • Zhang , J. J. , Li , X. Y. , Oh , S. E. and Logan , B. E. 2004 . Physical and hydrodynamic properties of flocs produced during biological hydrogen production . Biotechnol. Bioeng. , 88 : 854 – 860 .
  • Zhang , Y. , An , X. and Quan , X. 2011 . Enhancement of sludge granulation in a zero valence iron packed anaerobic reactor with a hydraulic circulation . Process Biochem. , 46 : 471 – 476 .
  • Zhang , Y. and Angelidaki , I. 2011 . Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: Focusing on impact of anodic biofilm on sensor applicability . Biotechnol. Bioeng. , doi: 10.1002/bit.23204
  • Zhang , Z. P. , Adav , S. S. , Show , K. Y. , Tay , J. H. , Liang , D. T. , Lee , D. J. and Su , A. 2008a . Characteristics of rapidly formed hydrogen-producing granules and biofilms . Biotechnol. Bioeng. , 101 : 926 – 936 .
  • Zhang , Z. P. , Show , K. Y. , Tay , J. H. , Liang , D. T. and Lee , D. J. 2008b . Biohydrogen production with anaerobic fluidized bed reactors- A comparison of biofilm-based and granule-based systems . Int. J. Hydrogen Energy , 33 : 1559 – 1564 .
  • Zhang , Z. P. , Show , K. Y. , Tay , J. H. , Liang , D. T. and Lee , D. J. 2008c . Enhanced continuous biohydrogen production by immobilized anaerobic microflora . Energy & Fuels , 22 : 87 – 92 .
  • Zhang , Z. P. , Show , K. Y. , Tay , J. H. , Liang , D. T. , Lee , D. J. and Jiang , W. J. 2007a . Rapid formation of hydrogen-producing granules in an anaerobic continuous stirred tank reactor induced by acid incubation . Biotechnol. Bioeng. , 96 : 1040 – 1050 .
  • Zhang , Z. P. , Show , K. Y. , Tay , J. H. , Liang , D. T. , Lee , D. J. and Su , A. 2008d . The role of acid incubation in rapid immobilization of hydrogen-producing culture in anaerobic upflow column reactors . Int. J. Hydrogen Energy , 33 : 5151 – 5160 .
  • Zhang , Z. P. , Tay , J. H. , Show , K. Y. , Yan , R. , Liang , D. T. , Lee , D. J. and Jiang , W. J. 2007b . Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor . Int. J. Hydrogen Energy , 32 : 185 – 191 .
  • Zhao , B. H. , Yue , Z. B. , Zhao , Q. B. , Mu , Y. , Yu , H. Q. , Harada , H. and Li , Y. Y. 2008 . Optimization of hydrogen production in a granule-based UASB reactor . Int. J. Hydrogen Energy , 33 : 2454 – 2461 .
  • Zhao , Q. B. and Yu , H. Q. 2008 . Fermentative H2 production in an upflow anaerobic sludge blanket reactor at various pH values . Bioresour. Technol. , 99 : 1353 – 1358 .
  • Zhou , J. 2003 . Microarrays for bacterial detection and microbial community analysis . Curr. Opin. Microbiol. , 6 : 288 – 294 .
  • Zhu , H. , Wakayama , T. , Suzuki , T. , Asada , Y. and Miyake , J. 1999 . Entrapment of Rhodobacter sphaeroides RV in cationic polymer/agar gels for hydrogen production in the presence of NH4 + . J. Biosci. Bioeng. , 88 : 507 – 512 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.