1,434
Views
80
CrossRef citations to date
0
Altmetric
Original Articles

Acid Mine Drainage Treatment in Fluidized-Bed Bioreactors by Sulfate-Reducing Bacteria: A Critical Review

, , , &
Pages 2545-2580 | Published online: 29 Oct 2013

REFERENCES

  • Anderson , G. K. , Ozturk , I. and Saw , C. B. 1990 . Pilot-scale experiences on anaerobic fluidized-bed treatment of brewery wastes . Water Science and Technology , 22 : 157 – 166 .
  • Annachhatre , A. P. and Suktrakoolvait , S. 2001 . Biological sulfate reduction using molasses as carbon source . Water Environment Research , 73 ( 1 ) : 118 – 126 .
  • Arnaiz , C. , Buffiere , P. , Elmaleh , S. , Lebrato , J. and Moletta , R. 2003 . Anaerobic digestion of dairy wastewater by inverse fluidization: the inverse fluidized bed and the inverse turbulent bed reactors . Environmental Technology , 24 : 1431 – 1443 .
  • Ashe , N. L. , McLean , I. and Nodwell , M. 2008 . “ Review of operations of the Biosulphide® process plant at the copper queen mine, Bisbee, Arizona ” . In Proceedings of the 6th International Hydrometallurgy Symposium 98 – 107 .
  • Aziz , H. A. , Adlan , M. N. and Ariffin , K. S. 2008 . Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: Post treatment by high quality limestone . Bioresource Technology , 99 : 1578 – 1583 .
  • Badmus , M. A. O. , Audu , T. O. K. and Anyata , B. U. 2007 . Removal of heavy metal from industrial wastewater using hydrogen peroxide . African Journal of Biotechnology , 6 : 238 – 242 .
  • Banks , D. , Younger , P. L. , Amesen , R.-T. , Iversen , E. R. and Banks , S. B. 2008 . Mine-water chemistry: the good, the bad and the ugly . Environmental. Geol. ogy , 32 : 157 – 174 .
  • Barnes , L. J. , Janssen , F. J. , Sherren , J. , Versteegh , J. H. , Koch , R. O. and Sheeren , P. J.H. 1991 . A new process for the microbial removal of sulphate and heavy metals from contaminated water extracted by a geohydrological control system . Chemical Engineering Research & Design , 69 : 184 – 186 .
  • Bhagat , M. , Burgess , J. E. , Antunes , A. P. M. , Whiteley , C. G. and Duncan , J. R. 2004 . Precipitation of mixed metal residues from wastewater utilizing biogenic sulphide . Minerals Engineering , 17 : 925 – 932 .
  • Bijmans , M. F. M. , van Helvoort , P.-J. , Dar , S. A. , Dopson , M. , Lens , P. N. L. and Buisman , C. J. N. 2009 . Selective recovery of nickel over iron from a nickel-iron solution using microbial sulfate-reduction in a gas-lift bioreactor . Water Research , 43 : 853 – 861 .
  • Boehler , E. and Haldenwag , L. 1991 . “ The NEBIO tube reactor process for nitrite removal from drinking water ” . In Proc. eedings of the IWSA Workshop “Inorganic Nitrogen Compounds and Water Supply 71 – 77 . Hamburg
  • Briones , A. M. , Daugherty , B. J. , Angement , L. T. , Rausch , K. D. , Tumbleson , M. E. and Raskin , L. 2007 . Microbial diversity and dynamics in multi- and single-compartment anaerobic bioreactors processing sulfate-rich waste streams . Environmental Microbiology , 9 : 93 – 106 .
  • Brooks , C. S. 1991 . Metal Recovery recovery from Industrial industrial wastes , Chelsea , MI : Lewis Publishers, Chelsea, Michigan .
  • Brown , M. , Barley , B. and Wood , H. 2002 . “ Mine water treatment ” . In The mine-water problem , Edited by: Brown , M. , Barley , B. and Wood , H. 1 – 31 . London , , England : IWA Publishing, Alliance House, London . 1–31
  • Buffiere , P. , Bergeon , J.-P. and Moletta , R. 2000 . The inverse turbulent bed: a novel bioreactor for anaerobic treatment . Water Research , 34 : 673 – 677 .
  • Buisman , C. J. N. , Vellinga , S. H. J. , Jansses , G. H. R. and Dijkman , H. 1999 . Biological sulfide production for metal recovery . TMS Congress “Fundamentals of lead Lead and zinc Zinc extraction Extraction and recyclingRecycling , : 1 – 10 .
  • Cabrera , G. , Pérez , R. , Gómez , J. M. , Ábalos , A. and Cantero , D. 2006 . Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains . Journal of Hazardous Materials , 135 : 40 – 46 .
  • Castilla , P. , Mónica , M. , Monary , O. and Noyola , A. 2000 . Anaerobic treatment of low concentration wastewater in an inverse fluidized bed reactor . Water Science and Technology , 41 : 245 – 251 .
  • Celis-Garcia , L. B. , Razo-Flores , E. and Monroy , O. 2007 . Performance of a Downdown-Flow flow Fluidizedfluidized-Bed bed Reactor reactor under Sulfate sulfate Reduction reduction Conditions conditions Using using Volatile volatile Fatty fatty Acids acids as Electron electron Donorsdonors . Biotechnology and Bioengineering , 97 : 771 – 779 .
  • Celis , L. B. , Villa-Gomez , D. , Alpuche-Solis , A. G. , Ortega-Morales , B. O. and Razo-Flores , E. 2008 . Characterization of sulfate-reducing bacteria dominated surface communities during start-up of a down-flow fluidized bed reactor . Journal of Industrial Microbiology and Biotechnology , 36 : 111 – 121 .
  • Choi , H. S. and Shin , M. S. 1999 . Hydrodynamics study of two different inverse fluidized reactors for the application of wastewater treatment . Chemical Engineering , 16 : 670 – 676 .
  • Chuichulcherm , S. , Nagpal , S. , Peeva , L. and Livingston , A. 2001 . Treatment of metal-containing wastewaters with a novel extractive membrane reactor using sulfate-reducing bacteria . Journal of Chemical Technology and Biotechnology , 76 : 61 – 68 .
  • Cocos , I. A. , Zagury , G. J. , Clement , B. and Samson , R. 2002 . Multiple factor design for reactive mixture selection for use in reactive walls in mine drainage treatment . Water Research , 36 : 167 – 177 .
  • Cohen , R. R.H. 2006 . Use of microbes for cost reduction of metal removal from metals and mining industry waste streams . Journal of Cleaner Production , 14 : 1146 – 1157 .
  • Cravotta , C. A. and Trahan , M. K. 1999 . Limestone drains to increase pH and remove dissolved metals from acidic mine drainage . Applied Geochemistry , 14 : 581 – 606 .
  • De Lima , A. C.F. , Silva , M. M. , Leite , S. G.F. , Goncalves , M. M.M. and Granato , M. 1996 . “ Anaerobic sulphate-reducing microbial process using UASB reactors for heavy metals decontamination ” . In Clean technology for the Mining Industry Edited by: Sànchez , M. A. , Vergara , F. and Castro , S. H. 141 – 152 . Clean technology for the mining industry Concepción, Chile: University of Concepciòn, Concepciòn-Chile, 141–152
  • Diez-Blanco , V. , Garcia-Encina , P. and Fernandez-Polanco , F. 1995 . Effect of biofilm growth, gas and liquid velocities on the expansion of an anaerobic fluidized bed reactor . Water Research , 29 : 1649 – 1654 .
  • Dijkman , H. , Buisman , C. J.N. and Bayer , H. G. 1999 . “ Biotechnology in the mining and metallurgical industries: Cost savings through selective precipitation of metal sulfides ” . In Proc. of the Copper 99 – Cobre 99 International Conference Phoenix, Arizona , , USA October 10–13, 1999, Vol. IV: Hydrometallurgy of Copper (Eds: In S.K. Young, D.B. Dreisinger, R.P. Hackl, and D.G. Dixon (Eds.), Hydrometallurgy of copper (pp. 113–126). Warrendale, PA: The Minerals, Metals & Materials Society, Warrendale, PA (USA), 113–126
  • Dinelli , E. , Lucchini , F. , Fabbri , M. and Cortecci , G. 2001 . Metal distribution and environmental problems related to sulfide oxidation in the Libiola copper mine area (Ligurian Apennines, Italy) . Journal of Geochemical Exploration , 74 : 141 – 152 .
  • Dinelli , E. and Tateo , F. 2002 . Different types of fine-grained sediments associated with acid mine drainage in the Libiola Fe-Cu mine area (Ligurian Apennines, Italy) . Applied Geochemistry , 17 : 1081 – 1092 .
  • Dries , J. , De Smul , A. , Goethals , L. , Grootaerd , H. and Verstraete , W. 1998 . High rate biological treatment of sulfate-rich wastewater in an acetate-fed EGSB reactor . Biodegradation , 9 : 103 – 111 .
  • Dvorak , D. H. , Hedin , R. S. , Edenborn , H. M. and McIntire , P. E. 1992 . Treatment of Metalmetal-Contaminated contaminated Water water Using using Bacterial bacterial Sulfate sulfate Reductionreduction: Results from Pilotpilot-Scale scale Reactorsreactors . Biotechnology and Bioengineering , 40 : 609 – 616 .
  • El Bayoumy , M. A. , Bewtra , J. K. , Ali , H. I. and Biswas , N. 1999 . Sulfide production by sulfate-reducing bacteria with lactate as feed in an up-flow anaerobic fixed film reactor . Water, Air & Soil Pollution , 112 : 67 – 84 .
  • Elliott , P. , Ragusa , S. and Catcheside , D. 1998 . Growth of sulfate-reducing bacteria under acidic conditions in an anaerobic bioreactor as a treatment system for acid mine drainage . Water Research , 32 : 3724 – 3730 .
  • Esposito , G. , Weijma , J. , Pirozzi , F. and Lens , P. N.L. 2003 . Effect of the sludge retention time on H2 utilization in a sulphate reducing gas-lift reactor . Process Biochemistry , 39 : 491 – 498 .
  • Esposito , G. , Veeken , A. , Weijma , J. and Lens , P. N.L. 2006 . Use of biogenic sulfide for ZnS precipitation . Separation and Purification Technology , 51 : 31 – 39 .
  • Esposito , G. , Lens , P. and Pirozzi , F. 2009 . User-friendly Mathematical mathematical Model model for the Design design of Sulfate sulfate Reducing reducing H2/CO2 Fed fed Bioreactorsbioreactors . Journal of Environmental engineering Engineering , 135 : 167 – 175 .
  • Fedorovich , V. , Greben , M. , Kalyuzhnyi , S). , Lens , P. and Hilshoff Pol , L. 2000 . Use of hydrophobic membranes to supply hydrogen to sulphate reducing bioreactors . Biodegradation , 11 : 295 – 303 .
  • Fu , F. and Wang , Q. 2010 . Removal of heavy metal ions from wastewaters: A review . Journal of Environmental Management , 92 : 407 – 418 .
  • Gallegos-Garcia , M. , Celis , L. , Rangel-Mendez , R. and Razo-Flores , E. 2008 . Precipitation and Recovery recovery of Metal metal Sulfides sulfides From from Metal metal Containing containing Acidic acidic Wastewater wastewater in a Sulfidogenic sulfidogenic Downdown-Flow flow Fluidized fluidized Bed bed Reactorreactor . Biotechnology and Bioengineering , 102 : 91 – 99 .
  • Garcia-Calderon , D. , Buffiere , P. , Moletta , R. and Elmaleh , S. 1998a . Anaerobic digestion of wine distillery wastewater in down-flow fluidized bed . Water Research , 32 : 3593 – 3600 .
  • Garcia-Calderon , D. , Buffiere , P. , Moletta , R. and Elmaleh , S. 1998b . Influence of biomass accumulation on bed expansion characteristics of a down-flow anaerobic fluidized-bed reactor . Biotechnology and Bioengineering , 57 : 136 – 144 .
  • Gazea , B. , Adam , K. and Kontopoulos , A. 1996 . A review of passive systems for the treatment of acid mine drainage . Minerals Engineering , 9 : 23 – 42 .
  • Geldenhuis , S. and Bell , F. G. 1998 . Acid mine drainage at a coal mine in the eastern Transvaal, South Africa . Environmental Geology , 34 : 235 – 242 .
  • Gilbert , O. , de Pablo , J. , Cortina , J. L. and Ayora , C. 2004 . Chemical characterization of natural organic substrates for biological mitigation of acid mine drainage . Water Research , 38 : 4186 – 4196 .
  • Glombitza , F. 2001 . Treatment of acid lignite mine flooding water by means of microbial sulfate reduction . Waste Manage , 21 : 197 – 203 .
  • Gray , N. F. 2008 . Drinking Water water Qquality (2nd editioned.) , Cambridge , , England : Cambridge University Press,Cambridge .
  • Green , M. , Shnitzer , M. , Tarre , S. , Bogdan , B. , Shelef , G. and Sorden , C. J. 1994 . Fluidized bed reactor operation for groundwater denitrification . Water Science and Technology , 29 : 509 – 515 .
  • Hammack , R. W. , Dvorak , D. H. , Edenborn , H. M. , Torma , A. E. , Wey , J. E. and Lakshmanan , V. I. 1993 . “ The use of biogenic hydrogen sulfide to selectively recover copper and zinc from severely contaminated mine drainage ” . In Biohydrometallurgical Technologiestechnologies. Vol. 1. The Minerals, Metals and Materials Society , Warrendale , PennsylvaniaPA : The Minerals, Metals and Materials Society .
  • Hao , O. J. 2000 . “ Metal effects on sulfur cycle bacteria and metal removal by sulfate reducing bacteria ” . In Environmental Technologies to Treat Sulfur Pollution: Principles and Engineering Edited by: Lens , P. N.L and Hulshoff Pol , L. Environmental technologies to treat sulfur pollution: Principles and engineering (pp. 393–414). IWA Publishing, London, (UK)England: IWA, 393–414
  • Harms , G. , Zengler , K. , Rabus , F. , Aeckersberg , F. , Minz , D. , Rossello-Mora , F. and Widdel , F. 1999 . Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria . Applied and Environmental Microbiology , 65 : 999 – 1004 .
  • Hedin , R. S. , Hammack , R. W. and Hyman , D. M. 1989 . “ Potential importance of sulfate reduction process in wetlands constructed to treat mine drainage ” . In Constructed wetlands for wastewater treatment , Edited by: Hammer , D. A. 508 – 514 . Chelsea , MI : Lewis Publishers, Chelsea, MI . 508–514
  • Heijnen , J. J. , Mulder , A. , Enger , W. and Hoeks , F. 1989 . Review on the application of anaerobic fluidized bed reactors in wastewater treatment . Journal of Chemical Engineering , 41 ( 3 ) B37—B50
  • Herlihy , A. T. and Mills , A. L. 1985 . Sulfate reduction in freshwater sediments receiving acid mine drainage . Applied and Environmental Microbiology , 49 : 179 – 186 .
  • Hihn , J. 1992 . Contribution to the study of a countercurrent three phase fluidized bed: hydrodinamics and gas/liquid mass transfer. Ph.D. thesis , ESIGEC, University of Savoie, Chambery .
  • Hulshoff Pol , L. W. , Lens , P. N.L. , Weijma , J. and Stams , A. J.M. 2001 . New developments in reactor and process technology for sulfate reduction . Water Science and Technology , 44 : 67 – 76 .
  • Isa , Z. , Grusenmeyer , S. and Verstraete , W. 1986a . Sulfate reduction relative to methane production in high-rate anaerobic digestion: Technical aspects . Appl. ied Environ. mental Microbiol. ogy , 51 : 572 – 579 .
  • Isa , Z. , Grusenmeyer , S. and Verstraete , W. 1986b . Sulfate reduction relative to methane production in high-rate anaerobic digestion: Microbiological aspects . Applied Environmental MicrobiologyAppl. Environ. Microbiol. , 51 : 580 – 587 .
  • Iza , J. 1991 . Fluidized bed reactors for anaerobic wastewater treatment . Water Science and Technology , 24 : 109 – 132 .
  • Janssen , A. J.H. , Ruitenberg , R. and Buisman , C. J.N. 2001 . Industrial applications of new sulphur biotechnology . Water Science and Technology , 44 : 85 – 90 .
  • Jhung , J. K. and Choi , E. 1995 . A comparative study of UASB and anaerobic fixed film reactors with development of sludge granulation . Water Research , 29 : 271 – 277 .
  • Johnson , B. 2000 . “ Biological removal of sulfurous compounds from inorganic wastewaters ” . In Environmental technologies to treat sulfur pollution: Principles and engineering , Edited by: Lens , P. N.L and Hulshoff Pol , L. 175 – 205 . London , , England : IWA . In Environmental Technologies to Treat Sulfur Pollution: Principles and Engineering (Eds: P.N.L. Lens, L. Hulshoff Pol), IWA Publishing, London (UK), 175–205
  • Johnson , D. B. and Hallberg , K. B. 2005 . Acid mine drainage remediation options: a review . Science of The the Total Environment , 338 : 3 – 14 .
  • Jong , T. and Parry , D. L. 2003 . Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale up-flow anaerobic packed bed reactor runs . Water Research , 37 ( 14 ) : 3379 – 3389 .
  • Kaksonen , A. H. , Riekkola-Vanhanen , M. L. and Puhakka , J. A. 2003a . Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater . Water Research , 37 : 255 – 266 .
  • Kaksonen , A. H. , Franzmann , P. D. and Puhakka , J. A. 2003b . Performance and ethanol oxidation kinetics of a sulfate-reducing fluidized-bed reactor treating acidic metal-containing wastewater . Biodegradation , 14 : 207 – 217 .
  • Kaksonen , A. H. , Plumb , J. J. , Franzmann , P. D. and Puhakka , J. A. 2004a . Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal- and sulfate-containing wastewater . FEMS Microbiology Ecology , 47 : 279 – 289 .
  • Kaksonen , A. H. , Franzmann , P. D. and Puhakka , J. A. 2004b . Effects of hydraulic retention time and sulfide toxicity on ethanol an acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactors . Biotechnology and Bioengineering , 86 : 332 – 343 .
  • Kaksonen , A. H. , Plumb , J. J. , Robertson , W. J. , Spring , S. , Schumann , P. , Franzmann , P. D. and Puhakka , J. A. 2006 . Novel thermophilic sulfate-reducing bacteria from a geothermally active underground mine in Japan . Applied and Environmental Microbiology , 72 : 3759 – 3762 .
  • Kaksonen , A. H. and Puhakka , J. A. 2007 . Review: sulfate reduction based bioprocess for the treatment of acid mine drainage and the recovery of metals . Engineering In Life Sciences , 7 : 541 – 564 .
  • Kalyuzhnyi , S. V. , de Leon-Fragoso , C. and Rodriguez-Martinez , J. 1997 . Biological sulfate reduction in an UASB reactor fed with ethanol as electron donor . Mikrobiologiya , 66 : 674 – 680 .
  • Karamanev , D. G. and Nikolov , L. N. 1996 . Application of inverse fluidization in wastewater treatment: from laboratory to full scale bioreactor . Environmental Progress & Sustainable Energy , 15 : 194 – 196 .
  • Karnachuk , O. V. , Pimenov , V. P. , Yusupov , S. K. , Frank , Y. A. , Kaksonen , A. H. , Puhakka , J. A. , Ivanov , M. V. , Lindstrom , E. B. and Tuovinen , O. H. 2005 . Sulfate reduction potential in sediments in the Norilsk Mining Area, Northern Siberia . Geomicrobiology Journal , 22 : 11 – 25 .
  • Kimura , S. , Hallberg , K. B. and Johnson , D. B. 2006 . Sulfidogenesis in low pH (3.8 - 4.2) media by a mixed population of acidophilic bacteria . Biodegradation , 17 : 57 – 65 .
  • Klemps , R. , Cypionka , H. , Widdel , F. and Pfennig , N. 1985 . Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species . Archives of Microbiology , 143 : 203 – 208 .
  • Kolmert , A. , Henrysson , T. , Hallberg , R. and Mattiasson , B. 1997 . Optimization of sulphide production in an anaerobic continuous biofilm process with sulfate-reducing bacteria . Biotechnol. ogy Lett. ers , 19 : 971 – 975 .
  • Kolmert , A. and Johnson , D. B. 2001 . Remediation of acidic waste waters using immobilized, acidophilic sulfate-reducing bacteria . Journal of Chemical Technology and Biotechnology , 76 : 836 – 843 .
  • Kurniawan , T. A. , Chan , G. Y.S. , Lo , W. H. and Babel , S. 2006 . Physico-chemical treatment techniques for wastewater laden with heavy metals . Chemical Engineering Journal , 118 : 83 – 98 .
  • Kuyucak , N. and St-Germain , P. 1994 . “ In situ treatment of acid mine drainage by sulfate reducing bacteria in open pits: scale-up experiences ” . In Proc. eedings of the Int. ernational Land Reclamation and Mine Drainage Conf. erence and the 3rd Int. ernational Conf. erence on the Batement of Acidic Drainage 303 – 310 . Pittsburgh , PA Apr., 24–29. 303–310
  • Lens , P. N. L. , van den Bosch , M. C. , Hulshoff Pol , L. Q. and Lettinga , G. 1998 . Effect of staging on volatile fatty acid degradation in a sulfidogenic granular sludge reactor . Water Research , 32 : 1178 – 1192 .
  • Lens , P. N. L. , Omil , F. , Lema , J. M. and Hulshoff Pol , W. 2000 . “ Biological treatment of organic sulfate-rich wastewaters ” . In Environmental technologies to treat sulfur pollution: Principles and engineering , Edited by: Lens , P. N.L and Hulshoff Pol , L. 153 – 173 . London , , England : IWA . Environmental Technologies to Treat Sulfur Pollution: Principles and Engineering (Eds: P.N.L. Lens, L. Hulshoff Pol), IWA Publishing, London (UK), 153–173
  • Lens , P. N. L. , Vallero , M. , Esposito , G. and Zandvoort , M. 2002 . Perspectives of sulfate reducing bioreactors in environmental biotechnology . Re /Views Environmental Science & Bio /Technology , 1 : 311 – 325 .
  • Lens , P. N. L. , Gastesi , R. and Lettinga , G. 2003 . Use of sulfate reducing cell suspension bioreactors for the treatment of SO2 rich flue gases . Biodegradation , 14 : 229 – 240 .
  • Lettinga , G. , van Velsen , A. F.M. , Hobma , S. W. , de Zeeuw , W. J. and Klapwijk , A. 1980 . Use of the up-flow sludge blanket (USB) reactor concept for biological wastewater treatment, especially anaerobic treatment . Biotechnology and Bioengineering , 22 : 699 – 734 .
  • Lewis , A. and van Hille , R. 2006 . An exploration into the sulphide precipitation method and its effect on metal sulphide removal . Hydrometallurgy , 81 : 197 – 204 .
  • Liamleam , W. and Annachhatre , A. P. 2007 . Electron donors for biological sulfate reduction . Biotechnology Advances , 25 : 452 – 463 .
  • Lin , Y. H. and Lee , K. K. 2001 . Verification of anaerobic biofilm model for phenol degradation with sulfate reduction . Journal of Environmental Engineering , 127 : 119 – 125 .
  • Luther , W. , Rickard , D. T. , Theberge , S. and Olroyd , A. 1996 . Determination of (bi)sulfide stability constants of Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+ by voltammetric methods . Environmental Science and Technology , 30 : 671 – 679 .
  • Mack , C. , Burgess , J. E. and Duncan , J. R. 2004 . Membrane bioreactors for metal recovery from wastewater: A review . Water SA , 30 : 521 – 532 .
  • Manconi , I. and Lens , P. N.L. 2009 . Removal of H2S and volatile organic sulfur compounds by silicone membrane extraction . Journal of Chemical Technology and Biotechnology , 84 : 69 – 77 .
  • Maree , J. P. and Strydom , W. F. 1985 . Biological sulphate removal in an up-flow packed bed reactor . Water Research , 19 : 1101 – 1106 .
  • Maree , J. P. and Strydom , W. F. 1987 . Biological sulphate removal from industrial effluents in an up-flow packed bed reactor . Water Research , 21 : 141 – 146 .
  • Marin , P. , Alkalay , D. , Guerrero , L. , Chamy , R. and Schiappacasse , M. C. 1999 . Design and startup of an anaerobic fluidized bed reactor . Water Science and Technology , 40 : 63 – 70 .
  • Morton , R. L. , Yanko , W. A. , Graham , D. W. and Arnold , R. G. 1991 . Relationships between metal concentrations and crown corrosion in Los Angeles country sewers . Research Journal of the Water Pollution Control Federation , 63 : 789 – 798 .
  • Nagpal , S. , Chuichulcherm , S. , Peeva , L. and Livingston , A. 2000a . Microbial sulfate reduction in a liquid-solid fluidized bed reactor . Biotechnology and Bioengineering , 70 : 370 – 380 .
  • Nagpal , S. , Chuichulcherm , S. , Livingston , A. and Peeva , L. 2000b . Ethanol utilization by sulfate-reducing bacteria: an An experimental and modeling study . Biotechnology and Bioengineering , 70 : 533 – 543 .
  • Nairn , R. W. , Hedin , R. S. and Watzlaf , G. R. 1992 . “ Generation of alkalinity in an anoxic limestone drain ” . In Proceedings. of the 9th Annual National meeting of the American Society for Surface Mining and Reclamation 14 – 18 . Duluth , Minnesota June 206–237
  • Neculita , C. M. , Zagury , G. J. and Bussiere , B. 2007 . Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical Critical review and research needs . Journal of Environmental Quality , 36 : 1 – 16 .
  • Nicolella , C. , Renzo , D. F. and Rovatti , M. 1997 . Biomass concentration in fluidized bed biological reactors . Water Research , 31 : 936 – 940 .
  • Niedzielski , J. J. , Schram , R. M. , Phelps , T. J. , Herbes , S. E. and White , D. C. 1989 . A total-recycle expanded-bed bioreactor design which allows direct headspace sampling of volatile chlorinated aliphatic compounds . Journal of Microbiological Methods , 10 : 215 – 223 .
  • Nikolov , L. and Karamanev , D. 1991 . “ The inverse fluidization: a new approach to biofilm reactor design to aerobic wastewater treatment ” . In Studies in Eenvironmental Science:– Environmental Biotechnology Edited by: Blazej , A. and Privarova , V. Vol. 42 , 177 – 182 . Elsevier, Bratislara, Slovak Republic
  • Okabe , S. , Nielsen , P. H. and Characklis , W. G. 1992 . Factors affecting microbial sulfate reduction by Desulfovibrio desulfuricans in continuous culture: limiting nutrients and sulfide concentration . Biotechnology and Bioengineering , 40 : 725 – 734 .
  • Oleszkiewicz , J. A. , Marstaller , T. and McCartney , D. M. 1989 . Effects of pH on sulfide toxicity to anaerobic processes . Environmental Technology Letters , 10 : 815 – 822 .
  • Omil , F. , Lens , P. , Hulshoff Pol , L. and Lettinga , G. 1996 . Effect of Upward upward Velocity velocity and Sulphide sulphide Concentration concentration on Volatile volatile Fatty fatty Acid acid Degradation degradation in a Sulphidogenic sulphidogenic Granular granular Sludge sludge Reactorreactor . Process Biochemistry , 31 : 699 – 710 .
  • Oyekola , O. O. , Van Hille , R. P. and Harrison , S. T.L. 2009 . Study of anaerobic lactate metabolism under biosulphidogenic conditions . Water Research , 43 : 3345 – 3354 .
  • Peters , R. W. , Shem , L. , Lakshmanan , V. I. , Bautista , R. G. and Somasundaran , P. 1993 . Emerging separation technologies for metals and fuels. The Minerals, Metals and Materials Society , Warrendale , PennsylvaniaPA : The Minerals, Metals and Materials Society .
  • Postgate , J. R. 1984 . The Sulphatesulphate-Reducing reducing Bacteriabacteria, (2nd ed.) , 107 – 152 . Cambridge , , England : Cambridge University Press, Cambridge (UK) .
  • Poulson , S. R. , Colberg , P. J.S. and Drever , J. I. 1997 . Toxicity of heavy metals (Ni, Zn) to Desulfovibrio desulfuricans . Geomicrobiology Journal , 14 : 41 – 49 .
  • Prasad , D. , Wai , M. , Bérubé , P. and Henry , J. G. 1999 . Evaluating substrates in the biological treatments of acid mine drainage . Environmental Technology , 20 : 449 – 458 .
  • Puhakka , J. A. and Järvinen , K. 1992 . Aerobic fluidized-bed treatment of polychlorinated phenolic wood preservative constituents . Water Research , 26 : 766 – 770 .
  • Reis , M. A.M. , Almeida , J. S. , Lemos , P. C. and Carrondo , M. J.T. 1992 . Effect of hydrogen sulfide on growth of sulfate reducing bacteria . Biotechnology and Bioengineering , 40 : 593 – 600 .
  • Roberts , R. D. and Johnson , M. S. 1978 . Dispersal of heavy metals form abandoned mine workings and their transference through terrestrial food chains . Environmental Pollution (1970) , 16 : 293 – 310 .
  • Sahinkaya , E. , Ozkaya , B. , Kaksonen , A. H. and Puhakka , J. A. 2007a . Sulfidogenic fluidized-bed treatment of metal-containing wastewater at low and high temperatures . Biotechnology and Bioengineering , 96 : 1064 – 1072 .
  • Sahinkaya , E. , Ozkaya , B. , Kaksonen , A. H. and Puhakka , J. A. 2007b . Sulfidogenc fluidized-bed treatment of metal-containing wastewater at 8 and 65°C temperatures is limited by acetate oxidation . Water Research , 41 : 2706 – 2714 .
  • Sampaio , R. M.M. , Timmers , R. A. , Xu , Y. , Keesman , K. J. and Lens , P. N.L. 2009 . Selective precipitation of Cu and Zn in a pS controlled continuously stirred tank reactor . Journal of Hazardous Materials , 165 : 256 – 265 .
  • Sani , R. K. , Peyton , B. M. and Brown , L. T. 2001 . Copper-Induced induced Inhibition inhibition of Growth growth of Desulfovibrio desulfuricans G20: Assessment of its Toxicity toxicity and Correlation correlation with Those those of Zinc zinc and Leadlead . Applied and Environmental Microbiology , 67 : 4765 – 4772 .
  • Sani , R. K. , Peyton , B. M. and Jadhyala , M. 2003 . Toxicity of lead in aqueous medium to Desulfovibrio desulfuricans G20 . Environmental Toxicology and Chemistry , 22 : 252 – 260 .
  • Santos , S. , Machado , R. , Joana Neiva Correira , M. and Carvalho , J. R. 2004 . Treatment of acid mining waters . Minerals Engineering , 17 : 225 – 232 .
  • Shieh , W. K. and Keenan , J. D. 1986 . Fluidized bed biofilm reactor for wastewater treatment . Advances in Biochemical Engineering /Biotechnology , 33 : 131 – 169 .
  • Shieh , W. K. and Hsu , Y. 1996 . Biomass loss from an anaerobic fluidized bed reactor . Water Research , 30 ( 5 ) : 1253 – 1257 .
  • Shimodaira , C. and Yushina , Y. 1983 . “ Biological wastewater treatment with down-flow fluidized-bed reactor ” . In Proc. eedings of the 3rd Pacific Chemical Engineering Congress 237 – 242 . Seoul
  • Somlev , V. and Tishkov , S. 1992 . Application of fluidized carrier to bacterial sulphate-reduction in industrial wastewaters purification . Biotechnology techniques Techniques , 6 : 91 – 96 .
  • Sowmeyan , R. and Swaminathan , G. 2008a . Evaluation of inverse anaerobic fluidized bed reactor for treating high strength organic wastewater . Bioresource Technology , 99 : 3877 – 3880 .
  • Sowmeyan , R. and Swaminathan , G. 2008b . Performance of inverse anaerobic fluidized bed reactor for treating high strength organic wastewater during start-up phase . Bioresource Technology , 2008b ( 99 ) : 6280 – 6284 .
  • Speece , R. E. 1983 . Anaerobic biotechnology for industrial wastewater treatment . Environmental Science and Technology , 17 ( 9 ) 416A—427A
  • Tabak , H. H. and Govind , R. 2003 . Advance in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction . Biodegradation , 14 : 437 – 452 .
  • Tabak , H. H. , Scharp , R. , Burckle , J. , Kawahara , R. and Govind , R. 2003 . Advances in biotreatment of acid mine drainage and biorecovery of metals: 1. Metal precipitation for recovery and recycle . Biodegradation , 2003 ( 14 ) : 423 – 436 .
  • Tabak , H. H. and Govind , R. 2003 . Advance in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction . Biodegradation , 14 : 437 – 452 .
  • Tichy , R. , Lens , P. , Grotenhuis , J. T.C. and Bos , P. 1998 . Solid-state reduced sulfur compounds: Environmental aspects and bio-remediation . Critical Reviews in Environmental Science and Technology , 28 : 1 – 40 .
  • Tsukamoto , T. K. , Killion , H. A. and Miller , G. C. 2004 . Column experiments for microbiological treatment of acid mine drainage: lowLow-temperature, low-pH and matrix investigations . Water Research , 38 : 1405 – 1418 .
  • Tuttle , J. H. , Dugan , P. R. and Randles , C. I. 1969 . Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure . Applied Microbiology , 17 : 297 – 302 .
  • Ueki , K. , Ueki , A. , Itoh , K. , Tanaka , T. and Satoh , A. 1991 . Removal of sulfate and heavy metals from acid mine water by anaerobic treatment with cattle waste: effects Effects of heavy metals on sulfate reduction . Journal of Environmental Science and Health , 26 : 1471 – 1489 .
  • Utgikar , V. P. , Chen , B-Y. , Chaudhary , N. , Tabak , H. H. , Haines , J. R. and Govind , R. 2001 . Acute toxicity of heavy metals to acetate-utilizing mixed cultures of sulfate-reducing bacteria: EC100 and EC50 . Environmental Toxicology and Chemistry , 20 : 2662 – 2669 .
  • Utgikar , V. P. , Harmon , S. M. , Chaudhary , N. , Tabak , H. H. , Govind , R. and Haines , J. R. 2002 . Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage . Environmental Toxicology , 17 : 40 – 48 .
  • Vallero , M. V.G. , Trevino , R. H.M. , Paulo , P. L. , Lettinga , G. and Lens , P. N.L. 2003 . Effect of sulfate on methanol degradation in thermophilic (55°C) methanogenic UASB reactors . Enzyme and Microbial Technology , 32 : 676 – 686 .
  • Vallero , M. V.G. , Camarero , E. , Lettinga , G. and Lens , P. N.L. 2004 . Thermophilic (55–65°C) and extreme thermophilic (70–80°C) sulfate reduction in methanol and formate-fed UASB reactors . Biotechnology Progress , 20 : 1382 – 1392 .
  • Vallero , M. V.G. , Lettinga , G. and Lens , P. N.L. 2005 . High rate sulfate reduction in a submerged anaerobic membrane bioreactor (SAMBaR) at high salinity . Journal of Membrane Science , 253 : 217 – 232 .
  • Van Houten , R. T. , Hulshoff Pol , L. W. and Lettinga , G. 1994 . Biological sulfate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source . Biotechnology and Bioengineering , 44 : 586 – 594 .
  • Van Houten , R. T. , Yun , S. Y. and Lettinga , G. 1997 . Thermophilic sulphate and sulphite reduction in lab-scale gas-lift reactors using H2 and CO2 as energy and carbon source . Biotechnology and Bioengineering , 55 : 807 – 814 .
  • Veeken , A. H.M. , Akoto , L. , Hulshoff Pol , L. W. and Weijma , J. 2003a . Control of the sulfide (S2 −) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor . Water Research , 37 : 3709 – 3717 .
  • Veeken , A. H.M. , de Vries , S. , van der Mark , A. and Rulkens , W. H. 2003b . Selective Precipitation precipitation of Heavy heavy Metals metals as Controlled controlled by a Sulfidesulfide-Selective selective Electrodeelectrode . Separation Science and Technology , 38 : 1 – 19 .
  • Velasco , A. , Ramirez , M. , Volke-Sepulveda , T. , Gonzalez-Sanchez , A. and Revah , S. 2008 . Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation . Journal of Hazardous Materials , 151 : 407 – 413 .
  • Villa-Gomez , D. K. , Ababneh , H. , Papirio , S. , Rousseau , D. P.L. and Lens , P. N.L. 2011 . Effect of sulfide concentration on the location of the metal precipitates in inverse fluidized bed reactors . Journal of Hazardous Materials , 192 : 200 – 207 .
  • Visser , A. , Beeksma , I. , van der Zee , F. , Stams , A. J.M. and Lettinga , G. 1993 . Anaerobic degradation of volatile fatty acids at different sulfate concentrations . Applied Microbiology and Biotechnology , 40 : 549 – 556 .
  • Voice , T. C. , Pak , D. , Zhao , X. , Shi , J. and Hickey , R. F. 1992 . Biological activated carbon in fluidized bed reactors for the treatment of groundwater contaminated with volatile aromatic hydrocarbons . Water Research , 26 : 1389 – 1401 .
  • Von Canstein , H. , Kelly , S. , Li , Y. and Wagner-Dobler , I. 2002 . Species diversity improves the efficiency of mercury-reducing biofilms under changing environmental conditions . Appied and. Environmental Microbiology , 68 : 2829 – 2837 .
  • Wakao , N. , Takahashi , T. , Sakurai , Y. and Shiota , H. 1979 . The treatment of acid mine water using sulfate-reducing bacteria . Journal of Fermentation Technology , 57 : 445 – 452 .
  • Waybrant , K. R. , Blowes , D. W. and Ptacek , C. J. 1998 . Selection of reactive mixtures for use in permeable reactive walls for treatment of acid mine drainage . Environmental Science and Technology , 32 : 1972 – 1979 .
  • Waybrant , K. R. , Ptacek , C. J. and Blowes , D. W. 2002 . Treatment of mine drainage using permeable reactive barriers: column experiments . Environmental Science and Technology , 36 : 1349 – 1356 .
  • Weijma , J. and Stams , A. J.M. 2001 . Methanol conversion in high-rate anaerobic reactors . Water Science and Technology , 44 : 7 – 14 .
  • Weijma , J. , Gubbels , F. , Hulshoff Pol , L. W. , Stams , A. J.M. , Lens , P. and Lettinga , G. 2002 . Competition for H2 between sulfate reducers, methanogens and homoacetogens in a gas-lift reactor . Water Science and Technology , 45 : 75 – 80 .
  • White , C. and Gadd , G. M. 1996a . Mixed sulphate-reducing bacterial cultures for bioprecipitation of toxic metals: factorial and response-surface analysis of the effects of dilution rate, sulphate and substrate concentrations . Microbiology , 142 : 2197 – 2205 .
  • White , C. and Gadd , G. M. 1996b . A comparison of carbon/energy and complex nitrogen sources for bacterial sulphate-reduction: potential Potential applications to bioprecipitation of toxic metals as sulphides . Journal of Industrial Microbiology & Biotechnology , 17 : 116 – 123 .
  • White , C. and Gadd , G. M. 1998 . Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms . Microbiology , 144 : 1407 – 1415 .
  • White , C. and Gadd , G. M. 2000 . Copper accumulation by sulfate-reducing bacterial biofilms . FEMS Microbiology Letters , 183 : 313 – 318 .
  • Widdel , F. 1988 . “ Microbiology and ecology of sulfate- and sulfur-reducing bacteria ” . In Biology of Anaerobic Microorganisms , Edited by: Zehnder , A. J.B. and Zehnder , A. J.B. 469 – 586 . New York , NY : John Wiley and Sons, New York . 469–586
  • Willow , M. A. and Cohen , R. R.H. 2003 . pH, dissolved oxygen and adsorption effects on metal removal in anaerobic bioreactors . Journal of Environmental Quality , 32 : 1212 – 1221 .
  • Wilson , G. J. , Khodadoust , A. P. , Suidan , M. T. and Brenner , R. C. 1997 . Anaerobic/aerobic biodegradation of pentachlorophenol using GAC fluidized bed reactors: Optimization of the empty bed contact time . Water Science and Technology , 36 : 107 – 115 .
  • Yoda , M. , Kitagawa , M. and Miyaji , Y. 1987 . Long term competition between sulfate-reducing and methane producing bacteria for acetate in the anaerobic biofilm . Water Research , 21 : 1547 – 1556 .
  • Zagury , G. J. , Kulnieks , V. and Neculita , C. M. 2006 . Characterization and reactivity assessment of organic substrates for sulfate-reducing bacteria in acid mine drainage treatment . Chemosphere , 64 : 944 – 954 .
  • Zaluski , M. H. , Trudnowski , J. M. , Harrington-Baker , M. A. and Bless , D. R. 2003 . “ Post-mortem findings on the performance of engineered SRB field-bioreactors for acid mine drainage control ” . In Proc. eedings of the 6th Int. ernational Conf. erence on Acid Rock Drainage Cairns , QLD 12–18 July, 845–853
  • Zhuang , P. , McBride , M. B. , Xia , H. , Li , N. and Li , Z. 2009 . Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China . Science of The the Total Environment , 407 : 1551 – 1561 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.