1,526
Views
102
CrossRef citations to date
0
Altmetric
Original Articles

Advanced Oxidation Processes for the Treatment of Biorecalcitrant Organics in Wastewater

Pages 1167-1219 | Published online: 05 May 2014

REFERENCES

  • Agustina, T.E., Ang, H.M., and Vareek, V.K. (2005). A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. J. Photochem. Photobiol. C: Photochem. Rev. 6, 264–273.
  • Akasaki, I. (2007). Key inventions in the history of nitride-based blue LED and LD. J. Cryst. Growth. 300, 2–10.
  • An, T., Yang, H., Li, G., Song, W., Cooper, W.J., and Nie, X. (2010). Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water. Appl. Catal. B: Environ. 94, 288–294.
  • Anandhakumar, S., Chandrasekaran, M., and Noel, M. (2010). Anodic oxidation of chlorophenols in micelles and microemulsions on glassy carbon electrode: the medium effect on electroanalysis and electrochemical detoxification. J. Appl. Electrochem. 40, 303–310.
  • Andersson, P.L., Berg, A.H., Bjerselius, R., Norrgren, L., Olsén, H., Olsson, P.E., Orn, S., and Tysklind, M. (2001). Bioaccumulation of selected PCBs in zebrafish, three-spined stickleback, and arctic char after three different routes of exposure. Arch. Environ. Contam. Toxicol. 40, 519–530.
  • Andreozzi, R., Caprio, V., Insola, A., and Marotta, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 53, 51–59.
  • Andreozzi, R., Caprio, V., Marotta, R., and Tufano, V. (2001). Kinetic modeling of pyruvic acid ozonation in aqueous solutions catalyzed byMn(II) and Mn(IV) ions. Water Res. 35, 109–120.
  • Anipsitakis, G.P., and Dionysiou, D.D. (2003). Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ. Sci. Technol. 37, 4790–4797.
  • Anipsitakis, G.P., and Dionysiou, D.D. (2004). Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 38, 3705–3712.
  • Anipsitakis, G.P., Stathatos, E., and Dionysiou, D.D. (2005). Heterogeneous activation of oxone using Co3O4. J. Phys. Chem. B 109, 13052–13055.
  • Anotai, J., Jevprasesphant, A., Lin, Y., and Lu, M. (2012). Oxidation of aniline by titanium dioxide activated with visible light. Sep. Purif. Tech. 84, 132–137.
  • Arslan-Alaton, I. (2007). Degradation of a commercial textile biocide with advanced oxidation processes and ozone. J. Environ. Manage. 82, 145–154.
  • Arslan-Alaton, I., and Balcioglu, I.A. (1999). Degradation of commercial reactive dyestuffs by heterogenous and homogenous advanced oxidation processes: a comparative study. Dyes Pigments 43, 95–108.
  • Arslan-Alaton, I., Balcioglu, I.A., and Bahnemann, D.W. (2000). Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-Fenton/UV-A and TiO2/UV-A processes. Dyes Pigments 47, 207–218.
  • Arslan-Alaton, I., and Dogruel, S. (2004). Pre-treatment of penicillin formulation effluent by advanced oxidation processes. J. Hazard. Mater. 112, 105–113.
  • Ay, F., and Kargi, F. (2010). Advanced oxidation of amoxicillin by Fenton's reagent treatment. J. Hazard. Mater. 179, 622–627.
  • Badawy, M.I., Ghaly, M.Y., and Gad-Allah, T.A. (2006). Advanced oxidation processes for the removal of organophosphorus pesticides from wastewater. Desalination 194, 166–175.
  • Bahnemann, D. (1999). Environmental photochemistry. In O. Hutzinger and P. Boule (Eds.), The handbook of environmental chemistry (p. 285). Berlin: Springer.
  • Balcerski, W., Ryu, S.Y., and Hoffmann, M.R. (2007). Visible-light photoactivity of nitrogen-doped TiO2:  Photo-oxidation of HCO2H to CO2 and H2O. J. Phys. Chem. C. 111, 15357–15362.
  • Banerjee, P., DasGupta, S., and De. S. (2007). Removal of dye from aqueous solution using a combination of advanced oxidation process and nanofiltration. J. Hazard. Mater. 140, 95–103.
  • Baxendale, J.H., and Wilson, J.A. (1957). The photolysis of hydrogen peroxide at high light intensities. Trans. Faraday Soc. 53, 344–356.
  • Behnajady, M.A., Modirshahla, N., Daneshvar, N., and Rabbani, M. (2007). Photocatalytic degradation of an azo dye in a tubular continuous-flow photoreactor with immobilized TiO2 on glass plates. Chem. Eng. J. 127, 167–176.
  • Beltran, F.J., Francisco, J., and Ramon, M. (2004). A TiO2/Al2O3 catalyst to improve the ozonation of oxalic acid in water. Appl. Catal. B: Environ. 47, 101–109.
  • Beltran, F.J., Pocostales, J.P., Alvarez, P.M., and Jaramillo, J. (2009). Mechanism and kinetic considerations of TOC removal from the powdered activated carbon ozonation of diclofenac aqueous solutions. J. Hazard. Mater. 169, 532–538.
  • Beltran, F.J., Rivas, F.J., and Montero-de-Espinosa, R. (2002). Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor. Appl. Catal. B: Environ. 39, 221–231.
  • Beltran, F.J., Rivas, F.J., and Montero-de-Espinosa, R. (2005). Iron type catalysts for the ozonation of oxalic acid in water. Water Res. 39, 3553–3564.
  • Benitez, F.J., Acero, J.L., and Real, F.J. (2002). Degradation of carbofuran by using ozone, UV radiation and advanced oxidation processes. J. Hazard. Mater. B89, 51–65.
  • Bilgi, S., and Demir, C. (2005). Identification of photooxidation degradation products of C.I. Reactive Orange 16 dye by gas chromatography–mass spectrometry. Dyes Pigments 66, 69–76.
  • Bonfatti, F., Ferro, S., Lavezzo, F., Malacarne, M., Lodi, G., and De Battisti, A. (1999). Electrochemical incineration of glucose as a model organic substrate. I. Role of the electrode material. J. Electrochem. Soc. 146, 2175–2179.
  • Boyd, I.W., and Zhang, J. (2001). Photo-induced growth of dielectrics with excimer lamps. Solid St. Electron. 45, 1413–1431.
  • Brillas, E., Mur, E., Sauleda, R., Sanchez, L., Peral, J., Domenech, X., and Casado, J. (1998). Aniline mineralization by AOP's: Anodic oxidation, photocatalysis, electro-fenton and photoelectro-fenton processes. Appl. Catal. B: Environ. 16, 31–42.
  • Buxton, G.V., Greenstock, C.L., Helman, W.P., and Ross, A.B. (1988). Critical review of data constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solutions. J. Phys. Chem. Ref. Data 17, 513–586.
  • Canizares, P., Garcia-Gomez, J., Saez, C., and Rodrigo, M.A. (2003). Electrochemical oxidation of several chlorophenols on diamond electrodes Part I. Reaction mechanism. J. Appl. Electrochem. 33, 917–927.
  • Canizares, P., Garcia-Gomez, J., Saez, C., and Rodrigo, M.A. (2004a). Electrochemical oxidation of several chlorophenols on diamond electrodes: Part II. Influence of waste characteristics and operating conditions. J. Appl. Electrochem. 34, 87–94.
  • Canizares, P., Lobato, J., Garcia-Gomez, J., and Rodrigo, M.A. (2004b). Combined adsorption and electrochemical processes for the treatment of acidic aqueous phenol wastes. J. Appl. Electrochem. 34, 111–117.
  • Canizares, P., Martinez, F., Garcia-Gomez, J., Saez, C., and Rodrigo, M.A. (2002). Combined electrooxidation and assisted electrochemical coagulation of aqueous phenol wastes. J. Appl. Electrochem. 32, 1241–1246.
  • Catalkaya, E.C., and Kargi, F. (2007). Color, TOC and AOX removals from pulp mill effluent by dvanced oxidation processes: A comparative study. J. Hazard. Mater. B139, 244–253.
  • Catalkaya, E.C., and Kargi, F. (2008). Advanced oxidation treatment of pulp mill effluent for TOC and toxicity removals. J. Environ. Manage. 87, 396–404.
  • Catalkaya, E.C., and Kargi, F. (2009). Advanced oxidation and mineralization of simazine using Fenton's reagent. J. Hazard. Mater. 168, 688–694.
  • Cernigoj, U., Stangar, U.L., and Trebse, P. (2007). Degradation of neonicotinoid insecticides by different advanced oxidation processes and studying the effect of ozone on TiO2 photocatalysis. Appl. Catal. B: Environ. 75, 229–238
  • Chaliha, S., and Bhattacharyya, K.G. (2008). Catalytic wet oxidation of 2-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol in water with Mn(II)-MCM41. Chem. Eng. J. 139, 575–588.
  • Chaliha, S., and Bhattacharyya, K.G. (2009). Fe(III)-, Co(II)- and Ni(II)-impregnated MCM41 for wet oxidative destruction of 2,4-dichlorophenol in water. Catal. Today 141, 225–233.
  • Chang, T.C., You, S.J., Yu, B.S., and Kong, H.W. (2007). The fate and management of high mercury-containing lamps from high technology industry. J. Hazard. Mater. 141, 784–792.
  • Chen, Y.C., and Smirniotis, P. (2002). Enhancement of photocatalytic degradation of phenol and chlorophenols by ultrasound. Ind. Eng. Chem. Res. 41, 5958–5965.
  • Cirkva, V., and Hajek, M. (1999). Microwave photochemistry. Photoinitiated radical addition of tetrahydrofuran to perfluorohexylethene under microwave irradiation. J. Photochem. Photobiol. A: Chem. 123, 21–23.
  • Coleman, H.M., Vimonses, V., Leslie, G., and Amal, R. (2007). Removal of contaminants of concern in water using advanced oxidation technologies. Water Sci. Technol. 55, 301–306.
  • Comninellis, C. (1994). Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim. Acta 39, 1857–1862.
  • Czaplicka, M. (2006). Photo-degradation of chlorophenols in the aqueous solution. J. Hazard. Mater. 134, 45–59.
  • Daneshvar, N., Salari, D., and Khataee, A.R. (2003). Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. J. Photochem. Photobiol. A: Chem. 157, 111–116.
  • Dawson, A., and Kamat, P.V. (2001). Semiconductor–metal nanocomposites. Photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/Gold) nanoparticles. J. Phys. Chem. B 105, 960–966.
  • Delanoe, F., Acedo, B., Karpel Vel Leitner, N., and Legube, B. (2001). Relationship between the structure of Ru/CeO2 catalysts and their activity in the catalytic ozonation of succinic acid aqueous solutions. Appl. Catal. B: Environ. 29, 315–325.
  • Deng, L., Wang, S., Liu, D., Zhu, B., Huang, W., Wu, S., and Zhang, S. (2009). Synthesis,characterization of Fe-doped TiO2 nanotubes with high photocatalytic activity. Catal. Lett. 129, 513–518.
  • Dewitte, B., Dewulf, J., Demeestere, K., De Vyvere, V.V., De Wispelaere, P., and Van Langenhove, H. (2008). Ozonation of ciprofloxacin in water: HRMS identification of reaction products and pathways. Environ. Sci. Technol. 42, 4889–4895.
  • Dhaouadi, A., and Adhoum, N. (2009). Degradation of paraquat herbicide by electrochemical advanced oxidation methods. J. Electroanal. Chem. 637, 33–42.
  • Di Valentin, C., and Pacchioni, G. (2011). Trends in non-metal doping of anatase TiO2: B, C, N and F. Catal. Today 206, 12–18.
  • Dixit, A., Tirpude, A.J., Mungray, A.K., and Chakraborty, M. (2011). Degradation of 2, 4 DCP by sequential biological–advanced oxidation process using UASB and UV/TiO2/H2O2. Desalination 272, 265–269.
  • Dong, Y., Yang, H., He, K. Song, S., and Zhang, A. (2009). β-MnO2 nanowires: A novel ozonation catalyst for water treatment. App. Catal. B:Environ. 85, 155–161.
  • Doocey, D.J., and Sharratt, P.N. (2004). Zeolite mediated enhanced oxidation of chlorinated phenolic aqueous waste. Part 1: Aqueous phase Fenton catalysis. Trans. IChemE Part B Proc. Safety Environ. Prot. 82(B5), 352–358.
  • Doocey, D.J., Sharratt, P.N., Cundy, C.S., and Plaisted, R.J. (2004). Zeolite-mediated advanced oxidation of model chlorinated phenolic aqueous waste Part 2: Solid phase catalysis. Trans IChemE, Part B Proc. Safety Environ. Prot. 82, 359–364.
  • Dozzi, M.V., and Selli, E. (2013). Doping TiO2 with p-block elements: Effects on photocatalytic activity. J. Photochem. Photobiol. C: Photochem. Rev. 14, 13–28.
  • El-Raady, A.A. A., Nakajima, T., and Kimchhayarasy, P. (2005). Catalytic ozonation of citric acid by metallic ions in aqueous solution. Ozone Sci. Eng. 27, 495–498.
  • Elmolla, E., and Chaudhuri, M. (2009). Optimization of Fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution. J. Hazard. Mater. 170, 666–672.
  • Emeline, A.V., Kuzmin, G.N., Purevdorj, D., Ryabchuk, V.K., and Serpone, N. (2000). spectral dependencies of the quantum yield of photochemical processes on the surface of wide band gap solids. 3. Gas/solid systems.J. fPhys. Chem. B 104, 2989–2999.
  • Eng, Y.Y., Sharma, V.K., and Ray, A.K. (2012). Degradation of anionic and cationic surfactants in a monolithic swirl-flow photoreactor. Sep. Purif. Techol. 92, 43–49.
  • Ernst, M., Lurot, F., and Schrotter, J.C. (2004). Catalytic ozonation of refractory organic model compounds in aqueous solution by aluminum oxide. Appl. Catal. B: Environ. 47, 15–25.
  • Erol, F., and Ozbelge, T.A. (2008). Catalytic ozonation with non-polar bonded alumina phases for treatment of aqueous dye solutions in a semi-batch reactor. Chem. Eng. J. 139, 272–283.
  • Esplugas, S., Bila, D.M., Krause, L.G. T., and Dezotti, M. (2007). Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J. Hazard. Mater. 149, 631–642.
  • Esrom, H., and Kogelschatz, U. (1990). Investigation of the mechanism of the UV-induced palladium deposition process from thin solid palladium acetate films. Appl. Surface Sci. 46, 158–162.
  • Esrom, H., and Kogelschatz, U. (1992). Metal deposition with a windowless VUV excimer source. Appl. Surface Sci. 54, 440–444.
  • Fajerwerg, K., and Debellefontaine, H. (1996). Wet oxidation of phenol by hydrogen peroxide using heterogeneous catalysis Fe-ZSM-5: a promising catalyst. Appl. Catal. B: Environ. 10, L229–L235.
  • Faouzi, M., Canizares, P., Gadri, A., Lobato, J., Nasr, B., Paz, R., Rodrigo, M.A., and Saez, C. (2006). Advanced oxidation processes for the treatment of wastes polluted with azoic dyes. Electrochim. Acta 52, 325–331.
  • Fenton, H.J. H. (1894). Oxidation of tartaric acid in the presence of iron. J. Chem. Soc. 65, 899.
  • Fino, D., Jara, C.C., Saracco, G., Specchia, V., and Spinelli, P. (2005). Deactivation and regeneration of Pt anodes for the electro-oxidation of phenol. J. Appl. Electrochem. 35, 405–411.
  • Fitzpatrick, C., Lewis, E., Al-Shamma, A., and Lucas, J. (2003). An optical fibre sensor for on-line temperature control of germicidal microwave plasma powered UV lamps. Measurement 33, 341–346.
  • Flint, E.B., and Suslick, K.S. (1991). The temperature of cavitation. Science 253, 1397–1399.
  • Galindo, C., Jacques, P., and, Kalt, A. (2000). Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2 Comparative mechanistic and kinetic investigations. J. Photochem. Photobiol. A: Chem. 130, 35–47.
  • Ghatak, H.R. (2006). Electrolysis of black liquor for hydrogen production: Some initial findings. Int. J. Hyd. Energy 31, 934–938.
  • Ghatak, H.R. (2008). Spectroscopic comparison of lignin separated by electrolysis and acid precipitation of wheat straw soda black liquor. Ind. Crops Prod. 28, 206–212.
  • Ghatak, H.R. (2009). Reduction of organic pollutants with recovery of value-added products from soda black liquor of agricultural residues by electrolysis. Tappi J. 8, 4–10.
  • Ghatak, H.R., Kumar, S., and Kundu, P.P. (2008). Electrode processes in black liquor electrolysis and their significance for hydrogen production. Int. J. Hyd. Energy 33, 2904–2911.
  • Ghatak, H.R., Kundu, P.P., and Kumar, S. (2010). Thermochemical comparison of lignin separated by electrolysis and acid precipitation from soda black liquor of agricultural residues. Thermochim. Acta 502, 85–89.
  • Gillbe, C.E., Sage, F.J., and Gutteridge, J.M. C. (1996). Mannitol: Molecule magnifique or a case of radical misinterpretation? Free Radic. Res. 24, 1–7.
  • Gokcen, F., and Ozbelge, T.A. (2005). Enhancement of biodegradability by continuous ozonation in Acid Red-151 solutions and kinetic modelling. Chem. Eng. J. 114, 99–104.
  • Gokulakrishnan, N., Pandurangan, A., and Sinha, P.K. (2007). Removal of citric acid from aqueous solution by catalytic wet peroxidation using effective mesoporous Fe-MCM-41 molecular sieves. J. Chem. Technol. Biotechnol. 82, 25–32.
  • Gomes da Silva, C., and Faria, J.L. (2003). Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation. J. Photochem. and Photobiol. A: Chem. 155, 133–143.
  • Goncalves, A.G., Orfao, J.J. M., and Pereira, M.F. R. (2012). Catalytic ozonation of sulphamethoxazole in the presence of carbon materials: Catalytic performance and reaction pathways. J. Hazard. Mater. 239–240, 167–174.
  • Gorges, R., Meyer, S., and Kreisel, G. (2004). Photocatalysis in microreactors. J. Photochem. Photobiol. A: Chem. 167, 95–99.
  • Guimaraes, J.R., Maniero, M.G., and de Araujo, R.N. (2012). A comparative study on the degradation of RB-19 dye in an aqueous medium by advanced oxidation processes. J. Environ. Manage. 110, 33–39.
  • He, X., de la Cruz, A.A., and Dionysiou, D.D. (2013). Destruction of cyanobacterial toxin cylindrospermopsin by hydroxyl radicals and sulfate radicals using UV-254 nm activation of hydrogen peroxide, persulfate and peroxymonosulfate. J Photochem. Photobiol. A: Chem. 251, 160–166.
  • Hernandez, R., Zappi, M., Colucci, J., and Jones, R. (2002). Comparing the performance of various advanced oxidation processes for treatment of acetone contaminated water. J. Hazard. Mater. 92, 33–50.
  • Herrmann, J.M., Guillard, C., Disdier, J., Lehaut, C., Malato, S., and Blanco, J. (1998). New industrial titania photocatalysts for the solar detoxification of water containing various pollutants. Appl. Catal. B: Environ. 35, 281–294.
  • Hill, R.R., Jeffs, G.E., and Roberts, D.R. (1997). Photocatalytic degradation of 1,4-dioxane in aqueous solution. J. Photochem. Photobiol. A: Chem. 108, 55–58.
  • Hoigne, J. (1998). Chemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation processes. In O. Hutzinger (Ed.), The handbook of environmental chemistry, vol. 5 (pp. 84–141, part C). Berlin: Springer-Verlag.
  • Hong, A., Zappi, M.E., Kuo, C.H., and Hill, D.O. (1996). Modeling the kinetics of illuminated and dark advanced oxidation processes. ASCE J. Environ. Eng. 122, 58–62.
  • Horikoshi, S., Abe, M., and Serpone, N. (2009). Novel designs of microwave discharge electrodeless lamps (MDEL) in photochemical applications. Use in advanced oxidation processes. Photochem. Photobiol. Sci. 8, 1087–1104.
  • Horikoshi, S., Hidaka, H., and Serpone, N. (2003). Environmental remediation by an integrated microwave/UV-illumination technique: IV. Non-thermal effects in the microwave-assisted degradation of 2,4-dichlorophenoxyacetic acid in UV-irradiated TiO2/H2O dispersions. J. Photochem. Photobiol. A: Chem. 159, 289–300.
  • Horikoshi, S., Kajitani, M., Sato, S., and Serpone, N. (2007). A novel environmental risk-free microwave discharge electrodeless lamp (MDEL) in advanced oxidation processes Degradation of the 2,4-D herbicide. J. Photochem. Photobiol. A: Chem. 189, 355–363.
  • Horikoshi, S., Tsuchida, A., Sakai, H., Abe, M., and Serpone, N. (2011). Microwave discharge electrodeless lamps (MDELs). VI. Performance evaluation of a novel microwave discharge granulated electrodeless lamp (MDGEL)—Photoassisted defluorination of perfluoroalkoxy acids in aqueous media. J. Photochem. Photobiol. A: Chem. 222, 97–104.
  • Hsu, Y.C., Chen, Y.F., and Chen, J.H. (2004). Decolorization of dye RB-19 solution in a continuous ozone process. J. Environ. Sci. Health A39, 127–144.
  • Huang, W.J., Fang, G.C., and Wang, C.C. (2005). A nanometer-ZnO catalyst to enhance the ozonation of 2 4,6-trichlorophenol in water. Colloids Surf. A 260, 45–51.
  • Ince, N.H., Tezcanli, G., Belen, R.K., and Apikyan, I.G. (2001). Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. Appl. Catal. B: Environ. 29, 167–176.
  • Irie, H., Watanabe, Y., and Hashimoto, K. (2003). Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J. Phys. Chem. B. 107, 5483–5486.
  • Jobing, S., Reynolds, T., White, R., Parker, M.G., and Sumpter, J.P. (1995). A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ. Health Perspect. 103, 582–587.
  • Joseph, C.G., Puma, G.L., Bono, A., and Krishnaiah, D. (2009). Sonophotocatalysis in advanced oxidation process: A short review. Ultrason. Sonochem. 16, 583–589.
  • Ju, Y., Fang, J., Liu, X., Xu, Z., Ren, X., Sun, C., Yang, S., Ren, Q., Ding, Y., Yu, K., Wang, L., and Wei, Z. (2011). Photodegradation of Crystal Violet in TiO2 suspensions using UV–Vis irradiation from two microwave-powered electrodeless discharge lamps (EDL-2): products, mechanism and feasibility. J. Hazard. Mater. 185, 1489–1498.
  • Jung, H., Park, H., Kim, J., Lee, J.H., Hur, H.G., Myung, N.V., and Choi, H. (2007). Preparation of biotic and abiotic iron oxide nanoparticles (IOnPs) and their properties and applications in heterogeneous catalytic oxidation. Environ. Sci. Technol. 41, 4741–4747.
  • Kamat, P.V., and Meisel, D. (2002). Nanoparticles in advanced oxidation processes. Curr. Opinion Colloid Interface Sci. 7, 282–287.
  • Kamble, S.P., Sawant, S.B., and Pangarkar, V.G. (2006). Photocatalytic mineralization of phenoxyacetic acid using concentrated solar radiation and titanium dioxide in slurry photoreactor. Chem. Eng. Res. Des. 84, 355–362.
  • Kasprzyk-Hordern, B., Andrzejewski, P., Dabrowska, A., Czaczyk, K., and Nawrocki, J. (2004). MTBE, DIPE, ETBE and TAME degradation in water using perfluorinated phases as catalysts for ozonation process. Appl. Catal. B: Environ. 51, 51–66.
  • Khataee, A.R., and Mirzajani, O. (2010). UV/peroxydisulfate oxidation of C. I. Basic Blue 3: modeling of key factors by artificial neural network. Desalination 251, 64–69.
  • Komagoe, K., Takeuchi, H., and Katsu, T. (2008). Oxygen electrode as a new tool to evaluate hydroxyl radical-scavenging ability. Sensors Actuators B: Chem. 134, 516–520.
  • Konstantinou, I.K., and Albanis, T.A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B: Environ. 49, 1–14.
  • Kotz, R., Stucki, S., and Carcer, B. (1991). Electrochemical waste water treatment using high overvoltage anodes. Part I. Physical and electrochemical properties of SnO2 anodes. J. Appl. Electrochem. 21, 14–20.
  • Kralj, M.B., Franko, M., and Trebse, P. (2007a). Photodegradation of organophosphorus insecticides – Investigations of products and their toxicity using gas chromatography–mass spectrometry and AChE-thermal lens spectrometric bioassay. Chemosphere 67, 99–107.
  • Kralj, M.B., Trebse, P., and Franko, M. (2007b). Applications of bioanalytical techniques in evaluating advanced oxidation processes in pesticide degradation. Trends Anal. Chem. 26, 1020–1031.
  • Kubo, M., Matsuoka, K., Takahachi, A., Shibasaki-kitakawa, N., and Yonemoto, T. (2005). Kinetics of ultrasonic degradation of phenol in the presence of TiO2 particles. Ultrason. Sonochem. 12, 263–269.
  • Kuo, C., Tseng, Y., Huang, C., and Li, Y. (2007). Carbon-containing nano-titania prepared by chemical vapor deposition and its visible-light-responsive photocatalytic activity. J. Molecular Catal. A: Chem. 270, 93–100.
  • Kuo, Y., Su, T., Kung, F., and Wu, T. (2011). A study of parameter setting and characterization of visible-light driven nitrogen-modified commercial TiO2 photocatalysts. J. Hazard. Mater. 190, 938–944.
  • Kusvuran, E., and Erbatur, O. (2004). Degradation of aldrin in adsorbed system using advanced oxidation processes: comparison of the treatment methods. J. Hazard. Mater.115–125.
  • Kusvuran, E., Gulnaz, O., Irmak, S., Atanur. O.M., Yavuz, H.I., and Erbatur, O. (2004). Comparison of several advanced oxidation processes for the decolorization of Reactive Red 120 azo dye in aqueous solution. J. Hazard. Mater. B109, 85–93.
  • Kwon, S.C., Kim, J.Y., Yoon, S.M., Bae, W., Kang, K.S., and Rhee, Y.W. (2012). Treatment characteristic of 1,4-Dioxane by ozone-based advanced oxidation processes. J. Ind. Eng. Chem. 18, 1951–1955.
  • Lachenal, D. (1996). Hydrogen peroxide as a delignifying agent. In C.W. Dence and D.W. Reeve (Eds.), Pulp bleaching: Principles and practice (pp. 349–350). Atlanta, GA: Tappi.
  • Lackey, L.W., Mines Jr., R.O., and McCreanor, P.T. (2006). Ozonation of acid yellow 17 dye in a semi-batch bubble column. J. Hazard. Mater. B138, 357–362.
  • Laughrey, Z., Bear, E., Jones, R., and Tarr, M.A. Aqueous sonolytic decomposition of polycyclic aromatic hydrocarbons in the presence of additional dissolved species. Ultrason. Sonochem. 8, 353–357.
  • Lee, H., Lee, E., Lee, C., and Lee, K. (2011). Degradation of chlorotetracycline and bacterial disinfection in livestock wastewater by ozone-based advanced oxidation. J. Ind. Eng. Chem. 17, 468–473.
  • Legrini, O., Oliveros, E., and Braun, A.M. (1993). Photochemical processes for water treatment. Chem. Rev. 93, 671–698.
  • Li, H.Y., Qu, J.H., Zhao, X., and Liu, H.J. (2004). Removal of alachlor from water by catalyzed ozonation in the presence of Fe2+, Mn2+, and humic substances. J. Environ. Sci. Health B: Pestic. Food Contam. Agric. Wastes 39, 791–803.
  • Li, L., Ye, W., Zhang, Q., Sun, F., Lu, P., and Li, X. (2009). Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon. J. Hazard. Mater. 170, 411–416.
  • Li, Q., Gu, C., Di, Y., Yin, H., and Zhang, J. (2006). Photodegradation of nitrobenzene using 172 nm excimer UV lamp. J. Hazard. Mater. B133, 68–74.
  • Liakou, S., Kornaros, M., and Lyberatos, G. (1997). Pretreatment of azo dyes using ozone. Water Sci. Technol. 36, 155–163.
  • Liang, L., Yulin, Y., Xinrong, L., Ruiqing, F., Yan, S., Shuo, L., Lingyun, Z., Xiao, F., Pengxiao, T., Rui, X., Wenzhi, Z., Yazhen, W., and Liqun, M. (2012). A direct synthesis of B-doped TiO2 and its photocatalytic performance on degradation of RhB. Appl. Surface Sci. 265, 36–40.
  • Lim, H., Lee, J., Jin, S., Kim, J., Yoon, J., and Hyeon, T. (2006). Highly active heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina coated mesoporous silica. Chem. Comm. 7, 463–465.
  • Literak, J., and Klan, P. (2000). The electrodeless discharge lamp: a prospective tool for photochemistry Part 2. Scope and limitation. J. Photochem. Photobiol. A: Chem. 137, 29–35.
  • Liu, Y., Liu, J., Lin, Y., Zhang, Y., and Wei, Y. (2009). Simple fabrication and photocatalytic activity of S-doped TiO2 under low power LED visible light irradiation. Ceramic Int. 35, 3061–3065.
  • Liu, Z., Ma, J., Cui, Y., Zhao, L., and Zhang, B. (2011). Factors affecting the catalytic activity of multi-walled carbon nanotube for ozonation of oxalic acid. Sep. Purif. Techol. 78, 147–153.
  • Lopez, A., Bozzi, A., Mascolo, G., and Kiwi, J. (2003). Kinetic investigation on UV and UV/H2O2 degradations of pharmaceutical intermediates in aqueous solution. J. Photochem. Photobiol. A: Chem. 156, 121–126.
  • Ma, J., and Graham, N.J. D. (2000). Degradation of atrazine by manganese-catalysed ozonation—influence of radical scavengers. Water Res. 34, 3822–3828.
  • Madhavan, J., Grieser, F., and Ashokkumar, M. (2010). Degradation of Orange-G by advanced oxidation processes. Ultrason. Sonochem. 17, 338–343.
  • Marco, A., Esplugas, S., and, Saum, G. (1997). How and why combine chemical and biological processes for wastewater treatment. Water Sci. Technol. 35, 321–327.
  • Marselli, B., Garcia-Gomez, J., Michaud, P.A., Rodrigo, M.A., and Comninellis, C. (2003). Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J. Electrochem. Soc. 150, D79–83.
  • Martin, S.T., Lee, A.T., and Hoffmann, M.R. (1995). Chemical mechanism of inorganic oxidants in the TiO2/UV process: increased rates of degradation of chlorinated hydrocarbons. Environ. Sci. Technol. 29, 2567–2573.
  • Martinez, F., Calleja, G., Melero, J.A., and Molina, R. (2005). Heterogeneous photo-Fenton degradation of phenolic aqueous solutions over iron-containing SBA-15 catalyst. Appl. Catal. B: Environ. 60, 181–190.
  • Mascia, M., Vacca, A., Palmas, S., and Polcaro, A.M. (2007). Kinetics of the electrochemical oxidation of organic compounds at BDD anodes: modelling of surface reactions. J. Appl. Electrochem. 37, 71–76.
  • Melero, J.A., Calleja, G., Martinez, F., and Molina, R. (2006). Nanocomposite of crystalline Fe2O3 and CuO particles and mesostructured SBA-15 silica as an active catalyst for wet peroxide oxidation processes. Catal. Comm. 7, 478–483.
  • Menzel, R., Peiro, A.M., Durrant, J.R., and Shaffer, M.S. P. (2006). Impact of hydrothermal processing conditions on high aspect ratio titanate nanostructures. Chem. Mater. 18, 6059–6068.
  • Moorhouse, P.C., Grootveld, M., Halliwell, B., Quinlan, G., and Gutteridge, J.M. C. ((1987). Allopurinol and oxypurinol are hydroxyl radical scavengers. FEBS Lett. 213, 23–28.
  • Moussavi, G., Khavanin, A., and Alizadeh, R. (2010). The integration of ozonation catalyzed with MgO nanocrystals and the biodegradation for the removal of phenol from saline wastewater. Appl. Catal. B: Environ. 97, 160–167.
  • Muller, P., Klan, P., and Cirkva, V. (2005). The electrodeless discharge lamp: a prospective tool for photochemistry Part 5: Fill material-dependent emission characteristics. J. Photochem. Photobiol. A: Chem. 171, 51–57.
  • Munoz, I., Rieradevall, J., Torrades, F., Peral, J., and Domenech, X. (2005). Environmental assessment of different solar driven advanced oxidation processes. Solar Energy 79, 369–375.
  • Muruganandham, M., and Swaminathan, M. (2007). Solar driven decolourisation of Reactive Yellow 14 by advanced oxidation processes in heterogeneous and homogeneous media. Dyes Pigments 72, 137–143.
  • Muruganandham, M., and Wu, J.J. (2008). Synthesis, characterization and catalytic activity of easily recyclable zinc oxide nanobundles. Appl. Catal. B: Environ. 80, 32–41.
  • Muthukumar, M., Sargunamani, D., and Selvakumar, N. (2005). Statistical analysis of the effect of aromatic, azo and sulphonic acid groups on decolouration of acid dye effluents using advanced oxidation processes. Dyes Pigments 65, 151–158.
  • Natarajan, K., Natarajan, T.S., Bajaj, H.C., and Tayade, R.J. (2011). Photocatalytic reactor based on UV-LED/TiO2 coated quartz tube for degradation of dyes. Chem. Eng. J. 178, 40–49.
  • Nei, M., Wang, Q., and Qiu, G. Enhancement of ultrasonically initiated emulsion polymerization rate using aliphatic alcohols as hydroxyl radical scavengers. Ultrason. Sochem. 15, 222–226.
  • Neyens, E., and Baeyens, J. (2003). A review of classic Fenton's peroxidation as an advanced oxidation technique. J. Hazard. Mater. B98, 33–50.
  • Nikolaki, M.D., Malamis, D., Poulopoulos, S.G., and Philippopoulos, C.J. (2006). photocatalytical degradation of 1,3-dichloro-2-propanol aqueous solutions by using an immobilized TiO2 photoreactor. J. Hazard. Mater. B137, 1189–1196.
  • Nishio, J., Tokumura, M., Znad, H.T., and Kawase, Y. (2006). Photocatalytic decolorization of azo-dye with zinc oxide powder in an external UV light irradiation slurry photoreactor. J. Hazard. Mater. B138, 106–115.
  • Ocampo-Perez, R., Sanchez-Polo, M., Rivera-Utrilla, J., and Leyva-Ramos, R. (2010). Degradation of antineoplastic cytarabine in aqueous phase by advanced oxidation processes based on ultraviolet radiation. Chem. Eng. J. 165, 581–588.
  • Ogasawara, Y., Namai, T., Yoshino, F., Lee, M., and Ishii, K. (2007). Sialic acid is an essential moiety of mucin as a hydroxyl radical scavenger. FEBS Lett. 581, 2473–2477.
  • Orge, C.A., Orfao, J.J. M., Pereira, M.F. R., Farias, A.M. D., and Fraga, M.A. (2012). Ceria and cerium-based mixed oxides as ozonation catalysts. Chem. Eng. J. 200–202, 499–505.
  • Orge, C.A., Orfao, J.J. M., Pereira, M.F. R., Farias, A.M. D., Neto, R.C. R., and Fraga, M.A. (2011). Ozonation of model organic compounds catalysed by nanostructured cerium oxides. Appl. Catal. B: Environ., 103, 190–199.
  • Pandikumar, A., and Ramaraj, R. (2012). Titanium dioxide–gold nanocomposite materials embedded in silicate sol–gel film catalyst for simultaneous photodegradation of hexavalent chromium and methylene blue. J. Hazard. Mater. 203–204, 244–250.
  • Pang, Y.L., and Abdullah, A.Z. (2013). Effect of carbon and nitrogen co-doping on characteristics and sonocatalytic activity of TiO2 nanotubes catalyst for degradation of Rhodamine B in water. Chem. Eng. J. 214, 129–138.
  • Peyton, G.R., Huang, F.Y., Burleson, J.L., and Glaze, W.H. (1982). Destruction of pollutants in water with ozone in combination with ultraviolet radiation. Part I. General principles and oxidation of tetrachloroethylene. Environ. Sci. Technol. 16, 449–453.
  • Pignatello, J.J., Oliveros, E., and MacKay, A. (2006). Advanced oxidation process for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Rev. Environ. Sci. Technol. 36, 1–84.
  • Pimentel, M., Oturan, N., Dezotti, M., and Oturan, M.A. (2008). Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode. Appl. Catal. B: Environ. 83, 140–149.
  • Pines, D.S., and Reckhow, D.A. (2002). Effect of dissolved cobalt(II) on the ozonation of oxalic acid. Environ. Sci. Technol. 36, 4046–4051.
  • Portela, R., Suarez, S., Tessinari, R.F., Hernandez-Alonso, M.D., Canela, M.C., and Sanchez, B. (2011). Solar/lamp-irradiated tubular photoreactor for air treatment with transparent supported photocatalysts. Appl. Catal. B: Environ. 105, 95–102.
  • Prato-Garcia, D., Vasquez-Medrano, R., and Hernandez-Esparza, M. (2009). Solar photoassisted advanced oxidation of synthetic phenolic wastewaters using ferrioxalate complexes. Solar Energy 83, 306–315.
  • Rafii, F., Franklin, W., and Cerniglia, C.E. (1990). Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl. Environ. Microbiol. 56, 2146–2151.
  • Raja, P., Bensimon, M., Klehm, U., Albers, P., Laub, D., Kiwi-Minsker, L., Renken, A., and Kiwi, J. (2007). Highly dispersed PTFE/Co3O4 flexible films as photocatalyst showing fast kinetic performance for the discoloration of azo-dyes under solar irradiation. J. Photochem. Photobiol. A: Chem. 187, 332–338.
  • Rakitskaya, T., Bandurko, A., Ennan, A., Paina, V., and Rakitskiy, A.A. (2001). Carbon-fibrous material supported base catalysts of ozone decomposition. Micropor. Mesopor. Mater. 43, 153–160.
  • Restivo, J., Orfao, J.J. M., Armenise, S., Garcia-Bordeje, E., and Pereira, M.F. R. (2012). Catalytic ozonation of metolachlor under continuous operation using nanocarbon materials grown on a ceramic monolith. J. Hazard. Mater. 239–240, 249–256.
  • Rey, R.P., Padron, A.S., Leon, L.G., Pozo, M.M., and Baluja, C. (1999). Ozonation of cytostatics in water medium: Nitrogen bases. Ozone Sci. Eng. 21, 69–77.
  • Rijal, G.K., Zmuda, J.T., Gore, R., Abedin, Z., Granato, T., Kollias, L., and Lanyon, R. (2009). Antibiotic resistant bacteria in wastewater processed by the Metropolitan Water Reclamation District of Greater Chicago system.Water Sci. Technol. 59, 2297–2304.
  • Rivera-Utrilla, J., Sanchez-Polo, M., Mendez-Diaz, J.D., Ferro-Garcia, M.A., and Bautista-Toledo, M.I. (2008). Behavior of two different constituents of natural organic matter in the removal of sodium dodecylbenzenesulfonate by O3 and O3-based advanced oxidation processes. J. Colloid Interface Sci. 325, 432–439.
  • Rizzo, L., Meric, S., Guida, M., Kassinos, D., and Belgiorno, V. (2009). Heterogenous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticas. Water Res. 43, 4070–4078.
  • Rodrigo, M.A., Canizares, P., Buitron, C., and Saez, C. (2010). Electrochemical technologies for the regeneration of urban wastewaters. Electrochim. Acta 55, 8160–8164.
  • Rosal, Gonzalo, M.S., Boltes, K., Leton, P., Vaquero, J.J., and Garcia-Calvo, E. (2009). Identification of intermediates and assessment of ecotoxicity in the oxidation products generated during the ozonation of clofibric acid. J. Hazard. Mater. 172, 1051–1068.
  • Rosal, R., Gonzalo, M.S., Rodriguez, A., and Garcia-Calvo, E. (2010). Catalytic ozonation of fenofibric acid over alumina-supported manganese oxide. J. Hazard. Mater. 183, 271–278.
  • Ruppert, G., Bauer, R., and Heisler, G. (1993). The photo-Fenton reaction – an effective photochemical wastewater treatment process. J. Photochem. Photobiol. A: Chem. 73, 75–78.
  • Sabhi, S., and Kiwi, J. (2001). Degradation of 2,4-dichlorophenol by immobilized iron catalysts. Water Res. 35, 1994–2002.
  • Safarzadeh-Amiri, A., Bolton, J.R., and Cater, S.R. (1996). Ferrioxalate mediated solar degradation of organic contaminants in water. Solar Energy 56, 439–443.
  • Saillenfait, A.M., and Laudet-Hesbert, A. (2005). Phthalates. EMC-Toxicol. Pathol. 2, 1–13.
  • Salavati, H., Tavakkoli, N., and Hosseinpoor, M. (2012). Preparation and characterization of polyphosphotungstate/ZrO2 nanocomposite and their sonocatalytic and photocatalytic activity under UV light illumination. Ultrason. Sonochem. 19, 546–553.
  • San, N., Hatipoglu, A., Kocturk, G., and Cinar, Z.J. (2002). Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions: Theoretical prediction of the intermediates. J. Photochem. Photobiol. A: Chem. 146, 189–197.
  • Santos, L.H. M. L. M., Araujo, A.N., Fachini, A., Pena, A., Delerue-Matos, C., and Montenegro, M.C. B. S. M. (2010). Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J. Hazard. Mater. 175, 45–95.
  • Saritha, P., Aparna, C., Himabindu, V., and Anjaneyulu, Y. (2007). Comparison of various advanced oxidation processes for the degradation of 4-chloro-2 nitrophenol. J. Hazard. Mater. 149, 609–614.
  • Sato, S., Ono, M., Yamauchi, J., Kanehashi, S., Ito, H., Matsumoto, S., Iwai, Y., Matsumoto, H., and Nagai, K. (2012). Effects of irradiation with vacuum ultraviolet xenon excimer lamp at 172 nm on water vapor transport through poly(lactic acid) membranes. Desalination 287, 290–300.
  • Sauer, T.P., Casaril, L., Oberziner, A.L. B., Jose, H.J., Moreira, R.F. P. M. (2006). Advanced oxidation processes applied to tannery wastewater containing Direct Black 38—Elimination and degradation kinetics. J. Hazard. Mater.274–279.
  • Scialdone, O., Galia, A., and Filardo, G. (2008). Electrochemical incineration of 1,2-dichloroethane: Effect of the electrode material. Electrochim. Acta 53, 7220–7225.
  • Scialdone, O., Galia, A., Gurreri, L., and Randazzo, S. (2010). Electrochemical abatement of chloroethanes in water: Reduction, oxidation and combined processes. Electrochim. Acta 55, 701–708.
  • Segura, C., Zaror, C., Mansilla, H.D., and Mondaca, M.A. (2008). Imidacloprid oxidation by photo-Fenton reaction. J. Hazard. Mater. 150, 679–686.
  • Segura, Y., Martinez, F., Melero, J.A., Molina, R., Chand, R., and, Bremmer, D.H. (2012). Enhancement of the advanced Fenton process (Fe0/H2O2) by ultrasound for the mineralization of phenol. Appl. Catal. B: Environ. 113–114, 100–106.
  • Serpone, N., Horikoshi, S., and Ameline, A.V. (2010). Microwaves in advanced oxidation processes for environmental applications. A brief review. J. Photochem. Photobiol. C: Photochem. Rev. 11, 114–131.
  • Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E., and Hidaka, H. (1995). Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. J. Photochem. Photobiol. A: Chem. 85, 247–255.
  • Shemer, H., and Linden, K.G. (2006). Degradation and by-product formation of diazinon in water during UV and UV/H2O2 treatment. J. Hazard. Mater. B136, 553–559.
  • Shi, P., Su, R., Wan, F., Zhu, M., Li, D., and Xu, S. (2012). Co3O4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of Orange II in water by advanced oxidation technology based on sulfate radicals. Appl. Catal. B: Environ. 123–124, 265–272.
  • Shin, W.T., Mirmiran, A., Yiacoumi, S., and Tsouris, C. (1999). Ozonation using microbubbles formed by electric fields. Sep. Purif. Technol. 15, 271–282.
  • Shukla, P.R., Wang, S., Sun, H., Ang, H.M., and Tade, M. (2010). Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution. Appl. Catal. B: Environ. 100, 529–534.
  • Siddique, M., Farooq, R., Khan, Z.M., Khan, Z., and Shaukat, S.F. (2011). Enhanced decomposition of reactive blue 19 dye in ultrasound assisted electrochemical reactor. Ultrason. Sonochem. 18, 190–196.
  • Son, H.S., Choi, S.B., Khan, E., and Zoh, K.D. (2006). Removal of 1,4-dioxane from water using sonication: Effect of adding oxidants on the degradation kinetics. Water Res. 40, 692–698.
  • Staehelin, J., and Hoigne, J. (1985). Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environ. Sci. Technol. 19, 1206–1213.
  • Stefan, M.I., and Bolton, J.R. (1998). mechanism of the degradation of 1,4-dioxane in dilute aqueous solution using the UV/hydrogen peroxide process. Environ. Sci. Technol. 32, 1588–1595.
  • Stepnowski, P., and Zaleska, A. (2005). Comparison of different advanced oxidation processes for the degradation of room temperature ionic liquids. J. Photochem. Photobiol. A: Chem. 170, 45–50.
  • Sui, M., Xing, S., Sheng, L., Huang, S., and Guo, H. (2012). Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst. J. Hazard. Mater. 227–228, 227–236.
  • Sun, Y., and Pignatello, J.J. (1993). Photochemical reactions involved in the total mineralization of 2,4-D by iron(3+)/hydrogen peroxide/UV. Environ. Sci. Technol. 27, 304–310.
  • Swaaij, W.P. M., and Versteeg, G.F. (1992). Mass transfer accompanied with complex reversible chemical reactions in gas-liquid systems: An overview. Chem. Eng. Sci. 47, 3181–3195.
  • Tangestaninejad, S., Moghadam, M., Mirkhani, V., Mohammadpoor-Baltork, I., and Salavati, H. (2008). Sonochemical and visible light induced photochemical and sonophotochemical degradation of dyes catalyzed by recoverable vanadium-containing polyphosphomolybdate immobilized on TiO2 nanoparticles. Ultrason. Sonochem. 15, 815–822.
  • Thomas, K.V., McHugh, M., Hilton, M., and Waldock, M. (2002). Antifouling paint booster biocides in UK coastal waters: inputs, occurrence and environmental fate. Sci. Total Environ. 293, 117–127.
  • Trovo, A.G., Melo, A.S. S., and Nogueira, R.F. P. (2008). Photodegradation of the pharmaceuticals amoxicillin, bezafibrate and paracetamol by the photo-Fenton process—application to sewage treatment plant effluent. J. Photochem. Photobiol. A: Chem. 198, 215–220.
  • Trovo, A.G., Nogueira, R.F. P., Aguera, A., Fernandez-Alba, A.R., Sirtori, C., and Malato, S. (2009). Degradation of sulfomethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation. Water Res. 43, 3922–3931.
  • Tuziuti, T., Yasui, K., Iida, Y., Taoda, H., and Koda, S. (2004). Effect of particle addition on sonochemical reaction. Ultrasonics 42, 597–601.
  • Van Doorslaer, X., Heynderickx, P.M., Demeestere, K., Debevere, K., Van Langenhove, H., and Dewulf, J. TiO2 mediated heterogeneous photocatalytic degradation of moxifloxacin: Operational variables and scavenger study. Appl. Catal. B: Environ. 111–112, 150–156.
  • Vescovi, T., Coleman, H.M., and Amal, R. (2010). The effect of pH on UV-based advanced oxidation technologies – 1,4-dioxane degradation. J. Hazard. Mater. 182, 75–79.
  • Vohra, M.S., and Tanaka, K. (2001). Enhanced photocatalytic activity of Nafion-coated TiO2, Environ. Sci. Technol. 35, 411–415.
  • Vohra, M.S., Kim, S., and Choi, W. (2003). Effects of surface fluorination of TiO2 on the photocatalytic degradation of tetramethylammonium. J. Photochem. Photobiol. A Chem. 160, 55–60.
  • Wan-Kuen, J., and Hyun-Jung, K. (2012). LED irradiation of a photocatalyst for benzene, toluene, ethyl benzene, and xylene decomposition. Chin. J. Catal. 33, 1672–1680.
  • Wang, K., Guo, J., Yang, M., Junji, H., and Deng, R. (2009). Decomposition of two haloacetic acids in water using UV radiation, ozone and advanced oxidation processes. J. Hazard. Mater. 162, 1243–1248.
  • Wang, P., Fane, A.G., and Lim, T. (2013). Evaluation of a submerged membrane vis-LED photoreactor (SMPR) for carbamazepine degradation and TiO2 separation. Chem. Eng. J. 215–216, 240–251.
  • Wang, Q., Chen, C., Zhao, D., Ma, W., and Zhao, J. (2008). Change of adsorption modes of dyes on fluorinated TiO2 and its effect on photocatalytic degradation of dyes under visible irradiation. Langmuir 24, 7338–7345.
  • Wang, R. Chen, C., and Gratzl, J.S. (2004). Dechlorination and decolorization of chloro-organics in pulp bleach plant E-1 effluents by advanced oxidation processes. Bioresource Technol. 94, 267–274.
  • Wang, R. Chen, C., and Gratzl, J.S. (2005). Dechlorination of chlorophenols found in pulp bleach plant E-1 effluents by advanced oxidation processes. Bioresource Technol. 96, 897–906.
  • Wang, Z., Liu, J., Dai, Y., Dong, W., Zhang, S., and Chen, J. (2011). Dimethyl sulfide photocatalytic degradation in a light-emitting-diode continuous reactor: kinetic and mechanistic study. Ind. Eng. Chem. Res. 50, 7977–7984.
  • Wang, Z., Liu, J., Dai, Y., Dong, W., Zhang, S., and Chen, J. (2012). CFD modeling of a UV-LED photocatalytic odor abatement process in a continuous reactor. J. Hazard. Mater. 215–216, 25–31.
  • Weavers, L.K., and Hoffmann, M.R. (1998). Sonolytic decomposition of ozone in aqueous solution: mass transfer effects. Environ. Sci. Technol. 32, 3941–3947.
  • Wu, C., and Chang, C. (2006). Decolorization of Reactive Red 2 by advanced oxidation processes: Comparative studies of homogeneous and heterogeneous systems. J. Hazard. Mater. B128, 265–272.
  • Xing, S., Hu, C., Qu, J., He, H., and Yang, M. (2008). Characterization and Reactivity of MnOx supported on mesoporous zirconia for herbicide 24-D mineralization with ozone. Environ. Sci. Technol. 42, 3363–3368.
  • Yang, S., Yu, M., Kim, J., and Jo. (2011). Alternative use of light emitting diodes in an activated charcoal-supported photocatalyst reactor for the control of volatile organic compounds. Chin. J. Catal. 32, 756–761.
  • Yang, Y., Ma, J., Qin, Q., and Zhai, X. (2007). Degradation of nitrobenzene by nano-TiO2 cat-alyzed ozonation. J. Molecular Catal. A: Chem. 26, 741–748.
  • Zhang, J., and Boyd, I.W. (1996). Efficient excimer ultraviolet sources from a dielectric barrier discharge in rare‐gas/halogen mixtures. J. Appl. Phys. 80, 633–638.
  • Zhang, J., Boyd, I.W., and Esrom, H. (1997). UV intensity measurement for a novel 222 nm excimer lamp using chemical actinometer. Appl. Surface Sci. 109/110, 482–486.
  • Zhang, J., Esrom, H., and Boyd, I.W. (1999). UV intensity measurement of 308 nm excimer lamp using chemical actinometer. Appl. Surface Sci. 138–139, 315–319.
  • Zhang, S., Chen, L., Liu, H., Guo, W., Yang, Y., and Guo, Y. (2012). Design of H3PW12O40/TiO2 and Ag/H3PW12O40/TiO2 film-coated optical fiber photoreactor for the degradation of aqueous rhodamine B and 4-nitrophenol under simulated sunlight irradiation. Chem. Eng. J. 200–202, 300–309.
  • Zhang, X., Li, G., Wang, Y., and Qu, J. (2006). Microwave electrodeless lamp photolytic degradation of acid orange 7. J. Photochem. Photobiol. A: Chem. 184, 26–33.
  • Zhao, L., Ma, J., Sun, Z., and Liu, H. (2009). Influencing mechanism of temperature on the degradation of nitrobenzene in aqueous solution by ceramic honeycomb catalytic ozonation. J. Hazard. Mater. 167, 1119–1125.
  • Zheng, J., Liu, Z., Liu, X., Yan, X., Li, D., and Chu, W. (2011). Facile hydrothermal synthesis and characteristics of B-doped TiO2 hybrid hollow microspheres with higher photo-catalytic activity. J. Alloys Compounds 509, 3771–3776.
  • Zouaghi, R., David, B., Suptil, J., Djebbar, K., Boutiti, A., and Guittonneau, S. (2011). Sonochemical and sonocatalytic degradation of monolinuron in water. Ultrason. Sonochem. 18, 1107–1112.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.