800
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Biocatalytic Synthesis Pathways, Transformation, and Toxicity of Nanoparticles in the Environment

&
Pages 1679-1739 | Published online: 01 Aug 2014

REFERENCES

  • Abraham, M.H., Green, C.E., and Acree, W.E. (2000). Correlation and prediction of the solubility of buckminsterfullerene in organic solvents; estimation of some physicochemical properties. J. Chem. Soc., Perkin Trans., 2, 281–286.
  • Absar, A., Satyajyoti, S., Khan, M.I., Rajiv, K., and Sastry, M. (2005). Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J. Biomed. Nanotech., 1, 47–53.
  • Ahmad, A., Mukherjee, P., Mandal, D., Senapati, S., Khan, M.I., Kumar, R., and Sastry, M. (2002). Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J. Am. Chem. Soc., 124, 12108–12109.
  • Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M.I., Kumar, R., and Sastry, M. (2003a). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B., 28, 313–318.
  • Ahmad, A., Senapati, S., Khan, M.I., Kumar, R., and Sastry, M. (2003b). Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir, 19, 3550–3553.
  • Ahmad, N., Sharma, S., Alam, M.K., Singh, V.N., Shamsi, S.F., Mehta, B.R., and Fatma, A. (2010). Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf. B., 81, 81–86.
  • Ahmad, N., Sharma, S., Singh, V.N., Shamsi, S.F., Fatma, A., and Mehta, B.R. (2011). Biosynthesis of silver nanoparticles from Desmodium triflorum: A novel approach towards weed utilization. Biotechnol. Res. Int., 2011, 454090.
  • Ankamwar, B. (2010). Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminalia catappa. E. J. Chem., 7, 1334–1339.
  • Ankamwar, B., Chaudhary, M., and Sastry, M. (2005). Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 35, 19–26.
  • Applerot, G., Lipovsky, A., Dror, R., Perkas, N., Nitzan, Y., Lubart, R., and Gedanken, A. (2009). Enhanced antimicrobials activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv. Funct. Mater., 19, 842–852.
  • Arbogast, J.W., Darmanyan, A.P., Foote, C.S., Rubin, Y., Diederich, F.N., Alvarez, M.M., Anz, S.J., and Whetten, R.L. (1991). Photophysical properties of C60. J. Phys. Chem., 95, 11–12.
  • Arima, Y., and Iwata, H. (2007). Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials, 28, 3074–3082.
  • Armendariz, V., Herrera, I., Peralta, -V.J. R., Jose, -Y.M., Troiani, H., Santiago, P., and Gardea, -T.J. L. (2004). Size controlled gold nanoparticles formation by Avena sativa biomass: use of plants in nanobiotechnology. J. Nanopart. Res., 6, 377–382.
  • Aschberger, K., Johnston, H.J., Stone, V., Aitken, R.J., Hankin, S.M., Peters, S.A. K., Tran, C.L., and Christensen, F.M. (2010). Review of carbon nanotubes toxicity and exposure-Appraisal of human health risk assessment based on open literature. Crit. Rev. Toxicol., 40, 759–790.
  • Auffan, M., Achouak, W., Rose, J., Chane, C., Waite, D.T., Masion, A., Woicik, J., Wiesner, M.R., and Bottero, J.Y. (2008). Relation between the redox state of iron based nanoparticles and their cytotoxicity towards Escherichia coli. Environ. Sci. Technol., 42, 6730–6735.
  • Auffan, M., Pedeutour, M., Rose, J., Masion, A., Ziarelli, F., Borschneck, D., Chaneac, C., Botta, C., Chaurand, P., Labille, J., and Bottero, J.Y. (2010). Structural degradation at the surface of a TiO2-based nanomaterial used in cosmetics. Environ. Sci. Technol., 44, 2689–2694.
  • Balaji, D.S., Basavaraja, S., Bedre, M.D., Prabhakar, B.K., and Venkataraman, A. (2009). Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides. Colloids Surf. B., 68, 88–92.
  • Bankar, A., Joshi, B., Kumar, A.R., and Zinjarde, S. (2010). Banana peel extract mediated novel route for the synthesis. Colloids Surf. A., 368, 58–63.
  • Bansal, V., Rautaray, D., Ahmad, A., and Sastry, M. (2004). Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J. Mater. Chem., 14, 3303–3305.
  • Bar, H., Bhui, D.K., Sahoo, G.P., Sarkar, P., De, S.P., and Misra, A. (2009). Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf. A., 339, 134–139.
  • Basavaraja, S., Balaji, S.D., Lagashetty, A., Rajasab, A.H., and Venkataraman, A. (2008). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater. Res. Bull., 43, 1164–1170.
  • Baun, A., Hartmann, N.B., Grieger, K.D., and Hansen, S.F. (2009). Setting the limits for engineered nanoparticles in European surface waters – are current approaches appropriate? J. Environ. Monit., 11, 1774–1781.
  • Baveye, P., and Laba, M. (2008). Aggregation and toxicology of titanium dioxide nanoparticles. Environ. Health Perspect., 116, A152–A153.
  • Begum, N.A., Mondal, S., Basu, S., Laskar, R.A., and Mandal, D. (2009). Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Colloids Surf. B., 71, 113–118.
  • Bhainsa, K.C., and D’Souza, S.F. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf. B., 47, 160–164.
  • Bhowmick, T.K., Suresh, A.K., Kane, S.G., Joshi, A.C., and Bellare, J.R. (2009a). Physicochemical characterization of an Indian traditional medicine, Jasada Bhasma: Detection of nanoparticles containing non-stoichiometric zinc oxide, J. Nanopart. Res., 11, 655–664.
  • Bhowmick, T.K., Suresh, A.K., Kane, S.G., Joshi, A.C., and Bellare, J.R. (2009b). Indian traditional medicine Jasada Bhasma and other zinc-containing nanoparticles alleviate reactive oxygen species–mediated cell damage in Saccharomyces cerevisiae. Int. J. Green Nanotechnol. (IJGN) Biomed., 1, B69–B89.
  • Blinova, I., Ivask, A., Heinlaan, M., Mortimer, M., and Kahru, A. (2010). Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ. Pollut., 158, 41–47.
  • Bober, T.W., and Andren, A.W. (2002). Biological effects of silver, In: Silver in the environment: transport, fate, and effects. Society of Environmental Toxicology and Chemistry (SETAC), 27–64, Pensacola, FL, USA.
  • Borm, P., Klaessig, F.C., Landry, T.D., Moudgil, B., Pauluhn, J., Thomas, K., Trottier, R., and Wood, S. (2006). Research strategies for safety evaluation of nanomaterials, part V: Role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci., 90, 23–32.
  • Brant, J., Lecoanet, H., Hotze, M., and Wiesner, M. (2005). Comparison of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures. Environ. Sci. Technol., 39, 6343–6351.
  • Braydich, S.L. K., Schaeublin, N.M., Murdock, R.C., Jiang, J., Biswas, P., Schlager, J.J., and Hussain, S.M. (2009). Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J. Nanopart. Res., 11, 1361–1374.
  • Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M.F., and Fievet, F. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett., 6, 866–870.
  • Brezova, V., Gabcova, S., Dvoranova, D., and Stasko, A. (2005). Reactive oxygen species produced upon photoexcitation of sunscreens containing titanium dioxide (an EPR study). J. Photochem. Photobiol. B, 79, 121–134.
  • Brunet, L., Lyon, D.Y., Hotze, E.M., Alvarez, P.J. J., and Wiesner, M.R. (2009). Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ. Sci. Technol., 43, 4355–4360.
  • Brunner, T.J., Wick, P., Manser, P., Spohn, P., Grass, R.N., Limbach, L.K., Bruinink, A., and Stark, W.J. (2006). In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol., 40, 4374–4381.
  • Buerki-Thurnherr, T., Xiao, L., Diener, L., Arslan, O., Hirsch, C., Maeder-Althaus, X., Grieder, K., Wampfler, B., Mathur, S., Wick, P., and Krug, F. (2013). In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology, 7, 402–416.
  • Buffet, P.-E., Triquet, C.A., Dybowska, A., deFaverney, C.R., Guibbolini, M., Jones, E.V., and Mouneyrac, C. (2012). Fate of isotopically labeled zinc oxide nanoparticles in sediment and effects on two endobenthic species, the clam Scrobicularia plana and the ragworm Hediste diversicolor. Eco. Toxicol. Environ. Safe., 84, 191–198.
  • Burello, E., and Worth, A. (2011). Computational nanotoxicology: Predicting toxicity of nanoparticles. Nat Nanotechnol., 6, 138–139.
  • Bystrzejewska, -P.G., Golimowski, J., and Urban, P.L. (2009). Nanoparticles: Their potential toxicity, waste and environmental management. Waste Manage., 29, 2587–2595.
  • Castro-Longoria, E., Vilchis, N.A. R., and Avalos, B.M. (2011). Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf. B., 83, 42–48.
  • Cedervall, T., Lynch, I., Lindman, S., Berggard, T., Thulin, E., Nilsson, H., Dawson, K.A., and Linse, S. (2007). Understanding the nanoparticle protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. U.S.A., 104, 2050–2055.
  • Chandran, S.P., Chaudhary, M., Pasricha, R., Ahmad, A., and Sastry, M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol. Prog., 22, 577–583.
  • Chang, M.R., Lee, D.J., and Lai, J.Y. (2007). Nanoparticles in wastewater from a science-based industrial park-coagulation using polyaluminum chloride. J. Environ. Manage., 85, 1009–1014.
  • Chen, C.Y., and Jafvert, C.T. (2011). The role of surface functionalization in the solar light-induced production of reactive oxygen species by single-walled carbon nanotubes in water. Carbon, 49, 5099–5106.
  • Chen, K.L., and Elimelech, M. (2009). Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties. Environ. Sci. Technol., 43, 7270–7276.
  • Chen, P.-J., Su, C.-H., Tseng, C.-Y., Tan, S.-W., and Cheng, C.-H. (2011). Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish. Mar. Pollut. Bull., 63, 339–346.
  • Chen, X., and Mao, S.S. (2007). Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev., 107, 2891–2959.
  • Cheng, X.K., Kan, A.T., and Tomson, M.B. (2004). Naphthalene adsorption and desorption from aqueous C60 fullerene. J. Chem. Eng. Data, 49, 675–683.
  • Chowdhury, I., Cwiertny, D.M., and Walker, S.L. (2012). Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria. Environ. Sci. Technol., 46, 6968–6976.
  • Clement, L., Hurel, C., and Marmier, N. (2013). Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants – Effects of size and crystalline structure. Chemosphere, 90, 1083–1090.
  • Colvin, V.L. (2003). The potential environmental impact of engineered nanomaterials. Nat. Biotechnol., 21, 1166–1170.
  • Connor, E.E., Mwamuka, J., Gole, A., Murphy, C.J., and Wyatt, M.D. (2005). Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 1, 325–327.
  • Crane, M., Handy, R.D., Garrod, J., and Owen, R. (2008). Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology, 17, 421–437.
  • Cundy, A.B., Hopkinson, L., and Whitby, R.L. (2008). Use of iron-based technologies in contaminated land and groundwater remediation: A review. Sci. Total Environ., 400, 42–51.
  • Cunningham, D.P., and Lundie, L.L. (1993). Precipitation of cadmium by Clostridium thermoaceticum. Appl. Environ. Microbiol., 59, 7–14.
  • Dameron, C.T., Smith, B.R., and Winge, D.R. (1989). Glutathione-coated cadmium-sulfide crystallites in Candida glabrata. J. Biol. Chem., 264, 17355–17360.
  • Dankovic, D., Kuemperl, E., and Wheeler, M. (2007). An approach to risk assessment for TiO2. Inhal. Toxicol., 18, 202–212.
  • Davoren, M., Herzog, E., Casey, A., Benjamin, C., Gordon, C., Hugh, J.B., and Fiona, M.L. (2007). In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol. In Vitro, 21, 438–448.
  • Deshpande, R., Bedre, M.D., Basavaraja, S., Sawle, B., Manjunath, S.Y., and Venkataraman, A. (2010). Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Colloids Surf. B., 79, 235–240.
  • Dhawan, A., Taurozzi, J.S., Pandey, A.K., Shan, W., Miller, S.M., Hashsham, S.A., and Tarabara, V.V. (2006). Stable colloidal dispersions of C60 fullerenes in water: Evidence for genotoxicity. Environ. Sci. Technol., 40, 7394–7401.
  • Ding, L., Stilwell, J., Zhang, T., Elboudwarej, O., Jang, H., Selegue, J.P., Cooke, P.A.W. Gray, J.W., and Chen, F.F. (2005). Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett., 5, 2448–2464.
  • Dreher, K.L. (2004). Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol. Sci., 77, 3–5.
  • Dubey, M., Bhadauria, S., Kushwaha, B.S. (2009). Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (safeda) leaf. Digest J. Nanomater. Biostruct., 4, 537–543.
  • Dubey, S.P., Dwivedi, A.D., Lahtinen, M., Lee, C., Kwon, Y.-N., and Sillanpaa, M. (2013). Protocol for development of various plants leaves extract in single-pot synthesis of metal nanoparticles, Spectrochim. Acta A., 103, 134–142.
  • Dubey, S.P., Lahtinen, M., and Sillanpaa, M. (2010a). Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem., 45, 1065–1071.
  • Dubey, S.P., Lahtinen, M., Sarkka, H., and Sillanpaa, M. (2010b). Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids Surf. B., 80, 26–33.
  • Dubey, S.P., Lahtinen, M., and Sillanpaa, M. (2010c). Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surf. A., 364, 34–41.
  • Dusinska, M., Fjellsbo, L., Magdolenova, Z., Rinna, A., Runden, P.E., Bartonova, A., Heimstad, E., Harju, M., Tran, L., Ross B., Juillerat L., Halamoda K.B., Marano, F., Boland, S., Guadaginini, R., Saunders, M., Cartwright, L., Carreira, S., Whelan, M., Kelin C., Worth, A., Palosaari, T., Burello, E., Housiadas, C., Pilou M., Volkovova, K., Tulinska, J., Kazimirova, A., Baranacokova, M., Sebekova, K., Hurbankova, M., Kovacikova, Z., Knudsen, L., Poulsen, M., Mose, T., Vila, M., Gombau, L., Fernandez, B., Castell, J., Marcomini, A., Pojana, G., Bilanicova, D., and Vallotto, D. (2009). Testing strategies for the safety of nanoparticles used in medical applications. Nanomedicine, 4, 605–607.
  • Dwivedi, A.D., and Gopal, K. (2010). Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf. A., 369, 27–33.
  • El-Temsah, Y.S., and Joner, E.J. (2012). Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere, 89, 76–82.
  • Elumalai, E.K., Prasad, T.N. V. K. V., Hemachandran, J., Therasa, S.V., Thirumalai, T., and David, E. (2010). Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. J. Pharm. Sci. Res., 2, 549–554.
  • Fayaz, A.M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P.T., and Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med., 6, 103–109.
  • Flores, E., Frias, J.E., Rubio, L.M., and Herrero, A. (2005). Photosynthetic nitrate assimilation in cyanobacteria. Photosynth. Res., 83, 117–133.
  • Fortner, J.D., Kim, D.-I., Boyd, A.M., Falkner, J.C., Moran, S., Colvin, V.L., Hughes, J.B., and Kim, J.-H. (2007). Reaction of water stable C60 aggregates with ozone. Environ. Sci. Technol., 41, 7497–7502.
  • French, R.A., Jacobson, A.R., Kim, B., Isley, S.L., Penn, R.L., and Baveye, P.C. (2009). Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ. Sci. Technol., 43, 1354–1359.
  • Gade, A.K., Bonde, P., Ingle, A.P., Marcato, P.D., Duran, N., and Rai, M., K. (2008). Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J. Biobased Mater. Bioenergy, 3, 123–129.
  • Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., and Rai, M. (2009). Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed. Nanotechnol. Biol. Med., 5, 382–386.
  • Ganesh Babu, M.M., and Gunasekaran, P. (2009). Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloids Surf. B., 74, 191–195.
  • Ganesh, R., Smeraldi, J., Hosseini, T., Khatib, L., Olson, B.H., and Rosso, D. (2010). Evaluation of nanocopper removal and toxicity in municipal wastewaters. Environ. Sci. Technol., 44, 7808–7813.
  • Gardea-Torresdey, J.L., Tiemann, K.J., Gamez, G., Dokken, K., Tehuacanero, S., and Jose, Y.M. (1999). Gold nanoparticles obtained by bio-precipitation from gold(III) solutions. J. Nanopart. Res., 1, 397–404.
  • Ghodake, G.S., Deshpande, N.G., Lee, Y.P., and Jin, E.S. (2010). Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Colloids Surf. B., 75, 584–589.
  • Goia, D.V., and Matijevic, E. (1999). Tailoring the particle size of monodispersed colloidal gold. Colloids Surf. A., 146, 139–152.
  • Gojova, A., Guo, B., Kota, R.S., Rutledge, J.C., Kennedy, I.M., and Barakat, A.I. (2007). Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ. Health. Perspect., 115, 403–409.
  • Gottschalk, F., Sonderer, T., Scholz, R.W., and Nowack, B. (2009). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ. Sci. Technol., 43, 9216–9222.
  • Grieger, K.D., Baun, A., and Owen, R. (2010). Redefining risk research priorities for nanomaterials. J. Nanopart. Res., 12, 383–392.
  • Grieger, K.D., Hansen, S.F., Sorensen, P.B., and Baun, A. (2011). Conceptual modeling for identification of worst case conditions in environmental risk assessment of nanomaterials using nZVI and C60 as case studies. Sci. Total Environ., 409, 4109–4124.
  • Gu, Y., Di, X., Sun, W., Wang, G., and Fang, N. (2012). Three-dimensional super-localization and tracking of single gold nanoparticles in cells. Anal. Chem., 84, 4111–4117.
  • Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Venkataraman, D., Pandian, S.R. K., Muniyandi, J., Hariharan, N., and Eom, S.H. (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf. B., 74, 328–335.
  • Hackenberg, S., Friehs, G., Froelich, K., Ginzkey, C., Koehler, C., Scherzed, A., Burghartz, M., Hagen, R., and Kleinsasser. N. (2010). Intracellular distribution, geno- and cytotoxicity effects of nanosized titanium dioxide particles in the anatase crystal phase on human nasal mucosa cells. Toxicol. Lett., 195, 9–14.
  • Handy, R.D., and Shaw, B.J. (2007). Toxic effects of nanoparticles and nanomaterials. Implication for public health, risk assessment and the public perception of nanotechnology. Health Risk Soc., 9, 125–144.
  • Hanley, C., Thurber, A., Hanna, C., Punnoose, A., Zhang, J., and Winget, D.G. (2009). The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction. Nanoscale Res Lett., 4, 1409–1420.
  • Haverkamp, R.G., and Marshall, A.T. (2009). The mechanism of metal nanoparticle formation in plants: limits on accumulation. J. Nanopart. Res., 11, 1453–1463.
  • He, S., Guo, Z., Zhang, Y., Zhang, S., Wang, J., and Gu, N. (2007). Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate. Mater. Lett., 61, 3984–3987.
  • Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H.C., and Kahru, A. (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71, 1308–1316.
  • Helland, A., Wick, P., Koehler, A., Schmid, K., and Som, C. (2007). Reviewing the environmental and health knowledge base of carbon nanotubes. Environ. Health Perspect., 115, 1125–1131.
  • Henry, T.B., Petersen, E.J., and Compton, R.N. (2011). Aqueous fullerene aggregates (nC60) generate minimal reactive oxygen species and are of low toxicity in fish: A revision of previous reports. Curr. Opin. Biotechnol., 22, 533–537.
  • Herrera-Becerra, R., Zorrilla, C., Rius, J.L., and Ascencio, J.A. (2008). Electron microscopy characterization of biosynthesized iron oxide nanoparticles. Appl. Phys. A., 91, 241–246.
  • Heymann, D., Jenneskens, L.W., Jehlicka, J., Koper, C., and Vlietstra, E. (2003). Terrestrial and extraterrestrial fullerenes. Fuller. Nanotub. Carbon Nanostruct., 11, 333–370.
  • Hosea, M., Greene, B., Mcpherson, R., Henzl, M., Alexander, M.D., and Darnall, D.W. (1986). Accumulation of elemental gold on the alga Chlorella vulgaris. Inorg. Chim. Acta, 123, 161–165.
  • Hotze, E.M., Phenrat, T., and Lowry, G.V. (2010). Nanoparticle aggregation: Challenges to understanding transport and reactivity in the environment. J. Environ. Qual., 39, 1909–1924.
  • Hou, W.C., and Jafvert, C.T. (2009). Photochemical transformation of aqueous C(60) clusters in sunlight. Environ. Sci. Technol., 43, 362–367.
  • Hu, C.W., Li, M., Cui, Y.B., Li, D.S., Chen, J., and Yang, L.Y. (2010). Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil. Biol. Biochem., 42, 586–591.
  • Hull, M.S., Kennedy, A.J., Steevens, J.A., Bednar, A.J., Weiss, C.A. Jr., and Vikesland, P.J. (2009). Release of metal impurities from carbon nanomaterials influences aquatic toxicity. Environ. Sci. Technol., 43, 4169–4174.
  • Hussain, M.A., Kabir, M.A., and Sood, A.K. (2009). On the cytotoxicity of carbon nanotubes. Curr. Sci., 96, 664–673.
  • Hussain, S.M., Hess, K.L., Gearhart, J.M., Geiss, K.T., and Schlager, J.J. (2005). In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro, 19, 975–983.
  • Husseiny, M.I., Abd, E.-A. M., Badr, Y., and Mahmoud, M.A. (2007). Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim. Acta A., 67, 1003–1006.
  • Hyung, H., Fortner, J.D., Hughes, J.B., and Kim, J.H. (2007). Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ. Sci. Technol., 41, 179–184.
  • Iavicoli, I., Leso, V., Fontana, L., and Bergamaschi, A. (2011). Toxicological effects of titanium dioxide nanoparticles: A review of in vitro mammalian studies. Eur. Rev. Med. Pharmacol. Sci., 15, 481–508.
  • Jana, N.R., Gearheart, L., and Murphy, C.J. (2001). Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem. Mater., 13, 2313–2322.
  • Jarvie, H.P., Al, O.H., King, S.M., Bowes, M.J., Lawrence, M.J., Drke, A.F., Green, M.A., and Dobson, P.J. (2009). Fate of silica nanoparticles in simulated primary wastewater treatment. Environ. Sci. Technol., 43, 8622–8628.
  • Jarvie, H.P., and King, S.M. (2010). Just scratching the surface? New techniques show how surface functionality of nanoparticles influences their environmental fate. Nano Today, 5, 248–250.
  • Jehlicka, J., Svatos, A., Frank, O., and Uhlik, F. (2003). Evidence for fullerenes in solid bitumen from pillow lavas of Proterozoic age from Mitov (Bohemian Massif, Czech Republic). Geochim. Cosmochim. Acta, 67, 1495–1506.
  • Jha, A.K., and Prasad, K. (2010). Green synthesis of silver nanoparticles using Cycas leaf. Int. J. Green Nanotechnol. Phys. Chem., 1, 110–117.
  • Jha, A.K., Prasad, K., Prasad, K., and Kulkarni, A.R. (2009). Plant system: Nature's nanofactory. Colloids Surf. B., 73, 219–223.
  • Jia, G., Wang, H., Yan, L., Wang, X., Pei, R., Yan, T., Zhao, Y., and Guo, X. (2005). Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube and fullerene. Environ. Sci. Technol., 39, 1378–1383.
  • Jiang, J., Oberdorster, G., and Biswas, P. (2009). Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanopart. Res., 11, 77–89.
  • Jin, C.Y., Zhu, B.S., Wang, X.F., and Lu, Q.H. (2008). Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem. Res. Toxicol., 21, 1871–1877.
  • Jin, T., Sun, D., Su, J.Y., Zhang, H., and Sue, H.J. (2009). Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. J. Food Sci., 74, M46–M52.
  • Johnson, A.C., Bowes, M.J., Crossley, A., Jarvie, H.P., Jurkschat, K., Jurgens, M.D., Lawlor, A.J., Park, B., Rowland, P., Spurgeon, D., Svendsen, C., Thompson, I.P., Barnes, R.J., Williams, R.J., and Xu, N. (2011). An assessment of the fate, behaviour and environmental risk associated with sunscreen TiO2 nanoparticles in UK field scenarios. Sci. Total Environ., 409, 2503–2510.
  • Jones, N., Ray, B., Ranjit, T.K., and Manna, C.A. (2008). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett., 279, 71–76.
  • Jos, A., Pichardo, S., Puerto, M., Sanchez, E., Grilo, A., and Camean, A.M. (2009). Cytotoxicity of carboxylic acid functionalized single wall carbon nanotubes on the human intestinal cell line Caco-2. Toxicol. In Vitro., 23, 1491–1496.
  • Judy, J.D., Unrine, J.M., and Bertsch, P.M. (2011). Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ. Sci. Technol., 45, 776–781.
  • Judy, J.D., Unrine, J.M., Rao, W., Wirick, S., and Bertsch, P.M. (2012). Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ. Sci. Technol., 46, 8467–8474.
  • Juha, L., Hamplova, V., Kodymova, J., and Spalek, O. (1994). Reactivity of fullerene with chemically generated singlet oxygen. J. Chem. Soc. Chem. Commun. 21, 2437–2438.
  • Kaegi, R., Voegelin, A., Sinnet, B., Zuleeg, S., Hagendorfer, H., Burkhardt, M., and Siegrist, H. (2011). Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ. Sci. Technol., 45, 3902–3908.
  • Kalimuthu, K., Babu, S.R., Venkataraman, D., Bilal, M., and Gurunathan, S. (2008). Biosynthesis of silver nanoparticles by Bacillus licheniformis. Colloids Surf. B., 65, 150–153.
  • Kalishwaralal, K., Deepak, V., Pandian, S.R. K., Kottaisamy, M., BarathManiKanth, S., Kartikeyan, B., and Gurunathan, S. (2010). Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf. B., 77, 257–262.
  • Kalishwaralal, K., Deepak, V., Ramkumarpandian, S., Nellaiah, H., and Sangiliyandi, G. (2008). Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater. Lett., 62, 4411–4413.
  • Kashefi, K., and Lovley, D.R. (2000). Reduction of Fe(III), Mn(IV), and toxic metals at 100°C by Pyrobaculum islandicum. Appl. Environ. Microbiol., 66, 1050–1056.
  • Kasthuri, J., Veerapandian, S., and Rajendiran, N. (2009). Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf. B., 68, 55–60.
  • Keenan, C.R., Goth, G.R., Lucas, D., and Sedlak, D.L. (2009). Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environ. Sci. Technol., 43, 4555–4560.
  • Keller, A., Wang, H., Zhou, D., Lenihan, H., Cherr, G., Cardinale, B., Miller, B., Ji, Z. (2010). Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol., 44, 1962–1967.
  • Kesharwani, J., Yoon, K.Y., Hwang, J., and Rai, M. (2009). Phytofabrication of silver nanoparticles by leaf extract of Datura metel: hypothetical mechanism involved in synthesis. J. Bionanosci., 3, 39–44.
  • Kilin, D.S., Prezhdo, O.V., and Xia, Y. (2008). Shape-controlled synthesis of silver nanoparticles: Ab initio study of preferential surface coordination with citric acid. Chem. Phys. Lett., 458, 113–116.
  • Kim, B., Sungpark, C., Murayama, M., and Hochella, Jr., M.F. (2010). Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ. Sci. Technol., 44, 7509–7514.
  • Kim, H.-J., Phenrat, T., Tilton, R.D., and Lowry, G.V. (2009). Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environ. Sci. Technol., 43, 3824–3830.
  • King, S.M., and Jarvie, H.P. (2012). Exploring how organic matter controls structural transformations in natural aquatic nanocolloidal dispersions. Environ. Sci. Technol., 46, 6959–6967.
  • Kiser, M.A., Ladner, D.A., Hristovski, K.D., and Westerhoff, P.K. (2012). Nanomaterial transformation and association with fresh and freeze-dried wastewater activated sludge: implications for testing protocol and environmental fate. Environ. Sci. Technol., 46, 7046–7053.
  • Kiser, M.A., Westerhoff, P., Benn, T., Wang, Y., Perez-Rivera, J., and Hristovski, K. (2009). Titanium nanomaterial removal and release from wastewater treatment plants. Environ. Sci. Technol., 43, 6757–6763.
  • Kolosniaj, J., Szwarc, H., and Moussa, F. (2007). Toxicity studies of carbon nanotubes. Adv. Exp. Med. Biol., 620, 181–204.
  • Konishi, Y., Tsukiyama, T., Ohno, K., Saitoh, N., Nomura, T., and Nagamine, S. (2006). Intracellular recovery of gold by microbial reduction of AuCl4− ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy, 81, 24–29.
  • Kowshik, M., Ashtaputre, S., Kharrazi, S., Vogel, W., Urban, J., Kulkarni, S.K., and Paknikar K.M. (2003). Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology, 14, 95–100.
  • Kowshik, M., Deshmukh, N., Vogel, W., Urban, J., Kulkarni, S.K., and Paknikar, K.M. (2002). Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol. Bioeng., 78, 583–588.
  • Krishnaraj, C., Jagan, E.G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P.T., and Mohan, N. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B., 76, 50–56.
  • Kumar, A., Pandey, A.K., Singh, S.S., Shanker, R., and Dhawan, A. (2011). Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere, 83, 1124–1132.
  • Kumar, V., Yadav, S.C., and Yadav, S.K. (2010). Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. J. Chem. Technol. Biotechnol., 85, 1301–1309.
  • Kumarasamy, Y., Byres, M., Cox, P.J., Delazar, A., Jaspars, M., Nahar, L., Shoeb, M., and Sarker, S.D. (2004). Isolation, structure elucidation and biological activity of flavones c-glycosides from the seeds of Alliaria petiolata. Chem. Nat. Comp., 40, 122–128.
  • Lam, C.W., James, J.T., McCluskey, R., Arepalli, S., and Hunter, R.L. (2006). A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit. Rev. Toxicol., 36, 189–217.
  • Lam, C.W., James, J.T., McCluskey, R., and Hunter, R.L. (2004). Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci., 77, 126–134.
  • Lapied, E., Moudilou, E., Exbrayat, J.-M., Oughton, D.H., and Joner, E.J. (2010) Silver nanoparticle exposure causes apoptotic response in the earthworm Lumbricus terrestris (Oligochaeta). Nanomedicine, 5, 975–984.
  • Larese, F.F., D’Agostin, F., Crosera, M., Adami, G., Renzi, N., Bovenzi, M., and Maina, G. (2009). Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology, 255, 33–37.
  • Law, N., Ansari, S., Livens, F.R., Renshaw, J.C., and Lloyd, J.R. (2008). The formation of nano-scale elemental silver particles via enzymatic reduction by Geobacter sulfurreducens. Appl. Environ. Microbiol., 74, 7090–7093.
  • Lecoanet, H.F., Bottero, J.Y., and Wiesner, M.R. (2004). Laboratory assessment of the mobility of nanomaterials in porous media. Environ. Sci. Technol., 38, 5164–5169.
  • Lecoanet, H.F., and Wiesner, M.R. (2004). Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ. Sci. Technol., 38, 4377–4382.
  • Lee, C., Kim, J.Y., Lee, W.I., Nelson, K.L., Yoon, J., and Sedlak, D.L. (2008). Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol., 42, 4927–4933.
  • Lee, J., Mackeyev, Y., Cho, M., Li, D., Kim, J.H., Wilson, L.J., and Alvarez, P.J. J. (2009). Photochemical and antimicrobial properties of novel C60 derivatives in aqueous systems. Environ. Sci. Technol., 43, 6604–6610.
  • Lengke, F.M., Fleet, E.M., and Southam, G. (2007). Biosynthesis of silver nanoparticles by filamentous cyanobacteria a from a silver(I) nitrate complex. Langmuir, 23, 2694–2699.
  • Leppanen, M., Korpi, A., Miettinen, M., Leskinen, J., Torvela, T., Rossi, E.M., Vanhala, E., Wolff, H., Alenius, H., Kosma, V-M., Joutsensaari, J., Jokiniemi, J., and Pasanen, P. (2011). Nanosized TiO2 caused minor airflow limitation in the murine airways. Arch. Toxicol., 85, 827–839.
  • Levard, C., Hotze, E.M., Lowry, G.V., and Brown, Jr., G.E. (2012). Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ. Sci. Technol., 46, 6900–6914.
  • Levard, C., Reinsch, B.C., Michel, M.F., Oumahi, C., Lowry, G.V., and Brown, G.E. (2011). Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ. Sci. Technol., 45, 5260–5266.
  • Li, M., Pokhrel, S., Jin, X., Madler, L., Damoiseaux, R., and Hoek, E.M. V. (2011). Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media. Environ. Sci. Technol 45, 755–761.
  • Li, S.-Q., Zhu, R.-R., Zhu, H., Xue, M., Sun, X.-Y., Yao, S.-D., and Wang, S.-L. (2008a). Nanotoxicity of TiO2 nanoparticles to erythrocyte in vitro. Food Chem. Toxicol., 46, 3626–3631.
  • Li, Y.S., Wang, Y.G., Pennell, K.D., and Abriola, L.M. (2008b). Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions. Environ. Sci. Technol., 42, 7174–7180.
  • Li, Z., Greden, K., Alvarez, P., Gregory, K., and Lowry, G.V. (2010). Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zero-valent iron (NZVI) to E. coli. Environ. Sci. Technol., 44, 3462–3467.
  • Li, Z., Hulderman, T., Salmen, R., Chapman, R., Leonard, S.S., Young, S.-H., Shvedova, A., Luster, M.I., and Simeonova, P.P. (2007). Cardiovascular effects of pulmonary exposure to singlewall carbon nanotubes. Environ. Health Perspect., 115, 377–382.
  • Limbach, L.K., Bereiter, R., Müller, E., Krebs, R., Gälli, R., and Stark, W.J. (2008). Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ. Sci. Technol., 42, 5828–5833.
  • Lin, S., and Wiesner, M.R. (2012). Deposition of aggregated nanoparticles – a theoretical and experimental study on the effect of aggregation state on the affinity between nanoparticles and a collector surface. Environ. Sci. Technol., 46, 13270–13277.
  • Lindberg, H.K., Falck, G.C. M., Suhonen, S., Vippola, M., Vanhala, E., Catalán, J., Savolainen, K., and Norppa, H. (2009). Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol. Lett., 186, 166–173.
  • Linkov, I., Satterstrom, F.K., Steevens, J., Ferguson, E., and Pleus, R.C. (2007). Multi-criteria decision analysis and environmental risk assessment for nanomaterials. J. Nanopart. Res., 9, 543–554.
  • Lipovsky, A., Nitzan, Y., Gedanken, A., and Lubart, R. (2011). Antifungal activity of ZnO nanoparticlesdthe role of ROS mediated cell injury. Nanotechnology, 22, 105101.
  • Liu, J.Y., Pennell, K.G., and Hurt, R.H. (2011). Kinetics and mechanisms of nanosilver oxysulfidation. Environ. Sci. Technol., 45, 7345–7353.
  • Liu, S., Xu, L., Zhang, T., Ren, G., and Yang, Z. (2010). Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells. Toxicology, 267, 172–177.
  • Liu, X., O’Carroll, D.M., Petersen, E.J., Huang, Q., and Anderson, C.L. (2009). Mobility of multiwalled carbon nanotubes in porous media. Environ. Sci. Technol., 43, 8153–8158.
  • Lombi, E., Donner, E., Tavakkoli, E., Turney, T.W., Naidu, R., Miller, B.W., and Scheckel, K.G. (2012). Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge, Environ. Sci. Technol., 46, 9089–9096.
  • Long, T.C., Tajuba, J., Sama, P., Saleh, N., Swartz, C., Parker, J., Hester, S., Lowry, G.V., and Veronesi, B. (2007). Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ. Health Perspect., 115, 1631–1637.
  • Lowry, G.V., Espinasse, B.P., Badireddy, A.R., Richardson, C.J., Reinsch, B.C., Bryant, L.D., Bone, A.J., Deonarine, A., Chae, S., Therezien, M., Colman, B.P., Hsu-Kim, H., Bernhardt, E.S., Matson, C.W., and Wiesner, M.R. (2012a). Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ. Sci. Technol., 46, 7027–7036.
  • Lowry, G.V., Gregory, K.B., Apte, S.C., and Lead, J.R. (2012b). Transformations of nanomaterials in the environment. Environ. Sci. Technol., 46, 6893–6899.
  • Lynch, I., and Dawson, K.A. (2008). Protein-nanoparticle interactions. Nano Today, 3, 40–47.
  • Ma, H., Bertsch, P.M., Glenn, T.C., Kabengi, N.J., and Williams, P.L. (2009). Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ. Toxicol. Chem., 28, 1324–1330.
  • Ma, H., Kabengi, N.J., Bertsch, P.M., Unrine, J.M., Glenn, T.C., and Williams, P.L. (2011). Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: The importance of illumination mode and primary particle size. Environ. Pollut., 159, 1473–1480.
  • Ma, H., Williams, P.L., and Diamond, S.A. (2013). Ecotoxicity of manufactured ZnO nanoparticles – A review. Environ. Pollut., 172, 76–85.
  • Maensiri, S., Laokul, P., Klinkaewnarong, J., Phokha, S., Promarak, V., and Seraphin, S. (2008). Indium oxide (In2O3) nanoparticles using Aloe vera plant extract: Synthesis and optical properties. J. Optoelectron. Adv. Mater., 10, 161–165.
  • Mahon, E., Salvati, A., Bombelli, F.B., Lynch, I., and Dawson, K.A. (2012). Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. J. Controlled Release., 161, 164–174.
  • Marcon, L., Riquet, F., Vicogne, D., Szunerits, S., Bodart, J.-F., and Boukherroub, R. (2010). Cellular and in vivo toxicity of functionalized nanodiamond in Xenopus Embryos. J. Mater. Chem., 20, 8064–8069.
  • Marin, P., Israel, M., Glowinski, J., and Premond, J. (2000). Routes of zinc entry in mouse cortical neurons: role in zinc-induced neurotoxicity. Eur. J. Neurosci., 12, 8–18.
  • Maruta, Y., Fukushi, Y., Ohkawa, K., Nakanishi, Y., Tahara, S., and Mizutani, J. (1995). Antimicrobial stress compounds from Hypochoeris radicata. Phytochem., 38, 1169–1173.
  • Maynard, A.D. (2006). Nanotechnology: A research strategy for addressing risk. Washington, DC: Woodrow Wilson International Center for Scholars.
  • Maynard, A.D., Ku, B.K., Emery, M., Stolzenburg, M., and McMurry, P.H. (2007). Measuring particle size-dependent physicochemical structure in airborne single-walled carbon nanotube agglomerates. J. Nanopart. Res., 9, 85–92.
  • Maysinger, D. (2007). Nanoparticles and cells: Good companions and doomed partnerships. Org. Biomol. Chem., 5, 2335–2342.
  • Menard, A., Drobne, D., and Jemec, A. (2011). Ecotoxicity of nanosized TiO2: Review of in vivo data. Environ. Pollut., 159, 677–684.
  • Miao, A.J., Zhang, X.Y., Luo, Z., Chen, C.S., Chin, W.C., Santschi, P.H., and Quigg, A. (2010). Zinc oxide engineered nanoparticles: Dissolution and toxicity to marine phytoplankton. Environ. Toxicol. Chem., 29, 2814–2822.
  • Minaeian, S., Shahverdi, R.A., Nohi, S.A., and Shahverdi, R.H. (2008). Extracellular biosynthesis of silver nanoparticles by some bacteria. J. Sci. I.A., 17, 1–4.
  • Mohan, N., Chen, C.-S., Hsieh, H.-H., Wu, Y.-C., and Chang, H.-C. (2010). In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett., 10, 3692–3699.
  • Mohseniazar, M., Barin, M., Zarredar, H., Alizadeh, S., and Shanehbandi, D. (2011). Potential of microalgae and lactobacilli in biosynthesis of silver nanoparticles. BioImpacts, 1, 149–152.
  • Mokhtari, M., Deneshpojouh, S., Seyedbagheri, S., Atashdehghan, R., Abdi, K., Sarkar, S., Minaian, S., Shahverdi, R.H., and Shahverdi, R.A. (2009). Biological synthesis of very small silver nanoparticles by culture suspernatant of Klebsiella pneumonia: The effects of visible-light irradiation and the liquid mixing process. Mater. Res. Bull., 44, 1415–1421.
  • Moon, S.Y., Kusunose, T., and Sekino, T. (2009). CTAB-assisted synthesis of size- and shape-controlled gold nanoparticles in SDS aqueous solution. Mater. Lett., 63, 2038–2040.
  • Morgan, K. (2005). Development of a preliminary framework for informing the risk analysis and risk management of nanoparticles. Risk Anal., 25, 1621–1635.
  • Mortimer, M., Kasemets, K., and Kahru, A. (2010). Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology, 269, 182–189.
  • Mourato, A., Gadanho, M., Lino, A.R., and Tenreiro, R. (2011). Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg. Chem. Appl., 2011, 1–8.
  • Mudunkotuwa, I.A., Pettibone, J.M., and Grassian, V.H. (2012). Environmental implications of nanoparticle aging in the processing and fate of copper-based nanomaterials, Environ. Sci. Technol., 46, 7001–7010.
  • Mueller, N.C., and Nowack, B. (2008). Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol., 42, 4447–4453.
  • Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, R.S., Khan, I.M, Parishcha, R., Ajaykumar, V.P., Alam, M., Kumar, R., and Sastry, M. (2001). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelia matrix: A novel biological approach to nanoparticle synthesis. Nano Lett., 1, 515–519.
  • Mukherjee, P., Senapati, S., Mandal, D., Ahmad, A., Khan, M.I., Kumar, R., and Sastry, M. (2002). Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem. Bio. Chem., 3, 461–463.
  • Nair, B., and Pradeep, T. (2002). Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst. Growth Des., 2, 293–298.
  • Nanda, M.S. (2009). Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomed. Nanotechnol. Biol. Med., 5, 452–456.
  • Narayanan, K.B., and Sakthivel, N. (2008). Coriander leaf mediated biosynthesis of gold nanoparticles. Mater. Lett., 62, 4588–4590.
  • Nath, S.S., Chakdar, D., Gope, G., and Avasthi, D.K. (2008). Novel effect of swift heavy ion on ZnO quantum dots prepared by quenching method. Nanotrends: J. Nanotechnol. Appl., 3, 1–10.
  • Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Miao, A.-J., Quigg, A., Santschi, P.H., and Sigg, L. (2008b). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17, 372–386.
  • Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., Sigg, L., and Behra, R. (2008a). Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol., 42, 8959–8964.
  • Nedoskin, D.A., Khodakovskaya, M.V., Biris, A.S., Wang, D., Xu, Y., Villagarcia, H., Galanzha, E.I., and Zharav, V.P. (2011). In vivo plant flow cytometry: a first proof-of-concept. Cytometry Part A., 79A, 855–865.
  • Nel, A.E., Madler, L., Velegol, D., Xia, T., Hoek, E.M. V., Somasundaran, P., Klaessig, F., Castranova, V., and Thompson, M. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nature Mater., 8, 543–557.
  • Newman, M.D., Stotland, M., and Ellis, J.I. (2009). The safety of nanosized particles in titanium dioxide and zinc oxide-based sunscreens. J. Am. Acad. Dermatol., 61, 685–692.
  • Noginov, M.A., Zhu, G., Bahoura, M., Adegoke, J., Small, C., Ritzo, B.A., Drachev, V.P., and Shalaev, V.M. (2006). The effect of gain and absorption on surface plasmons in metal nanoparticles. Appl. Phys. B, 86, 455–460.
  • Nowack, B., and Bucheli, T.D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut., 150, 5–22.
  • Oberdorster, E. (2004). Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect., 112, 1058–1062.
  • Pal, S., Tak, Y.K., and Song, J.M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol., 73, 1712–1720.
  • Parashar, U.K., Saxena, P.S., and Srivastava, A. (2009b). Bioinspired synthesis of silver nanoparticles. Digest J. Nanomater. Biol., 4, 159–166.
  • Parashar, V., Parashar, R., Sharma, B., Pandey, A.C. (2009a). Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization. Digest J. Nanomater. Biostruct., 4, 45–50.
  • Parikh, R.Y., Singh, S., Prasad, B.L., Patole, M.S., Sastry, M., and Shouche, Y.S. (2008). Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella. sp.: towards understanding biochemical synthesis mechanism. Chembiochem., 9, 1415–1422.
  • Park, E.J., Yi, J., Chung, K.H., Ryu, D.Y., Choi, J., Park, K. (2008). Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett., 180, 222–229.
  • Pasricha, R., Singh, A., and Sastry, M. (2009). Shape and size selective separation of gold nanoclusters by competitive complexation with octadecylamine monolayers at the air-water interface. J. Colloid Interface Sci., 333, 380–388.
  • Patlolla, A., Knighten, B., and Tchounwou, P. (2010). Multi-walled carbon nanotubes induce cytotoxicity, genotoxicity and apoptosis in normal human dermal fibroblast cells. Ethn. Dis., 20(S1), 65–72.
  • Paul, W., and Sharma, C.P. (2011). Blood compatibility studies of Swarna bhasma (gold bhasma), an Ayurvedic drug, Int. J. Ayurveda Res., 2, 14–22.
  • Perez, S., Farre, M., and Barcelo, D. (2009). Analysis, behavior and ecotoxicity of carbon-based nanomaterials in the aquatic environment. TRAC Trends Anal. Chem., 28, 820–832.
  • Petersen, E.J., Pinto, R.A., Zhang, L.W., Huang, Q.G., and Landrum, P.E. (2011a). Effects of polyethyleneimine-mediated functionalization of multi-walled carbon nanotubes on earthworm bioaccumulation and sorption by soils. Environ.Sci.Technol., 45, 3718–3724.
  • Petersen, E.J., Zhang, L., Mattison, N.T., O’Carroll, D.M., Whelton, A.J., Uddin, N., Nguyen, T., Huang, Q., Henry, T.B., Holbrook, R.D., and Chen, K.L. (2011b). Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ. Sci. Technol., 45, 9837–9856.
  • Phenrat, T., Long, T.G., Lowry, G.V., and Veronesi, B. (2009). Partial oxidation (aging) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ. Sci. Technol., 43, 195.
  • Phenrat, T., Saleh, N., Sirk, K., Tilton, R.D., and Lowry, G.V. (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ. Sci. Technol., 41, 284–290.
  • Philip, D. (2009). Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim. Acta A., 73, 374–381.
  • Philip, D. (2010a). Green synthesis of gold and silver nanoparticles using Hibiscus rosasinensis. Physica E, 42, 1417–1424.
  • Philip, D. (2010b). Honey mediated green synthesis of silver nanoparticles. Spectrochim. Acta A, 75, 1078–1081.
  • Philip, D., and Unni, C. (2011). Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (Ocimum sanctum) leaf. Phys. E Low-Dimension. Syst. Nanostruct., 43, 1318–1322.
  • Poynton, H.C., Lazorchak, J.M., Impellitteri, C.A., Smith, M.E., Rogers, K., Patra, M., Hammer, K.A., Allen, H.J., and Vulpe, C.D. (2010). Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environ. Sci. Technol., 45, 762–768.
  • Pradeep, T., and Anshup (2009). Noble metal nanoparticles for water purification: A critical review. Thin Solid Films, 517, 6441–6478.
  • Praetorius, A., Scheringer, M., and Hungerbuhler, K. (2012). Development of environmental fate models for engineered nanoparticles-a case study of TiO2 nanoparticles in the Rhine river. Environ. Sci. Technol., 46, 6705–6713.
  • Prasad, T.N. V. K. V., and Elumalai, E. (2011). Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pac. J. Trop. Biomed., 1, 439–442.
  • Puzyn, T., Rasulev, B., Gajewicz, A., Hu, X., Dasari, T.P., Michalkova, A., Hwang, H.M., Toropov, A., Leszczynska, D., and Leszczynski, J. (2011). Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat. Nanotechnol., 6, 175–178.
  • Qu, J., Luo, C., and Hou, J. (2011a). Synthesis of ZnO nanoparticles from Zn-hyperaccumulator (Sedum alfredii Hance) plants. Micro Nano Lett., 6, 174–176.
  • Qu, J., Yuan, X., Wang, X., and Shao, P. (2011b). Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L. Environ. Pollut., 159, 1783–1788.
  • Qu, X., Alvarez, P.J. J., and Li, Q. (2012). Impact of sunlight and humic acid on the deposition kinetics of aqueous fullerene nanoparticles (nC60). Environ. Sci. Technol., 46, 13455–13462.
  • Raghunandan, D., Basavaraja, S., Mahesh, B., Balaji, S., Manjunath, S.Y., and Venkataraman, A. (2009). Biosynthesis of stable polyshaped gold nanoparticles from microwave-exposed aqueous extracellular anti-malignant guava (Psidium guajava) leaf extract. Nano Biotechnol., 5, 34–41.
  • Raghupathi, K.R., Koodali, R.T., and Manna, A.C. (2011). Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 27, 4020–4028.
  • Ravindra, S., Murali, M.Y., Narayana, R.N., and Mohana, R.K. (2010). Fabrication of antibacterial cotton fibers loaded with silver nanoparticles via “green approach”. Colloids Surf. A, 367, 31–40.
  • Reddy, A.S., Chen, C.-Y., Chen, C.-C., Jean, J.-S., Chen, H.-R., Tseng, M.-J., Fan, C.-W., and Wang, J.-C. (2010). Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus Subtilis. J. Nanosci. Nanotechnol., 10, 6567–6574.
  • Reinsch, B.C., Levard, C., Li, Z., Ma, R., Wise, A., Gregory, K.B., Brown, G.E. , Jr., and Lowry, G.V. (2012). Sulfidation decreases silver nanoparticle growth inhibition effects for Escherichia coli. Environ. Sci. Technol., 46, 6992–7000.
  • Reinsch, B.C., Forsberg, B., Penn, R.L., Kim, C.S., and Lowry, G.V. (2010). Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Environ. Sci. Technol., 44, 3455–3461.
  • Richardson, S.D. (2008). Environmental mass spectrometry: emerging contaminants and current issues. Anal. Chem., 80, 4373–4402.
  • Robichaud, C.O., Uyar, A.E., Darby, M.R., Zucker, L.G., and Wiesner, M.R. (2009). Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ. Sci. Technol., 43, 4227–4233.
  • Rossi, E.M., Pyllkanen, L., Koivisto, A.J., Vippola, M., Jensen, K.A., Miettinen, M., Sirola, K., Nykasenoja, H., Karisola, P., Stjernvall, T., Vanhala, E., Kiilunen, M., Pasanen, P., Makinen, M., Hameri, K., Joutsensaari, J., Tuomi, T., Jokiniemi, J., Wolff, H., Savolainen, K., Matikainen, S., and Alenius, H. (2010). Airway exposure to silica coated TiO2 nanoparticles induces pulmonary neutrophilia in mice. Toxicol. Sci., 113, 422–433.
  • Roy, N., and Barik, A. (2010). Green synthesis of silver nanoparticles from the unexploited weed resources. Int. J. Nanotechnol. Appl., 4, 95–101.
  • Saleh, N., Kim, J.-J., Phenrat, T., Matyjaszewski, K., Tilton, R.D., and Lowrey, G.V. (2008). Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ. Sci. Technol., 42, 3349–3355.
  • Samadi, N., Golkaran, D., Eslamifar, A., Jamalifar, H., Fazeli, M.R., and Mohseni, F.A. (2009). Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic waste. J. Biomed. Nanotechnol., 5, 247–253.
  • Santhoshkumar, T., Rahuman, A.A., Rajakumar, G., Marimuthu, S., Bagavan, A., Jayaseelan, C., Zahir, A.A., Elango, G., and Kamaraj, C. (2011). Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol. Res., 108, 693–702.
  • Sastry, M., Ahmad, A., Khan, I.M., and Kumar, R. (2003). Biosynthesis of metal nanoparticles using fungi and actinomycete. Current Sci., 85, 162–170.
  • Sathishkumar, M., Sneha, K., Kwak, I.S., Mao, J., Tripathy, S.J., and Yun, Y.S. (2009a). Phyto-crystallization of palladium through reduction process using Cinnamom zeylanicum bark extract. J. Hazard. Mater., 171, 400–404.
  • Sathishkumar, M., Sneha, K., Won, S.W., Cho, C.-W., Kim, S., and Yun, Y.-S. (2009b) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf. B., 73, 332–338.
  • Sayes, C.M., Fortner, J.D., Guo, W., Lyon, D., Boyd, A.M., Ausman, K.D., Tao, Y.J., Sitharaman, B., and Wilson, L.J. (2004). The differential cytotoxicity of water-soluble fullerenes. Nano Lett., 4, 1881–1887.
  • Sayes, C.M., Wahi, R., Kurian, P.A., Liu, Y., West, J.L., Ausman, K.D., Warheit, D.B., and Colvin, V.L. (2006). Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol. Sci., 92, 174–185.
  • Scarano, G., and Morelli, E. (2003). Properties of phytochelatin-coated CdS nanocrystallites formed in a marine phytoplanktonic alga (Phaeodactylum tricornutum, Bohlin) in response to Cd. Plant Sci., 165, 803–810.
  • Schabes-Retchkiman, P.S., Canizal, G., Herrera, B.R., Zorrilla, C., Liu, H.B., and Ascencio, J. (2006). Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Opt. Mater., 29, 95–99.
  • Schnepp, Z., Wimbush, S.C., Antonietti, M., and Giordano, C. (2010). Synthesis of highly magnetic iron carbide nanoparticles via a biopolymer route. Chem. Mater., 22, 5340–5344.
  • Schrand, A.M., Huang, H., Carlson, C., Schlager, J.J., Ohsawa, E., Hussain, S.M., and Dai, L. (2007). Are diamond nanoparticles cytotoxic?. J. Phys. Chem. B., 111, 2–7.
  • Schrofel, A., Kratosova, G., Bohunicka, M., Dobrocka, E., and Vavra, I. (2011). Biosynthesis of gold nanoparticles using diatoms-silicagold and EPS-gold bionanocomposite formation. J. Nanopart. Res., 13, 3207–3216.
  • Seagren, E.A., and Becker, J.G. (2002). A review of natural attenuation of BTEX and MTBE in groundwater. Practice periodical of hazardous, toxic, and radioactive waste management (ASCE), 6, 156–172.
  • Sekar, D., Falcioni, M.L., Barucca, G., and Falcioni, G. (2011). DNA damage and repair following in vitro exposure to two different forms of titanium dioxide nanoparticles on trout erythrocyte. Environ. Toxicol., 1–11 (DOI: 10.1002/tox.20778).
  • Sen, T.K., and Khilar, K.C. (2006). Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv. Colloid Interface Sci., 119, 71–96.
  • Serpone, N., Dondi, D., and Albini, A. (2007). Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare product. Inorg. Chim. Acta, 360, 794–802.
  • Sevcu, A., El-Temsah, Y.S., Joner, E.J., and Cernik, M. (2011). Oxidative stress induced in microorganisms by zero-valent iron nanoparticles. Microbes Environ., 26, 271–281.
  • Shahverdi, A.R., Minaeian, S., Shahverdi, H.R., Jamalifar, H., and Nohi, A.-A. (2007). Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem., 42, 919–923.
  • Shaligram, N.S., Bule, M., Bhambure, R., Singhal, R.S., Singh, S.K., Szakacs, G., and Pandey, A. (2009). Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem., 44, 939–943.
  • Shankar, S.S., Ahmad, A., Pasricha, R., and Sastry, M. (2003a). Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J. Mater. Chem., 13, 1822–1826.
  • Shankar, S.S., Ahmad, A., and Sastry, M. (2003b). Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog., 19, 1627–1631.
  • Shankar, S.S., Rai, A., Ahmad, A., and Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci., 275, 496–502.
  • Sharma, N.C., Sahi, S.V., Nath, S., Parsons, J.G., Gardea, T.J. L., and Pal, T. (2007). Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix embedded nanomaterials. Environ. Sci. Technol., 41, 5137–5142.
  • Simate, G.S., Iyuke, S.E., Ndlovu, S., Heydenrych, M., and Walubita, L.F. (2012). Human health effects of residual carbon nanotubes and traditional water treatment chemicals in drinking water. Environ. Int., 39, 38–49.
  • Singaravelu, G., Arockiamary, S.J., Kumar, G.V., and Govindaraju, K. (2007). A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga Sargassum wightii Greville. Colloids Surf. B., 57, 97–101.
  • Sinha, A., and Khare, S.K. (2011). Mercury bioaccumulation and simultaneous nanoparticle synthesis by Enterobacter sp. Cells. Bioresour. Technol., 102, 4281–4284.
  • Smitha, S.L., Philip, D., and Gopchandran, K.G. (2009). Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochim. Acta A, 74, 735–739.
  • Snow, S.D., Lee, J., and Kim J.-H. (2012). Photochemical and photophysical properties of sequentially functionalized fullerenes in the aqueous phase. Environ. Sci. Technol., 46, 13227–13234.
  • Song, J.Y., and Kim, B.S. (2008). Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diopyros kaki) leaf extract. Korean J. Chem. Eng., 25, 808–811.
  • Song, J.Y., Kwon, E.-Y., and Kim, B.S. (2010). Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst. Eng., 33, 159–164.
  • Stella, G.M. (2011). Carbon nanotubes and pleural damage: perspectives of nanosafety in the light of asbestos experience. Biointerphases, 6, 1–17.
  • Sweeney, R.Y., Mao, C., Gao, X., Burt, J.L., Belcher, A.M., Georgiou, G., and Iverson, B.L. (2004). Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem. Biol., 11, 1553–1559.
  • Szwarc, H., and Moussa, F. (2011). Toxicity of [60] fullerene: confusion in the scientific literature. J. Nanosci. Lett.,. 1, 61–62.
  • Tabet, L., Bussy, C., Setyan, A., Simon-Deckers, A., Rossi, M.J., Boczkowski, J., and Lanone, S. (2011). Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity. Part. Fibre. Toxicol., 8, 3.
  • Tan, M.-H., Commens, C.A., Burnett, L., and Snitch, P.J. (1996). A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens. Aust. J. Dermatol., 37, 185–187.
  • Tanja, K., Ralph, J., Eva, O., and Claes, G.G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci., 96, 13611–13614.
  • Tervonen, T., Linkov, I., Figueira, J.R., Steevens, J., Chappell, M., and Merad, M. (2009). Risk based classification systems of nanomaterials. J. Nanopart. Res., 11, 757–766.
  • Tinkle, S.S., Antonini, J.M., Rich, B.A., Roberts, J.R., Salmen, R., DePree, K., and Adkins, E.J. (2003). Skin as a route of exposure and sensitization in chronic beryllium disease. Environ. Health Perspect., 111, 1202–1208.
  • Tratnyek, P.G., and Johnson, R.L. (2006). Nanotechnologies for environmental cleanup. Nano Today, 1, 44–48.
  • Tsuji, J.S., Maynard, A.D., Howard, P.C., James, J.T., Lam, C.-W., Warheit, D.B., and Santamaria, A.B. (2006). Research strategies for safety evaluation of nanomaterials, Part IV; Risk assessment of nanoparticles. Toxicol. Sci., 89, 42–50.
  • Unrine, J.M., Colman, B.P., Bone, A.J., Gondikas, A.P., and Matson, C.W. (2012). Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution. Environ. Sci. Technol., 46, 6915–6924.
  • Unrine, J.M., Hunyadi, S.E., Tsyusko, O.V., Rao, W., Shoults, W.W. A., and Bertsch, P.M. (2010a). Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida). Environ. Sci. Technol., 44, 8308–8313.
  • Unrine, J.M., Tsyusko, O.V., Hunyadi, S.E., Judy, J.D., and Bertsch, P.M. (2010b). Effects of particle size on chemical speciation and bioavailability of copper to earthworms (Eisenia fetida) exposed to copper nanoparticles. J. Environ. Qual., 39, 1942–1953.
  • Upadhyayula, V.K. K., Deng, S., Mitchell, M.C., and Smith, G.B. (2009). Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci. Total Environ., 408, 1–13.
  • Valko, M., Morris, H., and Cronin M.T. (2005). Metals, toxicity and oxidative stress. Curr. Med. Chem., 12, 1161–1208.
  • Velasco-Santos, C., Martinez-Hernández, A.L., Consultchi, A., Rodriguez, R., and Castano, V.M. (2003). Naturally produced carbon nanotubes. Chem. Phys. Lett., 373, 272–276.
  • Videa, J.R. P., Zhao, L., Moreno, M.L. L., Rosa, G.D. L., Hong, J., and Torresdey, J.L. G. (2011). Nanomaterials and the environment: A review for the biennium 2008–2010, J. Hazard. Mater., 186, 1–15.
  • Vigneshwaran, N., Ashtaputre, N.M., Varadarajan, P.V., Nachane, R.P., Paralikar, K.M., and Balasubramanya, R.H. (2007). Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett., 66, 1413–1418.
  • Vigneshwaran, N., Kathe, A.A., Varadarajan, P.V., Nachane, P.R., and Balasubramanya, R.H. (2006). Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf. B., 53, 55–59.
  • Wagner, T., Bundschuh, T., Schick, R., and Koster, R. (2004). Detection of aquatic colloids in drinking water during its distribution via a water pipeline network. Water Sci. Technol., 50, 27–37.
  • Wang, D., Hu, J., Irons, D.R., and Wang, J. (2011). Synergistic toxic effect of nano-TiO2 and As (V) on Ceriodaphnia dubia. Sci. Total Environ., 409, 1351–1356.
  • Wang, H., Wick, R.L., and Xing, B. (2009b). Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ. Pollut., 157, 1171–1177.
  • Wang, J., Zhou, G., Chen, C., Yu, H., Wang, T., Ma, Y., Jia, G., Gao, Y., Li, B., Sun, J., Li, Y., Jiao, F., Zhao, Y., and Chai, Z. (2007a). Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol. Lett., 168, 176–185.
  • Wang, J.J., Sanderson, B.J. S., and Wang, H. (2007b). Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 628, 99–106.
  • Wang, Y., He, X., Wang, K., Zhang, X., and Tan, W. (2009a). Barbated Skullcup herb extractmediated biosynthesis of gold nanoparticles and its primary application in electrochemistry. Colloids Surf. B., 73, 75–79.
  • Ward, J.E., and Kach, D.J. (2009). Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar. Environ. Res., 68, 137–142.
  • Warheit, D.B., Hoke, R.A., Finlay, C., Donner, E.M., Reed, K.L., and Sayes, C.M. (2007a). Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticles risk assessment. Toxicol. Lett., 171, 99–110.
  • Warheit, D.B., Laurence, B.R., Reed, K.L., Roach, D.H., Reynolds, G.A. M., and Webb, T.R. (2004). Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci., 77, 117–125.
  • Warheit, D.B., Webb, T.R., Reed, K.L., Frerichs, S., and Sayes, C.M. (2007b). Pulmonary toxicity study in rats with three forms of ultrafine – TiO2 particles: differential responses related to surface properties. Toxicology, 230, 90–104.
  • Warheit, D.B., Webb, T.R., Sayes, C.M., Colvin, V.L., and Reed, K.L. (2006). Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol. Sci., 91, 227–236.
  • Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., and Goetz, N.V. (2012). Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol., 46, 2242–2250.
  • Westerhoff, P., Song, G., Hristovski, K., and Kiser, M.A. (2011). Occurrence and removal of titanium at full-scale wastewater treatment plants: Implications for TiO2 nanomaterials. J. Environ. Monit., 13, 1195–1203.
  • Wick, P., Manser, P., Limbach, L.K., Weglikowska, U.D., Krumeich, F., Roth, S., Stark, W.J., and Bruinink, A. (2007). The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol. Lett., 168, 121–131.
  • Wiesner, M.R., Lowry, G.V., Alvarez, P., Dionysiou, D., and Biswas, P. (2006). Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol., 168, 4336–4345.
  • Wigginton, N.S., Haus, K.L., and Hochella, M.F. Jr. (2007). Aquatic environmental nanoparticles. J. Environ. Monit., 9, 1306–1316.
  • Wiwanitkit, V., Sereemaspun, A., and Rojanathanes, R. (2009). Effect of gold nanoparticles on spermatozoa: the first world report. Fertil. Steril., 91, e7–e8.
  • Xia, T., Kovochich, M., Brant, J., Hotze, M., Sempf, J., Oberley, T., Sioutas, C., Yeh, J.I., Wiesner, M.R., and Nel, A.E. (2006). Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett., 6, 1794–1807.
  • Yang, H., Liu, C., Yang, D., Zhang, X., and Zhuge, J. (2008). Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape, and composition. J. Appl. Toxicol., 29, 69–78.
  • Yang, X., Qingbiao, L., Wang, H., Huang, J., Lin, L., Wang, W., Su, Y., Opiyo, J.B., and Hong, L. (2010). Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J. Nanopart. Res., 12, 1589–1598.
  • Yeary, L.W., Moon, J.-W., Love, L.J., Thompson, J.R., Rawn, C.J., and Phelps, T.J. (2005). Magnetic Properties of Biosynthesized Magnetite Nanoparticles. IEEE Trans. Magn., 41, 4384–4389.
  • Yi, C., and Peng, K.L. (2011). Influence of surface oxidation on the aggregation and deposition kinetics of multiwalled carbon nanotubes in monovalent and divalent electrolytes. Langmuir, 27, 3588–3599.
  • You, Y., Han, J., Chiu, P.C., and Jin, Y. (2005). Removal and inactivation of waterborne viruses using zerovalent iron. Environ. Sci. Technol., 39, 9263–9269.
  • Zhang, C., Vali, H., Romanek, C., Phelps, T.J., and Liu, S.V. (1998). Formation of single-domain magnetite by a thermophilic bacterium. Am. Min., 83, 1409–1418.
  • Zhang, R., Bai, Y., Zhang, B., Chen, L., and Yan, B. (2012a). The potential health risk of titania nanoparticles. J. Hazard. Mater., 211–212, 404–413.
  • Zhang, T., Kim, B., Levard, C., Reinsch, B.C., Lowry, G.V., Deshusses, M.A., and Hsu, K.H. (2012b). Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides. Environ. Sci. Technol., 46, 6950–6958.
  • Zhang, X., Yin, J., Kang, C., Li, J., Zhu, Y., Li, W., Huang, Q., and Zhu, Z. (2010). Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation. Toxicol. Lett., 198, 237–243.
  • Zhu, L., Chang, D.W., Dai, L., and Hong, Y. (2007). DNA damage induced by multiwalled carbon nanotubes in mouse embryogenic stem cells. Nano Lett., 7, 3592–3597.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.