1,723
Views
58
CrossRef citations to date
0
Altmetric
Original Articles

Cesium-137: Radio-Chemistry, Fate, and Transport, Remediation, and Future Concerns

, , , &
Pages 1740-1793 | Published online: 01 Aug 2014

REFERENCES

  • Abraham, J.P., Whicker, F.W., Hinton, T.G., and Rowan, D.J. (2000). Inventory and spatial pattern of 137cs in a pond: A comparison of two survey methods. Journal of Environmental Radioactivity 51, 157–171.
  • Adamec, L. (1997). Relations between K+ uptake and photosynthetic uptake of inorganic carbon by aquatic plants. Biologia Plantarum 39, 599–606.
  • Adriano, D.C., Wenzel, W.W., Vangronsveld, J., and Bolan, N.S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma. 122, 121–142.
  • Al-Masri, M.S., Mamish, S., and Budier, Y. (2003). Radionuclides and trace metals in eastern Mediterranean sea algae. Journal of Environmental Radioactivity 67, 157–168.
  • Alberts, J.J., Tilly, L.J., and Vigerstad, T.J. (1979). Seasonal cycling of cesium-137 in a reservoir. Science 203, 649–651.
  • Antonio, M.R., Dietz, M.L., Jensen, M.P., Soderholm, L., and Horwitz, E.P. (1997). Exafs studies of cesium complexation by dibenzo-crown ethers in tri-N-butyl phosphate. Inorganica Chimica Acta 255, 13–20.
  • Aoyama, M., Fukasawa, M., Hirose, K., Hamajima, Y., Kawano, T., Povinec, P.P., and Sanchez-Cabeza, J.A. (2011). Cross equator transport of 137cs from North Pacific Ocean to South Pacific Ocean (Beagle2003 Cruises). Progress in Oceanography 89, 7–16.
  • Aoyama, M., and Hirose, K. (2008). Radiometric determination of anthropogenic radionuclides in seawater. In P.P. Pavel (Ed.), Radioactivity in the environment (Vol. 11, pp. 137–162). Amsterdam: Elsevier.
  • Aoyama, M., Hirose, K., Nemoto, K., Takatsuki, Y., and Tsumune, D. (2008). Water masses labeled with global fallout 137cs formed by subduction in the North Pacific. Geophysical Research Letters 35, L01604.
  • Barko, J.W. (1982). Influence of potassium source (sediment vs. open water) and sediment composition on the growth and nutrition of a submersed freshwater macrophyte (Hydrilla Verticillata) (L. F.) Royle). Aquatic Botany 12, 157–172.
  • Bauman, A., Cesar, D., Franić, Z., Kovač, J., Lokobauer, N., Marović, G., Maračić, M., and Novaković, M. (1992) Results of environmental radioactivity measurements in the Republic of Croatia, annual reports 1978–1991 (in Croatian). Zagreb, Croatia: Institute for Medical Research and Occupational Health.
  • Bellenger, J.-P., and Staunton, S. (2008). Adsorption and desorption of 85sr and 137cs on reference minerals, with and without inorganic and organic surface coatings. Journal of Environmental Radioactivity 99, 831–840.
  • Bolsunovsky, A., and Dementyev, D. (2011). Evidence of the radioactive fallout in the center of Asia (Russia) following the Fukushima nuclear accident. Journal of Environmental Radioactivity 102, 1062–1064.
  • Bossew, P., Lettner, H., Hubmer, A., Erlinger, C., and Gastberger, M. (2007). Activity ratios of 137cs, 90sr and 239+240pu in environmental samples. Journal of Environmental Radioactivity 97, 5–19.
  • Bostick, B.C., Vairavamurthy, M.A., Karthikeyan, K.G., and Chorover, J. (2002). Cesium adsorption on clay minerals: An Exafs spectroscopic investigation. Environmental Science and Technology 36, 2670–2676.
  • Bowyer, T.W., Biegalski, S.R., Cooper, M., Eslinger, P.W., Haas, D., Hayes, J.C., Miley, H.S., Strom, D.J., and Woods, V. (2011). Elevated radioxenon detected remotely following the Fukushima nuclear accident. Journal of Environmental Radioactivity 102, 681–687.
  • Brandt, J., Christensen, J.H., and Frohn, L.M. (2002). Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the dream model. Atmospheric Chemistry and Physics 2, 397–417.
  • Brechignac, F., Polikarpov, G., Oughton, D.H., Hunter, G., Alexakhin, R., Zhu, Y.G., Hilton, J., and Strand, P. (2003). Protection of the environment in the 21st century: Radiation protection of the biosphere including humankind: Statement of the International Union of Radioecology. Journal of Environmental Radioactivity 70, 155–159.
  • Brenner, D.J., Doll, R., Goodhead, D.T., Hall, E.J., Land, C.E., Little, J.B., Lubin, J.H., Preston, D.L., Preston, R.J., Puskin, J.S., Ron, E., Sachs, R.K., Samet, J.M., Setlow, R.B., and Zaider, M. (2003). Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know. Proceedings of the National Academy of Sciences 100, 13761–13766.
  • Brouwer, E., Baeyens, B., Maes, A., and Cremers, A. (1983). Cesium and rubidium ion equilibria in illite clay. J. Phys. Chem 87, 1213–1219.
  • Buesseler, K., Aoyama, M., and Fukasawa, M. (2011). Impacts of the Fukushima nuclear power plants on marine radioactivity. Environmental Science and Technology 45, 9931–9935.
  • Bunzl, K. (2002). Transport of fallout radiocesium in the soil by bioturbation: A random walk model and application to a forest soil with a high abundance of earthworms. Science of the Total Environment 293, 191–200.
  • Burger, J., Gochfeld, M., Kosson, D.S., Powers, C.W., Jewett, S., Friedlander, B., Chenelot, H., Volz, C.D., and Jeitner, C. (2006). Radionuclides from Amchitka and Kiska Islands in the Aleutians: Establishing a baseline for future biomonitoring. Journal of Environmental Radioactivity 91, 27–40.
  • Butkus, D., Lukšienė, B., and Konstantinova, M. (2009). Evaluation of 137cs soil-to-plant transfer: Natural and model experiments. Journal of Radioanalytical and Nuclear Chemistry 279, 411–416.
  • Cambray, R.S., Cawse, P.A., Garland, J.A., Gibson, J.A. B., Johnson, P., Lewis, G.N. J., Newton, D., Salmon, L., and Wade, B.O. (1987). Observations on radioactivity from the Chernobyl accident. Nuclear Energy 26, 77–101.
  • Campbell, B.L., Loughran, R.J., Elliott, G.L., and Shelly, D.J. (1986). Mapping drainage basin sediment sources using caesium-137. International Association of Hydrological Sciences 159, 437–446.
  • Camps, M., Rigol, A., Vidal, M., and Rauret, G. (2003). Assessment of the suitability of soil amendments to reduce 137cs and 90sr root uptake in meadows. Environmental Science and Technology 37, 2820–2828.
  • Carignan, R. (1985). Nutrient dynamics in a littoral sediment colonized by the submersed macrophyte myriophyllum spicatum. Canadian Journal of Fisheries and Aquatic Sciences 42, 1303–1311.
  • Carlson, L. (1990). Effects of biotic and abiotic factors on the accumulation of radionuclides in Fucus Vesiculosus L. Lund University, PhD Thesis.
  • Catalano, J.G., McKinley, J.P., Zachara, J.M., Heald, S.M., Smith, S.C., and Brown, G.E. (2006). Changes in uranium speciation through a depth sequence of contaminated Hanford sediments. Environmental Science and Technology 40, 2517–2524.
  • Central Institute for Meteorology and Geodynamics. (2011). Accident in the Japanese NPP Fukushima: Spread of radioactivity/first source estimates from CTBTO data show large source terms at the beginning of the accident/weather currently not favourable/low level radioactivity meanwhile observed over US East Coast and Hawaii. . Retrieved from http://www.zamg.ac.at/cms/de/aktuell/index.php
  • Cha, H.-J., Kang, M.-J., Chung, G.H., and Choi, G.S. (2006). Accumulation of 137cs in soils on different bedrock geology and textures. Journal of Radioanalytical and Nuclear Chemistry 267, 349–355.
  • Chen, C.T. A., Hou, W.-P., Gamo, T., and Wang, S.L. (2006). Carbonate-related parameters of subsurface waters in the West Philippine, South China and Sulu Seas. Marine Chemistry 99, 151–161.
  • Chen, G., Flury, M., Harsh, J.B., and Lichtner, P.C. (2005). Colloid-facilitated transport of cesium in variably saturated Hanford sediments. Environmental Science and Technology 39, 3435–3442.
  • Chino, M., Ishikawa, H., and Yamazawa, H. (1993). Speedi and Wspeedi: Japanese emergency response systems to predict radiological impacts in local and workplace areas due to a nuclear accident. Radiation Protection Dosimetry 50, 145–152.
  • Chino, M., Nakayama, H., Nagai, H., Terada, H., Katata, G., and Yamazawa, H. (2011). Preliminary estimation of release amounts of 131i and 137cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. Journal of Nuclear Science and Technology 48, 1129–1134.
  • Chorover, J., Choi, S., Amistadi, M.K., Karthikeyan, K.G., Crosson, G., and Mueller, K.T. (2003). Linking cesium and strontium uptake to kaolinite weathering in simulated tank waste leachate. Environmental Science and Technology 37, 2200–2208.
  • Chorover, J., Choi, S., Rotenberg, P., Serne, R.J., Rivera, N., Strepka, C., Thompson, A., Mueller, K.T., and O’Day, P.A. (2008). Silicon control of strontium and cesium partitioning in hydroxide-weathered sediments. Geochimica et Cosmochimica Acta 72, 2024–2047.
  • Chossudovsky, M. (2012). Toward a World War Iii Scenario: The dangers of nuclear war. Canada: Global Research.
  • Ciuffo, L.E. C., Belli, M., Pasquale, A., Menegon, S., and Velasco, H.R. (2002). 137cs and 40k soil-to-plant relationship in a seminatural grassland of the Giulia Alps, Italy. Science of the Total Environment 295, 69–80.
  • Cobbett, C.S. (2000). Phytochelatins and their roles in heavy metal detoxification. Plant Physiology 123, 825–832.
  • Comans, R.N. J., Haller, M., and De Preter, P. (1991). Sorption of cesium on illite: Non-equilibrium behavior and reversibility. Geochimica et Cosmochimica Acta 55, 433–440.
  • Čonkić, L.J., Ivó, M., Lulić, S., Košutić, K., Simor, J., Vancsura, P., Slivka, J., and Bikit, I. (1990). The impact of the Chernobyl accident on the radioactivity of the river Danube. Water Science & Technology 22, 195–202.
  • Cook, L.L., Inouye, R.S., McGonigle, T.P., and White, G.J. (2007). The distribution of stable cesium in soils and plants of the Eastern Snake River Plain in Southern Idaho. Journal of Arid Environments 69, 40–64.
  • Cornell, R.M. (1993). Adsorption of cesium on minerals: A review. J. Radioanal. Nucl. Chem. Articles 171, 483–500.
  • Cragle, R.G. (1961). Uptake and excretion of cesium134 and potassium42 in lactating dairy cows. Journal of Dairy Science 44, 352–357.
  • Cremers, A., Elsen, A., De Preter, P., and Maes, A. (1988). Quantitative analysis of radiocesium retention in soils. Nature 335, 247–249.
  • Currie, L.A. (1999). International recommendations offered on analytical detection and quantification concepts and nomenclature. Analytica Chimica Acta 391, 103.
  • Dabbagh, R., Ebrahimi, M., Aflaki, F., Ghafourian, M., and Sahafipour, M.H. (2008). Biosorption of stable cesium by chemically modified biomass of Sargassum Glaucescens and Cystoseira Indica in a continuous flow system. Journal of Hazardous Materials 159, 354–357.
  • Dale, C.J., Dale, A.A., Warwick, P.E., and Rowe, J.E. (2001). Rapid determination of Po-210 and Pb-210 (Via Bi-210) in air filters using alpha spectrometry and cerenkov counting. . Siegurd Mobius, S., Noakes, J., and Schonhofer, F. (eds) In Liquid scintillation spectrometry 2001 (pp. 343–349). Arizona Board of Regents on behalf of the University of Arizona.
  • Daróczy, S., Bolyós, A., Dezsö, Z., Pázsit, Á., Nagy, J., Tamási, T., Benke, E., and Nagy, M. (1994). Subsequent mapping of137cs fallout from Chernobyl in Hungary using the radioactivity found in mosses. Naturwissenschaften 81, 175–177.
  • Davison, W., Spezzano, P., and Hilton, J. (1993). Remobilization of caesium from freshwater sediments. Journal of Environmental Radioactivity 19, 109–124.
  • Davoine, X., and Bocquet, M. (2007). Inverse modelling-based reconstruction of the Chernobyl source term available for long-range transport. Atmospheric Chemistry and Physics 7, 1549–1564.
  • De-Preter, P. (1990). Radiocesium retention in the aquatic, terrestrial and urban environment: A quantitative and unifying analysis. . Katholieke Unversiteit, Ph.D dissertation.
  • Deutscher Wetterdienst. (2011). Deutscherwetterdienst Zu Den Folgen Der Fukushima-Katastrophe Wetter Sorgt Für Starke Verdünnung Der Radioaktiven Konzentration. . Retrieved from http://www.dwd.de/presse
  • Devell, L., Guntay, S., and Powers, D.A. (1995). The Chernobyl reactor accident source term: Development of a consensus view. Geneva, Switzerland: Organisation for Economic Co-Operation and Development.
  • Di Toro, D.M., Mahoney, J.D., Kirchgraber, P.R., O’Byrne, A.L., Pasquale, L.R., and Piccirilli, D.C. (1986). Effects of nonreversibility, particle concentration and ionic strength on heavy metal sorption. Environmental Science and Technology 20, 55–61.
  • Directorate of Radiological Protection and Human Health. (2011). IRSN Report: Assessment on the 66th day of projected external doses for population living in the north-west fallout zone of the Fukushima nuclear accident. . Report Drph/2011-10.
  • Długosz, M., Grabowski, P., and Bem, H. (2010). 210pb and 210po radionuclides in the urban air of Lodz, Poland. Journal of Radioanalytical and Nuclear Chemistry 283, 719–725.
  • Długosz-Lisiecka, M., and Bem, H. (2012). Determination of the mean aerosol residence times in the atmosphere and additional 210po input on the base of simultaneous determination of 7be, 22na, 210pb, 210bi and 210po in urban air. Journal of Radioanalytical and Nuclear Chemistry 293, 135–140.
  • Dominik, J., and Span, D. (1992). The fate of Chernobyl 13’cs in Lake Lugano. Aquatic Sciences 54, 238–254.
  • Eapen, S., and D’Souza, S.F. (2004). Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnology Advances 23, 97–114.
  • Eberl, D.D. (1980). Alkali cation selectivity and fixation by clay minerals. Clays and Clay Minerals 28, 161–172.
  • Eisenbud, M. (1987). Environmental radioactivity: From natural, industrial, and military sources. . 3rd edition, Academic Press, UK. p. 162.
  • Ekman, L. (1961). Distribution and excretion of radiocecium in goats, pigs and hens. Acta Veterinaria Scandinavica 21.
  • Ellis, K.M., and Smith, J.N. (1987). Dynamic model for radionuclide uptake in lichen. Journal of Environmental Radioactivity 5, 185–208.
  • Endo, S., Kimura, S., Takatsuji, T., Nanasawa, K., Imanaka, T., and Shizuma, K. (2012). Measurement of soil contamination by radionuclides due to the Fukushima Dai-Ichi nuclear power plant accident and associated estimated cumulative external dose estimation. Journal of Environmental Radioactivity 111, 18–27.
  • EURAD. (2011). Potential dispersion of the radioactive cloud over the Northern Hemisphere. EURAD project via Rhenish Institute for Environmental Research at the University of Cologne, April 11, 2011: . Available At: http://www.Eurad.Uni-Koeln.De/Index E.Html
  • Evans, D.W., Alberts, J.J., and Clark, R.A. (1983). Reversible ionexchange fixation of cesium-137 leading to mobilization from reservoir sediments. Geochimica et Cosmochimica Acta 47, 1041–1049.
  • Evans, D.H., and Claiborne, B.J. (2005). The physiology of fishes. London: Taylor & Francis.
  • Fan, Q.H., Xu, J.Z., Niu, Z.W., Li, P., and Wu, W.S. (2012). Investigation of Cs(I) uptake on Beishan soil combined batch and eds techniques. Applied Radiation and Isotopes 70, 13–19.
  • Fesenko, S., Fesenko, J., Sanzharova, N., Karpenko, E., Titov, I. (2010). Radionuclide transfer to freshwater biota species: review of Russian language studies. Journal of Environmental Radioactivity 102, 8–25.
  • Filipović-Vinceković, N., Barišić, D., Mašić, N., and Lulić, S. (1991). Distribution of Fallout radionuclides through soil surface layer. Journal of Radioanalytical and Nuclear Chemistry 148, 53–62.
  • Fiol, N., Serarols, J., Poch, J., MartÍnez, M., Miralles, N., and Villaescusa, I. (2005). Low cost materials for metal uptake from aqueous solutions. In E. Lichtfouse, J. Schwarzbauer, and D. Robert (Eds.), Environmental chemistry: Green chemistry and pollutants in ecosystems (pp. 251–258). Berlin, Germany: Springer-Verlag.
  • Fisher, N.S., Fowler, S.W., Boisson, F., Carroll, J.L., Rissanen, K., Salbu, B., Sazykina, T.G., and Sjoeblom, K.-L. (1999). Radionuclide bioconcentration factors and sediment partition coefficients in Arctic Seas subject to contamination from dumped nuclear wastes. Environmental Science and Technology 33, 1979–1982.
  • Flavin, C. (1987). Reassessing nuclear power: The fallout from Chernobyl. Worldwatch Institute.
  • Forsberg, S., Rosén, K., and Bréchignac, F. (2001). Chemical availability of 137cs and 90sr in undisturbed lysimeter soils maintained under controlled and close-to-real conditions. Journal of Environmental Radioactivity 54, 253–265.
  • Forsberg, S., Rosén, K., Fernandez, V., and Juhan, H. (2000). Migration of 137cs and 90sr in undisturbed soil profiles under controlled and close-to-real conditions. Journal of Environmental Radioactivity 50, 235–252.
  • Fowler, S.W., Buat-Menard, P., Yokoyama, Y., Ballestra, S., Holm, E., and Van Nguyen, H. (1987). Rapid removal of Chernobyl fallout from Mediterranean surface waters by biological activity. . Nature 329, 56–58.
  • Franić, Z. (2005). Estimation of the Adriatic Sea water turnover time using fallout 90sr as a radioactive tracer. Journal of Marine Systems 57, 1–12.
  • Franić, Z., and Bauman, A. (1993). Radioactive contamination of the Adriatic Sea by 90sr and 137cs. Health Physiology 64, 162–169.
  • Franić, Z., and Lokobauer, N. (1993). 90sr and 137cs in Pilchards from the Adriatic Sea. Archives of Industrial Hygiene and Toxicology 44, 293–301.
  • Franić, Z., and Marović, G. (2007). Long-term investigations of radiocaesium activity concentrations in carp in North Croatia after the Chernobyl accident. Journal of Environmental Radioactivity 94, 75–85.
  • Franić, Z., Marović, G., and Mestrovic, J. (2008). Radiocaesium contamination of beef in Croatia after the Chernobyl accident. Food and Chemical Toxicology 46, 2096–2102.
  • Franić, Z., Marović, G., Petrinec, B., and Kubelka, D. (2008). 137 Cs Activity Concentrations in Adriatic mussels and musky octopuses and dose assessment. Paper presented att the 12th International Congress of the IRPA, International Radiation Protection Association.
  • Franić, Z., and Petrinec, B. (2006). Marine radioecology and waste management in the Adriatic. Archives of Industrial Hygiene and Toxicology 57, 347–352.
  • Galmarini, S., Stohl, A., and Wotawa, G. (2011). Fund experiments on atmospheric hazards. Nature 473, 285.
  • Giani, L., and Helmers, H. (1997). Migration of cesium-137 in typical soils of North Germany ten years after the Chernobyl accident. Z Pflanz Bodenkunde 160, 81–83.
  • Giannakopoulou, F., Haidouti, C., Chronopoulou, A., and Gasparatos, D. (2007). Sorption behavior of cesium on various soils under different ph levels. Journal of Hazardous Materials 149, 553–556.
  • Grabowski, P., Długosz, M., Szajerski, P., and Bem, H. (2010). A comparison of selected natural radionuclide concentrations in the thermal groundwater of Mszczonów and Cieplice with deep well water from Łódź City, Poland. Nukleonika 55, 181–185.
  • Great East Japan Earthquake Taskforce, Science Council of Japan. (2011). Report to the Foreign Academies from Science Council of Japan on the Fukushima Daiichi nuclear power plant. . Great East Japan Earthquake Taskforce Science Council of Japan.
  • Hakanson, L. (2000). Modelling radiocesium in lakes and coastal water areas: New approaches for ecosystem modelers. Dordrecht, the Netherlands: Kluwer Academic.
  • Hamajima, Y., and Komura, K. (2004). Background components of ge detectors in Ogoya underground laboratory. Applied Radiation and Isotopes 61, 179–183.
  • Hann, B.J., Mundy, C.J., and Goldsborough, L.G. (2001). Snail-periphyton interactions in a Prarie Lacustrine Wetland. Hydrobiologia 457, 167–175.
  • Haritonidis, S., and Malea, P. (1995). Seasonal and local variation of Cr, Ni and Co concentrations in Ulva Rigida C. Agardh and Enteromorpha Linza (Linnaeus) from Thermaikos Gulf, Greece. Environmental Pollution 89, 319–327.
  • Hattink, J., Celis, N., De Boeck, G., Krijger, G.C., and Blust, R. (2009). Accumulation of 137 Cs in the European sea bass Dicentrarchus Labrax (L.) in a salinity gradient: Importance of uptake via gills, diet and ingested water. Radioprotection 44, 665–670.
  • . HELCOM. (2003). Radioactivity in the Baltic Sea 1992–1998. Baltic Sea Environment Proceedings No. 85, by the Helsinki Commission-Baltic Marine Environment Protection Commission. Available at: http://helcom.fi/Lists/Publications/bsep85.pdf
  • . HELCOM. (2009). Radioactivity in the Baltic Sea 1999–2006. Baltic Sea Environment Proceedings No. 117 by the Helsinki Commission-Baltic Marine Environment Protection Commission. Available at: http://helcom.fi/Lists/Publications/BSEP117.pdf
  • HELCOM-MORS. (2010). Proficiency test determination of radionuclides in fish flesh sample. . IAEA/Aq/13.
  • Henley, W.F., Patterson, M.A., Neves, R.J., and Lemly, A.Dennis. (2000). Effects of sedimentation and turbidity on lotic food webs: A concise review for natural resource managers. Reviews in Fisheries Science 8, 125–139.
  • Hesse-Honegger, C., and Wallimann, P. (2008). Malformation of true bug (Heteroptera): A phenotype field study on the possible influence of artificial low-level radioactivity. Chemisry and BIodiversity 5, 499–539.
  • Hinton, T.G., Pinder, J.E., Whicker, F.W., Marsh, L., Joyner, J., Coughlin, D., Yi, Y., and Gariboli, J. (2002). Comparative kinetics of cesium from whole-lake, limnocorrals, and laboratory experiments. Ecotad 2001. In The Radioecologyeecotoxicology of Continental and Estuarine Environments, II (pp. 605–610). Aix-en-Provence, France: Ecotad.
  • Hirose, K., Igarashi, Y., and Aoyama, M. (2008). Analysis of the 50-year records of the atmospheric deposition of long-lived radionuclides in Japan. Applied Radiation and Isotopes 66, 1675–1678.
  • Hoetzlein, R. C. (2012). Visual communication in times of crisis: The Fukushima nuclear accident. . Leonardo 45, 113–118. Available at: http://www.rchoetzlein.com/theory/2011/fukushima-radiation-comparison-map/
  • Honda, M.C., Aono, T., Aoyama, M., Hamajima, Y., Kawakami, H., Kitamura, M., Masumoto, Y., Miyazawa, Y., Takigawa, M., and Saino, T. (2012). Diffusion of artificial caesium-134 and -137 in the Western North Pacific one month after the Fukushima accident. Geochemistry Journal 46, e1–e9.
  • Ikäheimonen, T., Outola, I., Vartti, V.-P., and Kotilainen, P. (2009). Radioactivity in the Baltic Sea: Inventories and temporal trends of 137cs and 90sr in water and sediments. Journal of Radioanalytical and Nuclear Chemistry 282, 419–425.
  • Inoue, M., Kofuji, H., Hamajima, Y., Nagao, S., Yoshida, K., and Yamamoto, M. (2012). 134cs and 137cs activities in coastal seawater along Northern Sanriku and Tsugaru Strait, Northeastern Japan, after Fukushima Dai-Ichi nuclear power plant accident. Journal of Environmental Radioactivity 111, 116–119.
  • International Atomic Energy Association. (1986). Summary report on the post-accident review meeting on the Chernobyl accident. . IAEA Safety Series No.75-INSAG-1.
  • International Atomic Energy Association. (1996). International basic safety standards for protection against ionizing radiation and for safety of radiation sources. . IAEA Safety Series, No. 115.
  • International Atomic Energy Association. (2000). Report of the Specialists Meeting on Environmental Protection from the Effects of Ionizing Radiation: International perspectives. . Ref. 723-J9-Sp-1114.2.
  • International Atomic Energy Association. (2001a). Present and future environmental impact of the Chernobyl Accident, study monitored by an International Advisory Committee under the Project Management of the Institut De Protection Et De Sûreté Nucléaire (Ipsn), France. Vienna, Austria: IAEA.
  • International Atomic Energy Association. (2001b). Report of the Second FAO, Research coordination meeting (Rcm), the Classification of Soil Systems on the Basis of Transfer Factors of Radionuclide from Soil to Reference Plants. Vienna, Austria: IAEA.
  • International Atomic Energy Association. (2004). Sediment distribution coefficients and concentration factors for biota in the marine environment. . Technical Reports. Series, No. 422.
  • International Atomic Energy Association. (2009). Quantification of radionuclide transfer in terrestrial and freshwater environments for radiological assessments. . IAEA-Tecdoc-1616.
  • International Commission on Radiological Protection. (2003). A framework for assessing the impact of ionizing radiation on non-human species (Vol. 33, Issue . 3). . ICRP Publication 91. Oxford, England: Pergamon Press.
  • Jacobs, G.A., Hur, H.B., and Riedlinger, S.K. (2000). Yellow and East China Seas response to Milliman, J. D., Jin, Q., 1985. Introduction. Continental Shelf Research 4, 1–4.
  • Jacoby, B., Abas, S., and Steinitz, B. (1973). Rubidium and potassium absorption by bean-leaf slices compared to sodium absorption. Physiologia Plantarum 28, 209–214.
  • Japan Ministry of Land Infrastructure Transport and Tourism. (2011). Soil map of Japan. . http://www.mlit.go.jp/en/index.html
  • Japan Society of Civil Engineers. (2011). The 2011 Tohoku Earthquake Tsunami Joint Survey Group: Nationwide Field survey of the 2011 off the Pacific Coast of Tohoku Earthquake Tsunami. Journal of Japan Society of Civil Engineers, Series B2 (Coastal Engineering) 67, 63–66.
  • Japanese Ministry of Education Culture Sports Science and Technology. (2011a). Environmental radiation database. . Retrieved from http://tochi.mlit.go.jp/Tockok/Tochimizu/F3/Zooma/0719/Index.Html
  • Japanese Ministry of Education Culture Sports Science and Technology. (2011b). . http://radioactivity.mext.go.jp/Ja/Contents/1000/139/24/5410
  • Japanese Ministry of Education Culture Sports Science and Technology. (2011c). Reading of radioactivity level in fallout by prefecture. . http://www.mext.go.jp/component/english/_icsFiles/afieldfile/2011/05/27/1306601_0512_1.pdf
  • Japanese Ministry of Education Culture Sports Science and Technology. (2011d). Readings of sea area monitoring. Tokyo: MEXT. . http://www.mext.go.jp/english/science_technology/1304788.htm
  • Japanese Ministry of Education Culture Sports Science and Technology. (2012). . http://www.mext.go.jp/english/science_technology/1304788.htm
  • Jarvis, K.E., Parry, S.J., and Piper, J.M. (2001). Temporal and spatial studies of autocatalyst-derived platinum, rhodium, palladium and selected vehicle-derived trace element in the environment. Environmental Science and Technology 35, 1031–1036.
  • Jasiulionis, R., and Rozkov, A. (2007). 137 Cs activity concentration in the ground-level air in the Ignalina Npp Region. Lithuanian Journal of Physics 47, 195–202.
  • Jasiulionis, R., Rozkov, A., and Vycinas, L. (2006). Radionuclides in the ground level air and deposition in the Ignalina Npp Region During 2002–2005. Lithuanian Journal of Physics 46, 101–108.
  • Jia, G., Triulzi, C., Marzano, F.N., Belli, M., and Vaghi, M. (2000). The fate of plutonium, 241am, 90sr and 137cs in the Antarctic ecosystem. Antarctic Science 12, 141–148.
  • Kapała, J., Zalewski, M., Tomczak, M., Mnich, Z., and Karpińska, M. (2002). Fluctuation of radiocaesium concentrations in the near-surface atmospheric layer in Białystok in the period 1992–1999. Nukleonika 47, 69–73.
  • Kaplan, D.I., Knox, A.S., Hinton, T.G., Sharitz, R.R., Allen, B.P., and Serkiz, S.M. (2001). Proof-of-concept of the phytoimmobilizaiton technology for Tnx outfall Delta Wsrctr-2001-00032. . Westinghouse Savannah River Company, Aiken, South Carolina.
  • Kashparov, V.A., Lundin, S.M., Zvarych, S.I., Yoshchenko, V.I., Levchuk, S.E., Khomutinin, Y.V., Maloshtan, I.M., and Protsak, V.P. (2003). Territory contamination with the radionuclides representing the fuel component of Chernobyl fallout. Science of the Total Environment 317, 105–119.
  • Kato, H., Onda, Y., and Teramage, M. (2012). Depth distribution of 137cs, 134cs, and 131i in soil profile after Fukushima Dai-Ichi nuclear power plant accident. Journal of Environmental Radioactivity 111, 59–64.
  • Kelly, M.S., and Pinder, J.E. III. (1996). Foliar Uptake of 137cs from the water column by aquatic macrophytes. Journal of Environmental Radioactivity 30, 271–280.
  • Kim, Y., Cygan, R.T., and Kirkpatrick, R.J. (1996). 133cs Nmr and Xps investigation of cesium adsorbed on clay minerals and related phases. Geochimica et Cosmochimica Acta 60, 1041–1052.
  • Kinoshita, N., Sueki, K., Sasa, K., Kitagawa, J., Ikarashi, S., Nishimura, T., Wong, Y.S., Satou, Y., Handa, K., Takahashi, T., Sato, M., and Yamagata, T. (2011). Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering Central-East Japan. Proceedings of the National Academy of Sciences 108, 19526–19529.
  • Kleinschmidt, R (2009). Uptake and depuration of 131 I by the macroalgae Catenella Nipae—potential use as an environmental monitor for radiopharmaceutical waste. Marine Pollution Bulletin 58, 1539–1543.
  • Komarov, E., and Bennett, B.G. (1983). Selected radionuclides. Geneva, Switzerland: World Health Organization.
  • Koulikov, A.O., and Meili, M. (2003). Modelling the dynamics of fish contamination by Chernobyl radiocaesium: An analytical solution based on potassium mass balance. Journal of Environmental Radioactivity 66, 309
  • Koulikov, A.O., and Ryabov, I.N. (1992). Specific cesium activity in freshwater fish and the size effect. Science of the Total Environment 112, 125–142.
  • Kruyts, N., and Delvaux, B. (2002). Soil organic horizons as a major source for radiocesium biorecycling in forest ecosystems. Journal of Environmental Radioactivity 58, 175–190.
  • Kruyts, N., Titeux, H., and Delvaux, B. (2004). Mobility of radiocesium in three distinct forest floors. Science of the Total Environment 319, 241–252.
  • Kumblad, L., Kautsky, U., and Næslund, B. (2006). Transport and fate of radionuclides in aquatic environments – the use of ecosystem modelling for exposure assessments of nuclear facilities. Journal of Environmental Radioactivity 87, 107–129.
  • Le Roux, J., Rich, C.I., and Ribbe, P.H. (1970). Ion selectivity by weathered mica as determined by electron microprobe analysis. Clays and Clay Minerals 18, 333–338.
  • Lee, C.-P., Kuo, Y.-M., Tsai, S.-C., Wei, Y.-Y., Teng, S.-P., and Hsu, C.-N. (2008). Numerical analysis for characterizing the sorption/desorption of cesium in crushed granite. Journal of Radioanalytical and Nuclear Chemistry 275, 343–349.
  • Leon, J.D., Jaffe, D.A., Kaspar, J., Knecht, A., Miller, M.L., Robertson, R.G. H., and Schubert, A.G. (2011). Arrival time and magnitude of airborne fission products from the Fukushima, Japan, reactor incident as measured in Seattle, Wa, USA. Journal of Environmental Radioactivity 102, 1032–1038.
  • Lepicard, S., Heling, R., and Maderich, V. (2004). Poseidon/Rodos models for radiological assessment of marine environment after accidental releases: Application to coastal areas of the Baltic, Black and North Seas. Journal of Environmental Radioactivity 72, 153–161.
  • Lindley, S.J., Longhurst, J.W. S., Watson, A.F. R., and Colan, D.E. (1996). Procedure for the estimation of regional scale atmosphere emissions-an example from the Nw region of England. Atmospheric Environment 30, 3079–91.
  • Littler, M.M., and Littler, D.S. (1980). The evolution of thallus form and survival strategies in benthic marine macroalgae: Field and laboratory tests of a functional form model. American Naturalist 116, 25–44.
  • Liu, C., Zachara, J.M., Yantasee, W., Majors, P.D., and McKinley, J.P. (2006). Microscopic reactive diffusion of uranium in the contaminated sediments at Hanford, United States. Water Resour. Res. 42, W12420.
  • Liu, K.K., Iseki, K., and Chao, S.Y. (2000). Continental margin carbon fluxes. . In R.B. Hanson, H.W. Ducklow, J.G. Field (Eds) The Changing ocean carbon cycle: A midterm synthesis of the Joint Global Ocean Flux Study (pp. 187–239). Cambridge, England: Cambridge University Press.
  • Lloyd, R.D., Mays, C.W., McFarland, S.S., Zundel, W.S., and Tyler, F.H. (1973). Metabolism of 83 Rb and 137 Cs in persons with muscle disease. Radiation Research 54, 463–78.
  • Lokobauer, N., Franić, Z., Bauman, A., Maračić, M., Cesar, D., and Senčar, J. (1998). Radiation contamination after the Chernobyl nuclear accident and the effective dose received by the population of Croatia. Journal of Environmental Radioactivity 41, 137–146.
  • Lozano, R.L., Hernández-Ceballos, M.A., Adame, J.A., Casas-Ruíz, M., Sorribas, M., San Miguel, E.G., and Bolívar, J.P. (2011). Radioactive impact of Fukushima accident on the Iberian peninsula: Evolution and plume previous pathway. Environment International 37, 1259–1264.
  • . Lujaniene, G., Motiejunas, S., Sapolaite, J., and Kamarauskas, Z. (2005). Cs and Pu migration through engineered and natural barriers. Lithuanian Journal of Physics 45, 273–280.
  • Manolopoulou, M., Vagena, E., Stoulos, S., Ioannidou, A., and Papastefanou, C. (2011). Radioiodine and radiocesium in Thessaloniki, Northern Greece due to the Fukushima nuclear accident. Journal of Environmental Radioactivity 102, 796–797.
  • Marciulioniene, D. (2002). The main problems related with the environment: Contamination of radionuclides in the most contaminated areas (after Chernobyl accident). Health Science 2, 59–63.
  • Marmiroli, N., and McCutcheon, S.C. (2003). Making phytoremediation a successful technology. In J.L. Schnoor and S.C. McCutcheon (Eds.), Phytoremediation: Transformation and control of contaminants (pp. 27–58). Hoboken, NJ: Wiley.
  • Marović, G., Bituh, T., Franić, Z., Gospodarić, I., Kovač, J., Lokobauer, N., Maračić, M., Petrinec, B., and Senčar, J. (2010). Results of environmental radioactivity measurements in the Republic of Croatia, annual reports 1998–2009 (in Croatian). . Institute for Medical Research and Occupational Health.
  • McCutcheon, S.C., and Schnoor, J.L. (2003). Overview of phytotransformation and control of wastes. In J.L. Schnoor and S.C. McCutcheon (Eds.), Phytoremediation: Transformation and control of contaminants (pp. 27–58). Hoboken, NJ: Wiley.
  • Medici, F. (2001). The Ims radionuclide network of the Ctbt. Radiation Physics and Chemistry 61, 689–690.
  • Mickle, A.M., and Wetzel, R.G. (1978). Effectiveness of submersed angiosperm-epiphyte complexes on exchange of nutrients and organic carbon in littoral systems. I. Inorganic nutrients. Aquatic Botany 4, 303–316.
  • Mihai, S.A. (2003). Concentration distributions of radionuclides in sediments along the Romanian sector of the Danube River and the Black Sea Coast. Radiochimica Acta 91, 179–183.
  • Møller, A.P., Hagiwara, A., Matsui, S., Kasahara, S., Kawatsu, K., Nishiumi, I., Suzuki, H., Ueda, K., and Mousseau, T.A. (2012). Abundance of birds in Fukushima as judged from Chernobyl. Environmental Pollution 164, 36–39.
  • Møller, A.P., and Mousseau, T.A. (2006). Biological consequences of Chernobyl: 20 years on. Trends in Ecology and Evolution 21, 200–207.
  • Møller, A.P., Nishiumi, I., Suzuki, H., Ueda, K., and Mousseau, T.A. (2013). Differences in effects of radiation on abundance of animals in Fukushima and Chernobyl. Ecological Indicators 24, 75–81.
  • Mon, J., Deng, Y., Flury, M., and Harsh, J.B. (2005). Cesium incorporation and diffusion in cancrinite, sodalite, zeolite, and allophane. Microporous and Mesoporous Materials 86, 277–286.
  • Mori, N., Takahashi, T., Yasuda, T., and Yanagisawa, H. (2011). Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophysical Research Letters 38, L00G14.
  • Morino, Y., Ohara, T., and Nishizawa, M. (2011). Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi Nuclear Power Plant in March 2011. Geophysical Research Letters 38, L00G11.
  • Morita, T., and Yoshida, K. (2005). Effective ecological halflives of Cs-137 for fishes controlled by their surrounding sea-waters. Radioprotection 40(Suppl. 1) S635–S640.
  • Myttenaere, C., Bourdeau, P., and Masset, M. (1969). Relative importance of soil and water in the indirect contamination of flooded rice with radiocaesium. Health Physics 16, 701–7.
  • Nakamaru, Y., Ishikawa, N., Tagami, K., and Uchida, S. (2007). Role of soil organic matter in the mobility of radiocesium in agricultural soils common in Japan. Colloids and Surfaces A: Physicochemical and Engineering Aspects 306, 111–117.
  • National Council on Radiation Protection and Measurements. (2007). Cesium-137 in the environment: Radioecology and approaches to assessment and management. . Report No. 154. Bethesda, MD: NCRP.
  • Nedveckaite, T. (2004). Radiation protection in Lithuania. Vilnius: Kriventa. 239 p. (in Lithuanian).
  • Nelson, J.J., and Kaye, S.V. (1971). Nuclear techniques in environmental pollution, . Vienna International Atomic Energy Agency, Symposium on the Use of Nuclear Techniques in the Measurement and Control of Environmental Pollution, Salzburg, Austria.
  • Nielsen, S.P., Bengtson, P., Bojanowsky, R., Hagel, P., Herrmann, J., Ilus, E., Jakobson, E., Motiejunas, S., Panteleev, Y., Skujina, A., and Suplinska, M. (1999). The radiological exposure of man from radioactivity in the Baltic Sea. Science of the Total Environment 237–238, 133–141.
  • Nikolova, I., Johanson, K.J., and Clegg, S. (2000). The accumulation of 137cs in the biological compartment of forest soils. Journal of Environmental Radioactivity 47, 319–326.
  • Norman, E.B., Angell, C.T., and Chodash, P.A. (2011). Observations of fallout from the Fukushima reactor accident in San Francisco Bay Area rainwater. . arXiv:1103.5954v1 [nucl-ex].
  • Nuclear and Industrial Safety Agency. (2011). . Method for developing arrangements for response to a nuclear or radiological emergency, EPR Method, IAEA, Vienna. http://ajw.asahi.com/article/0311disaster/analysis_opinion/AJ2011101514679
  • Nuclear Emergency Response Headquarters. (2011). Report of the Japanese government to the IAEA Ministerial Conference on Nuclear Safety. The accident at Tepco's Fukushima Nuclear Power Stations. . http://japan.kantei.go.jp/kan/actions/201106/07HONBU_genshiryoku_e.html
  • Nuclear Energy Agency. (2002). Chernobyl: Assessment of radiological and health impacts– 2002 update of Chernobyl: Ten years on. Paris: Organisation for Economic Co-Operation and Development.
  • Ohno, T., Muramatsu, Y., Miura, Y., Oda, K., Inagawa, N., Ogawa, H., Yamazaki, A., Toyama, C., and Sato, M. (2012). Depth profiles of radioactive cesium and iodine released from the Fukushima Daiichi nuclear power plant in different agricultural fields and forests. Geochemical Journal. 46, 287–295.
  • Pendleton, R.C. (1960). Accumulation of cæsium-137 by Plants grown in simulated pond, wet meadow and irrigated field environments. Nature 185, 707–710.
  • Pieńkowski, L., Jastrzebski, J., Tys, J., Batsch, T., Jaracz, P., Kurcewicz, W., Mirowski, S., Szeflińska, G., Szeflinski, Z., Szweryn, B., Wilhelmi, Z., and Józefowicz, E.T. (1987). Isotopic composition of the radioactive fallout in Eastern Poland after the Chernobyl accident. Journal of Radioanalytical and Nuclear Chemistry 117, 379–409.
  • Pinder, J.E. III, Hinton, T.G., and Whicker, F.W. (2006). Foliar uptake of cesium from the water column by aquatic macrophytes. Journal of Environmental Radioactivity 85, 23–47.
  • Pinder, J.E. III, Hinton, T.G., and Whicker, F.W. (2010). Contrasting cesium dynamics in neighboring deep and shallow warm-water reservoirs. Journal of Environmental Radioactivity 101, 659–669.
  • Pittauerová, D., Hettwig, B., and Fischer, H.W. (2011). Fukushima fallout in Northwest German environmental media. Journal of Environmental Radioactivity 102, 877–880.
  • Poet, S.E., Moore, H.E., and Martell, E.A. (1972). Lead 210, bismuth 210, and polonium 210 in the atmosphere: Accurate ratio measurement and application to aerosol residence time determination. Journal of Geophysical Research 77, 6515–6527.
  • Poinssot, C., Baeyens, B., and Bradbury, M.H. (1999). Experimental and modeling studies of cesium sorption on illite. Geochimica et Cosmochimica Acta 63, 3217–3227.
  • Polar, E., and Bayülgen, N. (1991). Differences in the availabilities of cesium-134, 137 and ruthenium-106 from a Chernobyl-contaminated soil to a water plant, duckweed, and to the terrestrial plants, bean and lettuce. Journal of Environmental Radioactivity 13, 251–259.
  • Polish National Atomic Energy. (2011). Nuclear safety and radiation protection in Poland in 2010. . Interim Edition, General Safety Requirements Part 3 IAEA, Vienna. Available at: http://www.ilo.org/wcmsp5/groups/public/@ed_protect/@protrav/@safework/documents/publication/wcms_171036.pdf
  • Popović, V. (1978). Environmental radioactivity in Yugoslavia, annual reports 1962–1977 (in Croatian). . Federal Committee for Labour, Health and Social Welfare, Belgrade.
  • Porcelli, D., Andersson, P.S., Baskaran, M., and Wasserburg, G.J. (2001). Transport of U- and Th-series nuclides in a Baltic shield watershed and the Baltic Sea. Geochimica et Cosmochimica Acta 65, 2439–2459.
  • . Qin, H., Yokoyama, Y., Fan, Q., Iwatani, H., Tanaka, K., Sakaguchi, A., Kanai, Y., Zhu, J., Onda, Y., and Takahashi, Y. (2012). Investigation of cesium adsorption on soil and sediment samples from Fukushima Prefecture by sequential extraction and EXAFS technique. Geochemical Journal 46, 297–302.
  • Radway, J.C., Wilde, E.W., Whitaker, M.J., and Weissman, J.C. (2001). Screening of algal strains for metal removal capabilities. Journal of Applied Phycology 13, 451–455.
  • Real, J., Persin, F., and Camarasa-Claret, C. (2002). Mechanisms of desorption of 134cs and 85sr aerosols deposited on urban surfaces. Journal of Environmental Radioactivity 62, 1–15.
  • Rushton, L. (2003). Health hazards and waste management. British Medical Bulletin 68, 183–198.
  • Sanzharova, N., Shubina, O., Vandenhove, H., Olyslaegers, G., Fesenko, S., Shang, Z.R., Reed, E., and Velasco, H. (2009). Root uptake: Temperate environment. In Quantification of radionuclide transfer in terrestrial and freshwater environments for radiological assessments, . IAEA Tec Doc-1616. Vienna, Austria: IAEA.
  • . Sarkka, J., Keskitalo, A., and Luukko, A. (1996). Temporal changes in concentration of radiocesium in lake sediment and fish of southern Finland as related to environmental factors. Science of the Total Environment 191, 125–136.
  • Särkkä, J., Meriläinen, J.J., and Hynynen, J. (1990). The distribution of relict crustaceans in Finland: New observations and some problems and ideas concerning relicts. Annales Zoologici Fennici 27, 221–225.
  • Sawhney, B.L. (1967). Interstratification in vermiculite. Clays and Clay Minerals 15, 75–84.
  • Sawhney, B.L. (1969). Regularity of interstratification as affected by charge density in layer silicates. Proceedings of the Soil Science Society of America 33, 42–46.
  • Sawhney, B.L. (1972). Selective sorption and fixation of cations by clay minerals: A review. Clays and Clay Minerals 20, 93–100.
  • Sawidis, T., Heinrich, G., and Brown, M.T. (2003). Cesium-137 concentration in marine macroalgae from different biotopes in the Aegean Sea (Greece). Ecotoxicology and Environmental Safety 54, 249–254.
  • Schwaiger, M., Mueck, K., Benesch, T., Feichtinger, J., Hrnecek, E., and Lovranich, E. (2004). Investigation of food contamination since the Chernobyl fallout in Austria. Applied Radiation and Isotopes 61, 357–360.
  • Seaman, J.C., Meehan, T., and Bertsch, P.M. (2001). Immobilization of cesium-137 and uranium in contaminated sediments using soil amendments. Journal of Environmental Quality 30, 1206–1213.
  • Sexton, K., and Adagate, J.L. (2000). Looking at environmental justice from an environmental health perspective. Journal of Exposure Analysis and Environmental Epidemiology 9, 3–8.
  • Shaw, G. (2007). Radionuclides in forest ecosystems. In G. Shaw (Ed.), Radioactivity in the environment (Vol. 10, pp. 127–155). Amsterdam: Elsevier.
  • Shestopalov, V.M. (2002). Chernobyl disaster and groundwater. Amsterdam: A A Balkema.
  • Sinclair, L.E., Seywerd, H.C. J., Fortin, R., Carson, J.M., Saull, P.R. B., Coyle, M.J., Van Brabant, R.A., Buckle, J.L., Desjardins, S.M., and Hall, R.M. (2011). Aerial measurement of radioxenon concentration off the West Coast of Vancouver Island following the Fukushima reactor accident. Journal of Environmental Radioactivity 102, 1018–1023.
  • Singh, H. (2006). Mycoremediation. Hoboken, NJ: Wiley.
  • Singh, S., Susan, E., Vidya, T., Kaushik, C.P., Kanwar, R., and D’Souza, S.F. (2008). Phytoremediation of 137cesium and 90strontium from solutions and low-level nuclear waste by Vetiveria Zizanoides. Ecotoxicology and Environmental Safety 69, 306–311.
  • Singh, S., Thorat, V., Kaushik, C.P., Raj, K., Eapen, S., and D’Souza, S.F. (2009). Potential of Chromolaena Odorata for phytoremediation of 137cs from solutions and low level nuclear waste. Journal of Hazardous Materials 162, 743–745.
  • Skei, J., and Paus, P.E. (1979). Surface metal enrichment and partitioning of metals in a dated sediment core from a Norwegian fjord. Geochimica et Cosmochimica Acta 43, 239–246.
  • Skwarzec, B., Ulatowski, J., Struminska, D.I., and Falandysz, J. (2003). Polonium 210 Po in the phytobenthos from Puck Bay. Journal of Environmental Monitoring 5, 308–311.
  • Smith, J.T. (2006). Modelling the dispersion of radionuclides following short duration releases to rivers: Part 2. Uptake by fish. Science of the Total Environment 368, 502–518.
  • Smith, J.T., Bowes, M.J., and Denison, F.H. (2006). Modelling the dispersion of radionuclides following short duration releases to rivers: Part 1. Water and sediment. Science of the Total Environment 368, 485–501.
  • Smith, J.T., and Comans, J.R. N. (1996). Modeling the diffusive transport and remobilization of 137cs in sediments: The effects of sorption kinetics and reversibility. Geochimica et Cosmochimica Acta 60, 995–1004.
  • Smith, J.T., Kudelsky, A.V., Ryabov, I.N., Daire, S.E., Boyer, L., Blust, R.J., Fernandez, J.A., Hadderingh, R.H., and Voitsekhovitch, O.V. (2002). Uptake and elimination of radiocesium in fish and the “size effect”. Journal of Environmental Radioactivity 62, 145–164.
  • Smolders, E., and Tsukada, H. (2011). The transfer of radiocesium from soil to plants: Mechanisms, data, and perspectives for potential countermeasures in Japan. Integr Environ Assess Manag 7, 379–381.
  • Sobotovitch, E.V. (2001). Characteristics of radioecological situation in the territory of the 30 Km zone Chnpp. Fifteen years after the Chernobyl catastrophy. Experience in overcoming. . Kiev, National Report of Ukraine.
  • Sokolov, N.V., Grodzinsky, D.M., and Sorochinsky, B.V. (2001). How does low dose chronic irradiation under the condition of 10-km Chernobyl exclusion zone influence on processes of seed aging? Fifteen years after the Chernobyl accident. Lessons learned. . Abstracts Proceeding of International Conference “Fifteen Years after the Chornobyl Accident. Lessons Learned”, Kijev, Ukraina, 2:117.
  • . Soneston, L. (2001). Land use influence on 1 3 7 Cs levels in perch (Perca fluviatilis L.) and roach (Rutilus rutilus L. Journal of Environmental Radioactivity, 55, 125–143.
  • Steefel, C., Carroll, S., Zhao, P., and Roberts, S. (2002.). Reactive transport experiments investigating the migration of 137 Cs in sediments beneath the Hanford Sx Tank Farm. Journal of Contaminant Hydrology 67, 219–246.
  • Stengel, D.B., Macken, A., Morrison, L., and Morley, N. (2004). Zinc concentration in marine macroalgae and a lichen from Western Ireland in relation to phytogenetic grouping, habiatat and morphology. Marine Pollution Bulletin 48, 902–909.
  • Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G. (2005). Technical note: The Lagrangian particle dispersion model flexpart version 6.2. Atmospheric Chemistry and Physics 5, 2461–2474.
  • Stohl, A., Seibert, P., Wotawa, G., Arnold, D., Burkhart, J.F., Eckhardt, S., Tapia, C., Vargas, A., and Yasunari, T.J. (2011). Xenon-133 and caesium-137 Releases into the atmosphere from the Fukushima Dai-Ichi nuclear power plant: Determination of the source term, atmospheric dispersion, and deposition. Atmospheric Chemicstry and Phyisics 11, 28319–28394
  • Stohl, A., Seibert, P., Wotawa, G., Arnold, D., Burkhart, J.F., Eckhardt, S., Tapia, C., Vargas, A., and Yasunari, T.J. (2012). Xenon-133 and caesium-137 Releases into the atmosphere from the Fukushima Dai-Ichi nuclear power plant: Determination of the source term, atmospheric dispersion, and deposition. Atmospheric Chemistry and Physics 12, 2313–2343.
  • Strezov, A., and Nonova, T. (2005). Environmental monitoring of heavy metals in Bulgarian Black Sea green algae. Environmental Monitoring and Assessment 105, 99–110.
  • Strezov, A., and Nonova, T. (2005). Radionuclide accumulation in green and brown macroalgae at the Bulgarian Black Sea coast. Journal of Radioanalytical and Nuclear Chemistry 265, 21–29.
  • Strezov, A., and Nonova, T. (2009). Influence of macroalgal diversity on accumulation of radionuclides and heavy metals in Bulgarian Black Sea ecosystem. Journal of Environmental Radioactivity 100, 144–150.
  • Sukada, H., Hasegawa, H., Hisamatsu, S., and Yamasaki, S. (2002). Rice uptake and distributions of radioactive 137cs, stable 133cs and K from soil. Environmental Pollution 117, 403–409.
  • Sundbom, M., Meili, M., Andersson, E., Ostlund, M., and Broberg, A. (2003). Long-term dynamics of Chernobyl 137 Cs in freshwater fish: Quantifying the effect of body size and trophic level. Journal of Applied Ecology 40, 228–240.
  • Sysoeva, A.A., Konopleva, I.V., and Sanzharova, N.I. (2005). Bioavailability of radiostrontium in soil: Experimental study and modeling. Journal of Environmental Radioactivity 81, 269–282.
  • Szefer, P. (2002). Metal pollutants and radionucllides in the Baltic Sea—an overview. Oceanologia 44, 129–178.
  • Taira, T., and Hatoyama, Y. (2011). Nuclear energy: Nationalize the Fukushima Daiichi atomic plant. Nature 480, 323–314.
  • Takemura, T., Nakamura, H., Takigawa, M., Kondo, H., Satomura, T., Miyasaka, T., and Nakajima, T. (2011). A numerical simulation of global transport of atmospheric particles emitted from the Fukushima Daiichi nuclear power plant. Tokyo: Meteorological Society of Japan.
  • Tanaka, K., Takahashi, Y., Sakaguchi, A., Umeo, M., Hayakawa, S., Tanida, H., Saito, T., and Kanai, Y. (2012). Vertical profiles of iodine-131 and cesium-137 in soils in Fukushima prefecture related to the Fukushima Daiichi nuclear power station accident. Geochemical Journal 46, 73–76.
  • Tang, S., and Willey, N.J. (2003). Uptake of 134cs by four species from Asteraceae and two variants from Chenopodiaceae grown in two types of Chinese soil. Plant Soil 250, 75–81.
  • Tang, T.Y., Tai, J.H., and Yang, Y.J. (2000). The flow pattern north of Taiwan and the migration of the kuroshio. Continental Shelf Research 20, 349–371.
  • Tokuyama, H., and Igarashi, S. (1998). Seasnal variation in the environmental background level of cosmic-ray-produced 22na at Fukui City, Japan. Journal of Environmental Radioactivity 38, 147–161.
  • Tostowaryk, T.M. (2000). The assimilation and elimination of cesium by freshwater invertebrates. Fort Collins, CO: Colorado State University.
  • Tsukada, H., Hasegawa, H., Hisamatsu, S., and Yamasaki, S. (2002). Transfer of 137cs and stable Cs from paddy soil to polished rice in Aomori, Japan. Journal of Environmental Radioactivity 59, 351–363.
  • Tsukada, H., Hisamatsu, S., and Inaba, J. (2003). Transfer of 137cs and stable Cs in soil-grass-milk pathway in Aomori, Japan. Journal of Radioanalytical and Nuclear Chemistry 255, 455–458.
  • Tsumune, D., Tsubono, T., Aoyama, M., and Hirose, K. (2012). Distribution of oceanic 137cs from the Fukushima Dai-Ichi nuclear power plant simulated numerically by a regional ocean model. Journal of Environmental Radioactivity 111, 100–108.
  • Turekian, K.K., Nozaki, Y., and Benninger, L.K. (1977). Geochemistry of atmospheric radon and radon products. Annual Review of Earth and Planetary Sciences 5, 227–255.
  • Tyler, A.N., Cartier, S., Davidson, D.A., Long, D.J., and Tipping, R. (2001). The extent and significance of bioturbation on Cs-137 distribution in upland soils. Catena 43, 81–99.
  • Ulsh, B., Rademacher, S., and Whicker, F.W. (1999). Variations of 137cs depositions and soil concentrations between Alpine and Montane Soils in Northern Colorado. Journal of Environmental Radioactivity 47, 57–70.
  • United Nations Environment Program. (1992). Assessment of the state of pollution of the Mediterranean Sea by radioactive substances. . Map Technical Report Series, No. 62.
  • United Nations Scientific Committee on the Effects of Atomic Radiation. (1982). Ionizing radiation: Sources and biological effects. New York: UNSCEAR.
  • United Nations Scientific Committee on the Effects of Atomic Radiation. (1988). Ionizing radiation: Sources and biological effects. New York: UNSCEAR.
  • United Nations Scientific Committee on the Effects of Atomic Radiation. (2000). Sources and effects of ionizing radiation. New York: UNSCEAR.
  • Valles, I., Camacho, A., Ortega, X., Serrano, I., Blázquez, S., and Pérez, S. (2009). Natural and anthropogenic radionuclides in airborne particulate samples collected in Barcelona (Spain). Journal of Environmental Radioactivity 100, 102–107.
  • Varskog, P., Naeuman, R., and Steinnes, E. (1994). Mobility and plant availability of radioactive Cs in natural soil in relation to stable Cs, other alkali elements and soil fertility. Journal of Environmental Radioactivity 43–53.
  • Visible Information Center. (2011). Simulation on 137cs deposition due to the emission from Fukushima Daiichi nuclear plant. . Retrieved from http://efdl.cims.nyu.edu/project_aomip/forcing_data/topography/merged/overview.html
  • Waisel, Y., Agami, M., and Shapira, Z. (1982). Uptake and transport of 86rb, 32p, 36cl and 22na by four submerged hydrophytes. Aquatic Botany 13, 179–186.
  • Waller, L.A., Louis, T.A., and Carlin, B.P. (1999). Environmental justice and statistical summaries of differences in exposure distribution. Journal of Exposure Analysis and Environmental Epidemiology 9, 56–65.
  • Wang, Q., Zhuang, G., Li, J., Huang, K., Zhang, R., Jiang, Y., Lin, Y., and Fu, J.S. (2011). Mixing of dust with pollution on the transport path of Asian dust: Revealed from the aerosol over Yulin, the North Edge of Loess plateau. Science of the Total Environment 409, 573–581.
  • Watanabe, T., Tsuchiya, N., Oura, Y., Ebihara, M., Inoue, C., Hirano, N., Yamada, R., Yamasaki, S., Okamoto, A., Watanabe Nara, F., and Nunohara, K. (2012). Distribution of artificial radionuclides (110mag, 129mte, 134cs, 137cs) in surface soils from Miyagi Prefecture, Northeast Japan, following the 2011 Fukushima Dai-Ichi Nuclear power plant accident. Geochemical Journal 46, 279–285.
  • Weiss, C.A., Kirkpatrick, R.J., and Altaner, S.P. (1990a). The structural environments of cations adsorbed onto clays: 133cs variable-temperature Masa Nmr spectroscopic study of hectorite. Geochimica et Cosmochimica Acta 54, 1655–1669.
  • Weiss, C.A., Kirkpatrick, R.J., and Altaner, S.P. (1990b). Variations in inter layer cation sites of clay minerals as studied by 133cs Mas nuclear magnetic resonance spectroscopy. American Mineralogist 75, 970–982.
  • Wernsperger, B., and Schlosser, C. (2004). Noble gas monitoring within the international monitoring system of the Comprehensive Nuclear Test-Ban Treaty. Radiation Physics and Chemistry 71, 775–779.
  • Whicker, F.W., Hinton, T.G., MacDonnell, M.M., Pinder, J.E., and Habegger, L.J. (2004). Avoiding destructive remediation at doe sites. Science of the Total Environment 303, 1615–1616.
  • Wong, G.T. F., Chao, S.-Y., Li, Y.-H., and Chung, Y.-C. (2000). Keep-exchange processes between the Kuroshio and the East China Sea shelf. Continental Shelf Research 20, 331–334.
  • Xiong, X., Stagnitti, F., Allinson, G., Turoczy, N., Li, P., LeBlanc, M., Cann, M.A., Doerr, S.H., Steenhuis, T.S., Parlange, J., de Rooij, G., Ritsema, C.J., and Dekker, L.W. (2005). Effects of clay amendment on adsorption and desorption of copper in water repellent soils. Australian Journal of Soil Research 43, 6.
  • Yamada, M., and Nagaya, Y. (1998). Temporal variations of 137 Cs concentrations in the surface seawater and marine organisms collected from the Japanese Coast during the 1980's. Journal of Radioanalytical and Nuclear Chemistry 230, 111–114.
  • Yang, H., Du, M., Zhao, Q., Minami, K., and Hatta, T. (2000). A quantitative model for estimating mean annual soil loss in cultivated land using 137cs measurements. Soil Science and Plant Nutrition 46, 69–79.
  • Yasunari, T.J., Stohl, A., Hayano, R.S., Burkhart, J.F., Eckhardt, S., and Yasunari, T. (2011). Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proceedings of the National Academy of Sciences of the USA 108, 19530–19534.
  • Yoshida, N., and Takahashi, Y. (2012). Contamination of land areas by radionuclides released from the Fukushima Daiichi nuclear power plant accident. Elements 8, 201–206.
  • Zachara, J.M., Smith, S.C., Liu, C., McKinley, J.P., Serne, R.J., and Gassman, P.L. (2002). Sorption of Cs+ to micaceous subsurface sediments from the Hanford Site, USA. Geochimica et Cosmochimica Acta 66, 193–211.
  • Zalewska, T., and Lipska, J. (2006). Contamination of the Southern Baltic Sea with 137cs and 90sr over the period 2000–2004. Journal of Environmental Radioactivity 91, 1–14.
  • Zheng, J., Tagami, K., Watanabe, Y., Uchida, S., Aono, T., Ishii, N., Yoshida, S., Kubota, Y., Fuma, S., and Ihara, S. (2012). Isotopic evidence of plutonium release into the environment from the Fukushima Dnpp accident. Scientific Reports 2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.