168
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

MicroRNAs Act as Potential Regulators in Apoptosis and Senescence Against Carcinogenicity Induced by Environmental Pollutants

, , &
Pages 319-335 | Published online: 04 Nov 2014

REFERENCES

  • Bartel, D.P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.
  • He, L., and Hannon, G.J. (2004). MicroRNAs: Small RNAs with a big role in gene regulation. Nat. Rev. Genet., 5, 522–531.
  • Huang, Y., Shen, X.J., Zou, Q., Wang, S.P., Tang, S.M., and Zhang, G.Z. (2011). Biological functions of microRNAs: A review. J. Physiol. Biochem., 67, 129–139.
  • Bernstein, J.A., Alexis, N., Barnes, C., Bernstein, I.L., Nel, A., Peden, D., Diaz-Sanchez, D., Tarlo, S.M., and Williams, P.B. (2004). Health effects of air pollution. J. Allergy Clin. Immunol., 114, 1116–1123.
  • Riedl, M., and Diaz-Sanchez, D. (2005). Biology of diesel exhaust effects on respiratory function. J. Allergy Clin. Immunol., 115, 221–228, quiz 29.
  • Ren, X., McHale, C.M., Skibola, C.F., Smith, A.H., Smith, M.T., and Zhang, L. (2011). An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis. Environ. Health Perspect., 119, 11–19.
  • Cai, X., Hagedorn, C.H., and Cullen, B.R. (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 10, 1957–1966.
  • Bracht, J., Hunter, S., Eachus, R., Weeks, P., and Pasquinelli, A.E. (2004). Trans-splicing and polyadenylation of let-7 microRNA primary transcripts. RNA, 10, 1586–1594.
  • Matkovich, S.J., Van Booven, D.J., Eschenbacher, W.H., and Dorn, G.W. 2nd. (2011). RISC RNA sequencing for context-specific identification of in vivo microRNA targets. Circ. Res., 108, 18–26.
  • Bollati, V., Marinelli, B., Apostoli, P., Bonzini, M., Nordio, F., Hoxha, M., Pegoraro, V., Motta, V., Tarantini, L., Cantone, L., Schwartz, J., Bertazzi, P.A., and Baccarelli, A. (2010). Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environ. Health Perspect., 118, 763–768.
  • Izzotti, A., Calin, G.A., Steele, V.E., Croce, C.M., and De Flora, S. (2009). Relationships of microRNA expression in mouse lung with age and exposure to cigarette smoke and light. FASEB J., 23, 3243–3250.
  • Jenkins, T.F., Hewitt, A.D., Grant, C.L., Thiboutot, S., Ampleman, G., Walsh, M.E., Ranney, T.A., Ramsey, C.A., Palazzo, A.J., and Pennington, J.C. (2006). Identity and distribution of residues of energetic compounds at army live-fire training ranges. Chemosphere, 63, 1280–1290.
  • Zhang, B., and Pan, X. (2009). RDX induces aberrant expression of microRNAs in mouse brain and liver. Environ. Health Perspect., 117, 231–240.
  • Marsit, C.J., Eddy, K., and Kelsey, K.T. (2006). MicroRNA responses to cellular stress. Cancer Res., 66, 10843–10848.
  • Lukiw, W.J., and Pogue, A.I. (2007). Induction of specific microRNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells. J. Inorg. Biochem., 101, 1265–1269.
  • Avissar-Whiting, M., Veiga, K.R., Uhl, K.M., Maccani, M.A., Gagne, L.A., Moen, E.L., and Marsit, C.J. (2010). Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod. Toxicol., 29, 401–406.
  • Elyakim, E., Sitbon, E., Faerman, A., Tabak, S., Montia, E., Belanis, L., Dov, A., Marcusson, E.G., Bennett, C.F., Chajut, A., Cohen, D., and Yerushalmi, N. (2010). hsa-miR-191 is a candidate oncogene target for hepatocellular carcinoma therapy. Cancer Res., 70, 8077–8087.
  • Bushati, N., and Cohen, S.M. (2007). MicroRNA functions. Annu. Rev. Cell Dev. Biol., 23, 175–205.
  • Guil, S., and Esteller, M. (2009). DNA methylomes, histone codes and miRNAs: Tying it all together. Int. J. Biochem. Cell Biol., 41, 87–95.
  • Seitz, S.J., Schleithoff, E.S., Koch, A., Schuster, A., Teufel, A., Staib, F., Stremmel, W., Melino, G., Krammer, P.H., Schilling, T., and Muller, M. (2010). Chemotherapy-induced apoptosis in hepatocellular carcinoma involves the p53 family and is mediated via the extrinsic and the intrinsic pathway. Int. J. Cancer, 126, 2049–2066.
  • Fang, J., Song, X.W., Tian, J., Chen, H.Y., Li, D.F., Wang, J.F., Ren, A.J., Yuan, W.J., and Lin, L. (2012). Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes. Apoptosis, 17, 410–423.
  • Shimizu, S., Takehara, T., Hikita, H., Kodama, T., Miyagi, T., Hosui, A., Tatsumi, T., Ishida, H., Noda, T., Nagano, H., Doki, Y., Mori, M., and Hayashi, N. (2010). The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J. Hepatol., 52, 698–704.
  • Nakano, H., Miyazawa, T., Kinoshita, K., Yamada, Y., and Yoshida, T. (2010). Functional screening identifies a microRNA, miR-491 that induces apoptosis by targeting Bcl-X(L) in colorectal cancer cells. Int. J. Cancer, 127, 1072–1080.
  • Cimmino, A., Calin, G.A., Fabbri, M., Iorio, M.V., Ferracin, M., Shimizu, M., Wojcik, S.E., Aqeilan, R.I., Zupo, S., Dono, M., Rassenti, L., Alder, H., Volinia, S., Liu, C.G., Kipps, T.J., Negrini, M., and Croce, C.M. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. U.S.A., 102, 13944–13949.
  • Li, L., Yuan, L., Luo, J., Gao, J., Guo, J., and Xie, X. (2013). MiR-34a inhibits proliferation and migration of breast cancer through down-regulation of Bcl-2 and SIRT1. Clin. Exp. Med., 13, 109–117.
  • Wang, Y., and Lee, C.G. (2009). MicroRNA and cancer—focus on apoptosis. J. Cell. Mol. Med., 13, 12–23.
  • Redondo-Munoz, J., Escobar-Diaz, E., Hernandez Del Cerro, M., Pandiella, A., Terol, M.J., Garcia-Marco, J.A., and Garcia-Pardo, A. (2010). Induction of B-chronic lymphocytic leukemia cell apoptosis by arsenic trioxide involves suppression of the phosphoinositide 3-kinase/Akt survival pathway via c-jun-NH2 terminal kinase activation and PTEN upregulation. Clin. Cancer Res., 16, 4382–4391.
  • Cao, Y., Yu, S.L., Wang, Y., Guo, G.Y., Ding, Q., and An, R.H. (2011). MicroRNA-dependent regulation of PTEN after arsenic trioxide treatment in bladder cancer cell line T24. Tumour Biol., 32, 179–188.
  • Meng, X.Z., Zheng, T.S., Chen, X., Wang, J.B., Zhang, W.H., Pan, S.H., Jiang, H.C., and Liu, L.X. (2011). MicroRNA expression alteration after arsenic trioxide treatment in HepG-2 cells. J. Gastroenterol. Hepatol., 26, 186–193.
  • Haferkamp, S., Tran, S.L., Becker, T.M., Scurr, L.L., Kefford, R.F., and Rizos, H. (2009). The relative contributions of the p53 and pRb pathways in oncogene-induced melanocyte senescence. Aging (Albany NY), 1, 542–556.
  • Zuckerman, V., Wolyniec, K., Sionov, R.V., Haupt, S., and Haupt, Y. (2009). Tumour suppression by p53: The importance of apoptosis and cellular senescence. J. Pathol., 219, 3–15.
  • Shamma, A., Takegami, Y., Miki, T., Kitajima, S., Noda, M., Obara, T., Okamoto, T., and Takahashi, C. (2009). Rb regulates DNA damage response and cellular senescence through E2F-dependent suppression of N-ras isoprenylation. Cancer Cell, 15, 255–269.
  • Feliciano, A., Sanchez-Sendra, B., Kondoh, H., and Lleonart, M.E. (2011). MicroRNAs regulate key effector pathways of senescence. J. Aging Res., 2011, 205378.
  • Borgdorff, V., Lleonart, M.E., Bishop, C.L., Fessart, D., Bergin, A.H., Overhoff, M.G., and Beach, D.H. (2010). Multiple microRNAs rescue from ras-induced senescence by inhibiting p21(Waf1/Cip1). Oncogene, 29, 2262–2271.
  • Tazawa, H., Tsuchiya, N., Izumiya, M., and Nakagama, H. (2007). Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc. Natl. Acad. Sci. U.S.A., 104, 15472–15477.
  • Xu, D., Takeshita, F., Hino, Y., Fukunaga, S., Kudo, Y., Tamaki, A., Matsunaga, J., Takahashi, R.U., Takata, T., Shimamoto, A., Ochiya, T., and Tahara, H. (2011). miR-22 represses cancer progression by inducing cellular senescence. J. Cell Biol., 193, 409–424.
  • Liu, Q., Fu, H., Sun, F., Zhang, H., Tie, Y., Zhu, J., Xing, R., Sun, Z., and Zheng, X. (2008). miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res., 36, 5391–5404.
  • Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., and Lowe, S.W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88, 593–602.
  • Yang, G., Rosen, D.G., Zhang, Z., Bast, R.C. Jr., Mills, G.B., Colacino, J.A., Mercado-Uribe, I., and Liu, J. (2006). The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. Proc. Natl. Acad. Sci. U.S.A., 103, 16472–16477.
  • Hermeking, H. (2007). p53 enters the microRNA world. Cancer Cell, 12, 414–418.
  • He, X., He, L., and Hannon, G.J. (2007). The guardian's little helper: MicroRNAs in the p53 tumor suppressor network. Cancer Res., 67, 11099–11101.
  • Tellez-Banuelos, M.C., Ortiz-Lazareno, P.C., Santerre, A., Casas-Solis, J., Bravo-Cuellar, A., and Zaitseva, G. (2011). Effects of low concentration of endosulfan on proliferation, ERK1/2 pathway, apoptosis and senescence in Nile tilapia (Oreochromis niloticus) splenocytes. Fish Shellfish Immunol., 31, 1291–1296.
  • Iorio, M.V., Ferracin, M., Liu, C.G., Veronese, A., Spizzo, R., Sabbioni, S., Magri, E., Pedriali, M., Fabbri, M., Campiglio, M., Menard, S., Palazzo, J.P., Rosenberg, A., Musiani, P., Volinia, S., Nenci, I., Calin, G.A., Querzoli, P., Negrini, M., and Croce, C.M. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res., 65, 7065–7070.
  • Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A., Downing, J.R., Jacks, T., Horvitz, H.R., and Golub, T.R. (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834–838.
  • Li, M., Julie, T.F., and Robert, A.W. (2007). Tumour invasion and metastasis initiated microRNA-10b in breast cancer. Nature, 449, 682–688.
  • Zhang, C.Z., Han, L., Zhang, A.L., Fu, Y.C., Yue, X., Wang, G.X., Jia, Z.F., Pu, P.Y., Zhang, Q.Y., and Kang, C.S. (2010). MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer, 10, 367–376.
  • Roush, S., and Slack, F.J. (2008). The let-7 family of microRNAs. Trends Cell Biol., 18, 505–516.
  • Esquela-Kerscher, A., Trang, P., Wiggins, J.F., Patrawala, L., Cheng, A., Ford, L., Weidhaas, J.B., Brown, D., Bader, A.G., and Slack, F.J. (2008). The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle, 7, 759–764.
  • Jazbutyte, V., Fiedler, J., Kneitz, S., Galuppo, P., Just, A., Holzmann, A., Bauersachs, J., and Thum, T. (2013). MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age (Dordr), 35, 747–762.
  • Baraniskin, A., Kuhnhenn, J., Schlegel, U., Chan, A., Deckert, M., Gold, R., Maghnouj, A., Zollner, H., Reinacher-Schick, A., Schmiegel, W., Hahn, S.A., and Schroers, R. (2011). Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system. Blood, 117, 3140–3146.
  • Baraniskin, A., Kuhnhenn, J., Schlegel, U., Maghnouj, A., Zollner, H., Schmiegel, W., Hahn, S., and Schroers, R. (2012). Identification of microRNAs in the cerebrospinal fluid as biomarker for the diagnosis of glioma. Neuro-Oncology, 14, 29–33.
  • Saleh, A.D., Savage, J.E., Cao, L., Soule, B.P., Ly, D., DeGraff, W., Harris, C.C., Mitchell, J.B., and Simone, N.L. (2011). Cellular stress induced alterations in microRNA let-7a and let-7b expression are dependent on p53. PLoS One, 6, e24429.
  • Tang, D., Warburton, D., Tannenbaum, S.R., Skipper, P., Santella, R.M., Cereijido, G.S., Crawford, F.G., and Perera, F.P. (1999). Molecular and genetic damage from environmental tobacco smoke in young children. Cancer Epidemiol. Biomarkers Prev., 8, 427–431.
  • Marsit, C.J., Karagas, M.R., Schned, A., and Kelsey, K.T. (2006). Carcinogen exposure and epigenetic silencing in bladder cancer. Ann. N. Y. Acad. Sci., 1076, 810–821.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.