5,598
Views
309
CrossRef citations to date
0
Altmetric
Original Articles

Technologies to Recover Nutrients from Waste Streams: A Critical Review

, , , &
Pages 385-427 | Published online: 04 Nov 2014

REFERENCES

  • Cordell, D., Rosemarin, A., Schroder, J.J., and Smit, A.L. (2011). Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere, 84, 747–758.
  • Cordell, D., Drangert, J., and White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environ. Change, 19, 292–305.
  • Jasinski, S.M. (2012). Phosphate rock. U.S. Geological Survey, Mineral Commodity Summaries. http://minerals.usgs.gov/minerals/pubs/commodity/phosphate_rock/mcs-2012-phosp.pdf.
  • Woods, J., Williams, A., Hughes, J.K., Black, M., and Murphy, R. (2010). Energy and the food system. Philos. Trans. R. Soc. Lond., Ser. B: Biol. Sci., 365(1554), 2991–3006.
  • Manning, D.A. C. (2010). Mineral sources of potassium for plant nutrition. Agron. Sustain. Dev., 2, 188–201.
  • Brummer, J.R., Keely, J.A., and Munday, T.F. (2005). Phosphorus. In Kirk-Othmer encyclopedia of chemical technology, New York: John Wiley & Sons.
  • Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., and Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671–677.
  • Mihelcic, J.R., Fry, L.M., and Shaw, R. (2011). Global potential of phosphorus recovery from human urine and feces. Chemosphere, 84, 832–839.
  • Nicholson, F.A., Chambers, B.J., Williams, J.R., and Unwin, R.J. (1999). Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresour. Technol., 70(1), 23–31.
  • IPCC. (2007). IPCC Climate change 2007: Synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC. http://www.ipcc.ch/pdf/assessment-report/ar4/wg3/ar4_wg3_full_report.pdf.
  • Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., and de Haan, C. (2006). Livestock's long shadow: Environmental issues and options. Rome: Food and Agriculture Organization of the United Nations (FAO). ftp://ftp.fao.org/docrep/fao/010/a0701e/a0701e00.pdf.
  • Smith, V.H., and Schindler, D.W. (2009). Eutrophication science: Where do we go from here? Trends Ecol. Evol., 24(4), 201–207.
  • Metcalf & Eddy, Inc., Tchobanoglous, G., Burton, F., and Stensel, H.D. (2002). Wastewater engineering: Treatment and reuse. Boston: McGraw-Hill Science Engineering.
  • Guest, J.S., Skerlos, S.J., Barnard, J.L., Beck, M.B., Daigger, G.T., Hilger, H., Jackson, S.J., Karvazy, K., Kelly, L., Macpherson, L., Mihelcic, J.R., Pramanik, A., Raskin, L., Van Loosdrecht, M.C. M., Yeh, D., and Love, N.G. (2009). A new planning and design paradigm to achieve sustainable resource recovery from wastewater. Environ. Sci. Technol., 43(16), 6126–6130.
  • Wilsenach, J.A., Maurer, M., Larsen, T.A., and Van Loosdrecht, M.C. M. (2003). From waste treatment to integrated resource management. Water Sci. Technol., 48, 1–9.
  • Le Corre, K.S., Valsami-Jones, E., Hobbs, P., and Parsons, S.A. (2009). Phosphorus recovery from wastewater by struvite crystallization: A review. Crit. Rev. Environ. Sci. Technol., 39(6), 433–477.
  • Masse, L., Massé, D.I., and Pellerin, Y. (2007). The use of membranes for the treatment of manure: A critical literature review. Biosyst. Eng., 98, 371–380.
  • Vohla, C., Kõiv, M., Bavor, H.J., Chazarenc, F., and Mander, Ü. (2011). Filter materials for phosphorus removal from wastewater in treatment wetlands – A review. Ecol. Eng., 37(1), 70–89.
  • Pathak, A., Dastidar, M.G., and Sreekrishnan, T.R. (2009). Bioleaching of heavy metals from sewage sludge: A review. J. Environ. Manage., 90(8), 2343–2353.
  • Morse, G.K., Brett, S.W., Guy, J.A., and Lester, J.N. (1998). Review: Phosphorus removal and recovery technologies. Sci. Total Environ., 212, 69–81.
  • Greaves, J., Hobbs, P., Chadwick, D., and Haygarth, P. (1999). Prospects for the recovery of phosphorus from animal manures: A review. Environ. Technol., 20(7), 697–708.
  • Durrant, A.E., Scrimshaw, M.D., Stratful, I., and Lester, J.N. (1999). Review of the feasibility of recovering phosphate from wastewater for use as a raw material by the phosphate industry. Environ. Technol., 20, 749–758.
  • Martin Jr, J.H., Loehr, R.C., and Pilbeam, T.E. (1983). Animal manures as feedstuffs: Nutrient characteristics. Agric. Wastes, 6(3), 131–166.
  • Mamo, M., Wortmann, C., and Brubaker, C. (2007). Manure phosphorus fractions: Development of analytical methods and variation with manure types. Commun. Soil Sci. Plant Anal., 38(7–8), 935–947.
  • Markou, G., and Georgakakis, D. (2011). Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review. Appl. Energy, 88(10), 3389–3401.
  • Sengupta, S., and Pandit, A. (2011). Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer. Water Res., 45(11), 3318–3330.
  • Neethling, J.B., Clark, D., Pramanik, A., Stensel, H.D., Sandino, J., and Tsuchihashi, R. (2010). WERF nutrient challenge investigates limits of nutrient removal technologies. Water Sci. Technol., 61(4), 945–953.
  • Lu, H., Zhang, G., and Dong, S. (2011). Quantitative study of PNSB energy metabolism in degrading pollutants under weak light-micro oxygen condition. Bioresour. Technol., 102(8), 4968–4973.
  • Vieira, J.G., Manetti, A.G. S., Jacob-Lopes, E., and Queiroz, M.I. (2012). Uptake of phosphorus from dairy wastewater by heterotrophic cultures of cyanobacteria. Desalin. Water Treat., 40(1–6), 224–230.
  • Parsons, S.A., and Smith, J.A. (2008). Phosphorus removal and recovery from municipal wastewaters. Elements, 4(2), 109–112.
  • Li, N., Wang, X., Ren, N., Zhang, K., Kang, H., and You, S. (2008). Effects of solid retention time (SRT) on sludge characteristics in enhanced biological phosphorus removal (EBPR) reactor. Chem. Biochem. Eng. Q., 22(4), 453–458.
  • Pastor, L., Marti, N., Bouzas, A., and Seco, A. (2008). Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment plants. Bioresour. Technol., 99(11), 4817–4824.
  • Liu, W.T., Nakamura, K., Matsuo, T., and Mino, T. (1997). Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactors – Effect of P/C feeding ratio. Water Res., 31(6), 1430–1438.
  • Yuan, Z., Pratt, S., and Batstone, D.J. (2012). Phosphorus recovery from wastewater through microbial processes. Curr. Opin. Biotechnol., 23(6), 878–883.
  • Benemann, J.R. (1979). Production of nitrogen fertilizer with nitrogen-fixing blue-green algae. Enzyme Microb. Technol., 1(2), 83–90.
  • Giotta, L., Agostiano, A., Italiano, F., Milano, F., and Trotta, M. (2006). Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides. Chemosphere, 62(9), 1490–1499.
  • Meunier, N., Drogui, P., Gourvenec, C., Mercier, G., Hausler, R., and Blais, J.F. (2004). Removal of metals in leachate from sewage sludge using electrochemical technology. Environ. Technol., 25(2), 235–245.
  • Bratby, J. (2006). Coagulation and flocculation in water and wastewater treatment (2nd ed.). London: IWA Publishing.
  • De Haas, D.W., Wentzel, M.C., and Ekama, G.A. (2000). The use of simultaneous chemical precipitation in modified activated sludge systems exhibiting biological excess phosphate removal. Part 1: Literature review. Water SA, 26(4), 439–452.
  • Solley, D., Gronow, C., Tait, S., Bates, J., and Buchanan, A. (2010). Managing the reverse osmosis concentrate from the Western Corridor Recycled Water Scheme. Water Pract. Technol., 5(1), doi: 10.2166/wpt.2010.018.
  • Liu, Y., Shi, H., Li, W., Hou, Y., and He, M. (2011). Inhibition of chemical dose in biological phosphorus and nitrogen removal in simultaneous chemical precipitation for phosphorus removal. Bioresour. Technol., 102(5), 4008–4012.
  • Cox, A.E., Camberato, J.J., and Smith, B.R. (1997). Phosphate availability and inorganic transformation in an alum sludge-affected soil. J. Environ. Qual., 26(5), 1393–1398.
  • Biswas, B.K., Inoue, K., Ghimire, K.N., Harada, H., Ohto, K., and Kawakita, H. (2008). Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium. Bioresour. Technol., 99, 8685–8690.
  • Sprynskyy, M., Lebedynets, M., Zbytniewski, R., Namieśnik, J., and Buszewski, B. (2005). Ammonium removal from aqueous solution by natural zeolite, Transcarpathian mordenite, kinetics, equilibrium and column tests. Sep. Purif. Technol., 46(3), 155–160.
  • Donnert, D., and Salecker, M. (1999). Elimination of phosphorus from municipal and industrial waste water. Water Sci. Technol., 40, 195–202.
  • Jung, J.Y., Chung, Y.C., Shin, H.S., and Son, D.H. (2004). Enhanced ammonia nitrogen removal using consistent biological regeneration and ammonium exchange of zeolite in modified SBR process. Water Res., 38(2), 347–354.
  • Wei, Y.X., Ye, Z.F., Wang, Y.L., Ma, M.G., and Li, Y.F. (2011). Enhanced ammonia nitrogen removal using consistent ammonium exchange of modified zeolite and biological regeneration in a sequencing batch reactor process. Environ. Technol., 32(12), 1337–1343.
  • Kocar, G. (2012). The use of anaerobically digested slurry combined with natural zeolite for rapeseed production. Energy Educ. Sci. Technol. Part A: Energy Sci. Res., 30(1), 545–552.
  • Demirbaş, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manage., 42(11), 1357–1378.
  • Shilton, A., Powell, N., and Guieysse, B. (2012). Plant based phosphorus recovery from wastewater via algae and macrophytes. Curr. Opin. Biotechnol., 23(6), 884–889.
  • Powell, N., Shilton, A.N., Pratt, S., and Chisti, Y. (2008). Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ. Sci. Technol., 42(16), 5958–5962.
  • Fenton, O., and Ó hUallacháin, D. (2012). Agricultural nutrient surpluses as potential input sources to grow third generation biomass (microalgae): A review. Algal Research, 1(1), 49–56.
  • Lundquist, T., Woertz, I., Quinn, N., and Benemann, J. (2010). A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute, University of California, Berkeley, CA. http://www.energybiosciencesinstitute.org/sites/default/files/media/AlgaeReportFINAL.pdf.
  • Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends Biotechnol., 26(3), 126–131.
  • Waller, P., Ryan, R., Kacira, M., and Li, P. (2012). The algae raceway integrated design for optimal temperature management. Biomass Bioenergy, 46, 702–709.
  • Teoh, M.L., Phang, S.M., and Chu, W.L. (2013). Response of Antarctic, temperate, and tropical microalgae to temperature stress. J. Appl. Phycol., 25(1), 285–297.
  • Larsdotter, K., La Cour Jansen, J., and Dalhammar, G. (2007). Biologically mediated phosphorus precipitation in wastewater treatment with microalgae. Environ. Technol., 28(9), 953–960.
  • Trent, J., Wiley, P., Tozzi, S., McKuin, B., and Reinsch, S. (2012). Research spotlight: The future of biofuels: Is it in the bag? Biofuels, 3(5), 521–x524.
  • Sturm, B.S. M., and Lamer, S.L. (2011). An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Applied Energy, 88(10), 3499–3506.
  • Stephens, E., Ross, I.L., King, Z., Mussgnug, J.H., Kruse, O., Posten, C., Borowitzka, M.A., and Hankamer, B. (2010). An economic and technical evaluation of microalgal biofuels. Nat. Biotechnol., 28, 126–128.
  • Jiang, J.Q., and Mwabonje, O. (2009). Phosphorus recovery by liquid–liquid extraction. Sep. Sci. Technol., 44(13), 3258–3266.
  • Oron, G., Wildschut, L.R., and Porath, D. (1985). Waste water recycling by duckweed for protein production and effluent renovation. Water Sci. Technol., 17(4-5-5 pt 2), 803–817.
  • Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Sci. Total Environ., 380(1–3), 48–65.
  • Saeed, T., and Sun, G. (2012). A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. J. Environ. Manage., 112, 429–448.
  • Malik, A. (2007). Environmental challenge vis a vis opportunity: The case of water hyacinth. Environ. Int., 33(1), 122–138.
  • Gunnarsson, C.C., and Petersen, C.M. (2007). Water hyacinths as a resource in agriculture and energy production: A literature review. Waste Manage. (Oxford), 27(1), 117–129.
  • Bilstad, T., Madland, M., Espedal, E., and Hanssen, P.H. (1992). Membrane separation of raw and anaerobically digested pig manure. Water Sci. Technol., 25(10), 19–26.
  • Masse, L., Massé, D.I., and Pellerin, Y. (2008). The effect of pH on the separation of manure nutrients with reverse osmosis membranes. J. Membr. Sci., 325(2), 914–919.
  • Awadakka, F.T., Striez, C., and Lamb, K. (1994). Removal of ammonium and nitrate ions from mine effluents by membrane technology. Sep. Sci. Technol., 4, 483–495.
  • Ishiwata, T., Miura, O., Hosomi, K., Shimizu, K., Ito, D., and Yoda, Y. (2010). Removal and recovery of phosphorus in wastewater by superconducting high gradient magnetic separation with ferromagnetic adsorbent. Physica C, 470, 1818–1821.
  • Merino-Martos, A., de Vicente, J., Cruz-Pizarro, L., and de Vicente, I. (2011). Setting up high gradient magnetic separation for combating eutrophication of inland waters. J. Hazard. Mater., 186, 2068–2074.
  • van Velsen, A.F. M., van der Vos, G., Boersma, R., and de Reuver, J.L. (1991). High gradient magnetic separation technique for wastewater treatment. Water Sci. Technol., 24(10), 195–203.
  • Ito, D., Nishimura, K., and Miura, O. (2009). Removal and recycle of phosphate from treated water of sewage plants with zirconium ferrite adsorbent by high gradient magnetic separation. J. Phys. Conf. Ser., 156(012033), 1–3.
  • Shaikh, A.M. H., and Dixit, S.G. (1992). Removal of phosphate from waters by precipitation and high gradient magnetic separation. Water Res., 26(6), 815–852.
  • Wilkinson, K.G. (2011). A comparison of the drivers influencing adoption of on-farm anaerobic digestion in Germany and Australia. Biomass Bioenerg., 35(5), 1613–1622.
  • Batstone, D.J., and Jensen, P.D. (2011). Anaerobic processes. In P. Wilderer (Ed.), Treatise on water science (pp. 615–640). Oxford: Academic Press.
  • Mehta, C.M., and Damien, B.J. (2012). Nutrient solubilization and its availability post anaerobic digestion. Water Sci. Technol., 67(4), 756–763.
  • Güngör, K., and Karthikeyan, K.G. (2008). Phosphorus forms and extractability in dairy manure: A case study for Wisconsin on-farm anaerobic digesters. Bioresour. Technol., 99(2), 425–436.
  • Lu, Q., He, Z.L., and Stoffella, P.J. (2012). Land application of biosolids in the USA: A review. Appl. Environ. Soil Sci. (art. no. 201462).
  • Baur, R.J. (2009). Waste activated sludge stripping to remove internal phosphorus. United States Patent (US7604740B2).
  • Blocher, C., Niewersch, C., and Melin, T. (2012). Phosphorus recovery from sewage sludge with a hybrid process of low pressure wet oxidation and nanofiltration. Water Res., 46, 2009–2019.
  • Stendahl, K., and Jäfverström, S. (2003). Phosphate recovery from sewage sludge in combination with supercritical water oxidation. Water Sci. Technol., 48(1), 185–191.
  • Bridle, T.R., and Pritchard, D. (2004). Energy and nutrient recovery from sewage sludge via pyrolysis. Water Sci. Technol., 50, 169–175.
  • Hermann, L. (2009). P-Recovery from sewage sludge ash—Technology transfer from prototype to industrial manufacturing facilities. In International Conference on Nutrient Recovery from Wastewater Streams (May 10–13, 2009), Vancouver, Canada.
  • Li, J., Pósfai, M., Hobbs, P.V., and Buseck, P.R. (2003). Individual aerosol particles from biomass burning in southern Africa: 2. Compositions and aging of inorganic particles. J. Geophys. Res. [Atmos.], 108(13), SAF 20-1-SAF 20-12.
  • Thygesen, A.M., Wernberg, O., Skou, E., and Sommer, S.G. (2011). Effect of incineration temperature on phosphorus availability in bio-ash from manure. Environ. Technol., 32(6), 633–638.
  • Gutierrez, M.J. F., Baxter, D., Hunter, C., and Svoboda, K. (2005). Nitrous oxide (N2O) emissions from waste and biomass to energy plants. Waste Manage. Res., 23(2), 133–147.
  • Veeken, A.H. M., and Hamelers, H.V. M. (1999). Removal of heavy metals from sewage sludge by extraction with organic acids. Water Sci. Technol., 40(1), 129–136.
  • Sartorius, C., Von Horn, J., and Tettenborn, F. (2012). Phosphorus recovery from wastewater-expert survey on present use and future potential. Water Environ. Res., 84(4), 313–322.
  • Pathak, A., Dastidar, M.G., and Sreekrishnan, T.R. (2009). Bioleaching of heavy metals from sewage sludge by indigenous iron-oxidizing microorganisms using ammonium ferrous sulfate and ferrous sulfate as energy sources: A comparative study. J. Hazard. Mater., 171(1–3), 273–278.
  • Coullard, D., and Mercier, G. (1993). Removal of metals and fate of N and P in the bacterial leaching of aerobically digested sewage sludge. Water Res., 27(7), 1227–1235.
  • Wong, J.W. C., Xiang, L., Gu, X.Y., and Zhou, L.X. (2004). Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source. Chemosphere, 55(1), 101–107.
  • Lü, Z., Guan, H., Li, L., and Jia, W. (2011). Isolation and identifaction of acidithiobacillus thiooxidans with strong phosphorous ore bioleaching ability. Chin. J. Appl. Environ. Biol., 17(3), 326–329.
  • Mercier, G., Drogui, P., Blais, J.F., and Chartier, M. (2006). Pilot-plant study of wastewater sludge decontamination using a ferrous sulfate bioleaching process. Water Environ. Res., 78(8), 872–879.
  • Wong, J.W. C., Xiang, L., and Chan, L.C. (2002). pH requirement for the bioleaching of heavy metals from anaerobically digested wastewater sludge. Water Air Soil Pollut., 138(1–4), 25–35.
  • Jagadeeswaran, R., Murugappan, V., and Govindaswamy, M. (2005). Effect of slow release NPK fertilizer sources on the nutrient use efficiency in turmeric (Curcuma longa L.). World J. Agric. Sci., 1(1), 65–69.
  • Massey, M., Davis, J., Ippolito, J., and Sheffield, R. (2009). Effectiveness of recovered magnesium phosphates as fertilizers in neutral and slightly alkaline soils. Agron. J., 101(2), 323–329.
  • Yetilmezsoy, K., and Sapci-Zengin, Z. (2009). Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer. J. Hazard. Mater., 166, 260–269.
  • Antonini, S., Arias, M.A., Eichert, T., and Clemens, J. (2012). Greenhouse evaluation and environmental impact assessment of different urine-derived struvite fertilizers as phosphorus sources for plants. Chemosphere, 89(10), 1202–1210.
  • Schuiling, R.D., and Andrade, A. (1999). Recovery of struvite from calf manure. Environ. Technol., 20(7), 765–768.
  • Graeser, S., Postl, W., Bojar, H.P., Berlepsch, P., Armbruster, T., Raber, T., Ettinger, K., and Walter, F. (2008). Struvite-(K), KMgPO4.6H2O, the potassium equivalent of struvite – A new mineral. Eur. J. Mineral., 20(4), 629–633.
  • EL-Bourawi, M.S., Khayet, M., Maa, R., Ding, Z., Lia, Z., and Zhang, X. (2007). Application of vacuum membrane distillation for ammonia removal. J. Membr. Sci., 301, 200–209.
  • Norddahl, A., Horn, V.G., Larsson, M., Preez, J.H., and Christensen, K. (2006). A membrane contactor for ammonia stripping, pilot scale experience and modeling. Desalination, 199, 172–174.
  • Tan, X., Tan, S.P., Teo, W.K., and Lia, K. (2006). Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water. J. Membr. Sci., 271, 59–68.
  • Vanotti, M.B., and Szogi, A.A. (2010). Removal and recovery of ammonia from liquid manure using gas-permeable membranes. In American Society of Agricultural and Biological Engineers Annual International Meeting, Pittsburgh, Pennsylvania, USA, pp. 422–427.
  • Vanotti, M.B., Rice, J.M., Ellison, A.Q., Hunt, P.G., Humenik, F.J., and Baird, C.L. (2005). Solid–liquid separation of swine manure with polymer treatment and sand filtration. Trans. Am. Soc. Agric. Eng., 48(4), 1567–1574.
  • Camus, O., Perera, S., Crittenden, B., van Delft, Y.C., Meyer, D.F., Pex, P., Kumakiri, I., Miachon, S., Dalmon, J., Tennison, S., Chanaud, P., Groensmit, E., and Nobel, W. (2006). Ceramic membranes for ammonia recovery. AICHE J., 52, 2055–2065.
  • Rothrock, M.J. Jr., Szögi, A.A., and Vanotti, M.B. (2010). Recovery of ammonia from poultry litter using gas-permeable membranes. Trans. ASABE, 53(4), 1267–1275.
  • Grassi, M., Kaykioglu, G., Belgiorno, V., and Lofrano, G. (2012). Removal of emerging contaminants from water and wastewater by adsorption process. In Emerging Compounds Removal from Wastewater. Netherlands: Springer.
  • Bonmati, A., and Flotats, X. (2003). Air stripping of ammonia from pig slurry: Characterisation and feasibility as a pre- or posttreatment to mesophilic anaerobic digestion. Waste Manage. (Oxford), 23, 261–272.
  • Liao, P.H., Chen, A., and Lo, K.V. (1995). Removal of nitrogen from swine manure wastewaters by ammonia stripping. Bioresour. Technol., 54, 17–20.
  • Collivignarelli, C., Bertanza, G., Baldi, M., and Avezzù, F. (1998). Ammonia stripping from MSW landfill leachate in bubble reactors: Process modeling and optimization. Waste Manage. Res., 16(5), 455–466.
  • Ippersiel, D., Mondor, M., Lamarche, F., Tremblay, F., Dubreuil, J., and Masse, L. (2012). Nitrogen potential recovery and concentration of ammonia from swine manure using electrodialysis coupled with air stripping. J. Environ. Manage., 95, 165–169.
  • Wang, Y., Pelkonen, M., and Kotro, M. (2010). Treatment of high ammonium-nitrogen wastewater from composting facilities by air stripping and catalytic oxidation. Water Air Soil Pollut., 208(1–4), 259–273.
  • Mondor, M., Ippersiel, D., Lamarche, F., and Masse, L. (2009). Fouling characterization of electrodialysis membranes used for the recovery and concentration of ammonia from swine manure. Bioresour. Technol., 100(2), 566–571.
  • Mondor, M., Masse, L., Ippersiel, D., Lamarche, F., and Massé, D.I. (2008). Use of electrodialysis and reverse osmosis for the recovery and concentration of ammonia from swine manure. Bioresour. Technol., 99(15), 7363–7368.
  • Pronk, W., Biebow, M., and Boller, M. (2006). Electrodialysis for recovering salts from a urine solution containing micropollutants. Environ. Sci. Technol., 40(7), 2414–2420.
  • Decloux, M., Bories, A., Lewandowski, R., Fargues, C., Mersad, A., Lameloise, M.L., Bonnet, F., Dherbecourt, B., and Osuna, L.N. (2002). Interest of electrodialysis to reduce potassium level in vinasses. Preliminary experiments. Desalination, 146(1–3), 393–398.
  • Acevedo-Morantes, M., Colón, G., and Realpe, A. (2011). Electrolytic removal of nitrate and potassium from wheat leachate using a four compartment electrolytic cell. Desalination, 278(1–3), 354–364.
  • Cao, X., Huang, X., Liang, P., Xiao, K., Zhou, Y., Zhang, X., and Logan, B.E. (2009). A new method for water desalination using microbial desalination cells. Environ. Sci. Technol., 43(18), 7148–7152.
  • Li, X.Z., Zhao, Q.L., and Hao, X.D. (1999). Ammonium removal from landfill leachate by chemical precipitation. Waste Manage. (Oxford), 19(6), 409–415.
  • Booker, N.A., Priestley, A.J., and Fraser, I.H. (1999). Struvite formation in wastewater treatment plants: Opportunities for nutrient recovery. Environ. Technol., 20(7), 777–782.
  • McLaughlin, M.J., Warne, M.S. J., Whatmuff, M.S., Heemsbergen, D., Broos, K., Barry, G., Bell, M.J., Nash, D., Pritchard, D., and Penney, N. (2007). Australia's National Biosolids Research Program – How it came about, and what has it discovered? Water Pract. Technol., 2(4), 1–9.
  • Pritchard, D., Penney, N., McLaughlin, M., Rigby, H., and Schwarz, K. (2010). Land application of sewage sludge (biosolids) in Australia: Risks to the environment and food crops. Water Sci. Technol., 62(1), 48–57.
  • Wang, H., Brown, S.L., Magesan, G.N., Slade, A.H., Quintern, M., Clinton, P.W., and Payn, T.W. (2008). Technological options for the management of biosolids. Environ. Sci. Pollut. Res., 15(4), 308–317.
  • Batstone, D.J., Jensen, P.D., and Ge, H. (2011). Biochemical treatment of biosolids – Emerging technologies: Pre-treatment methods such as biological processes can improve performance economically. Water, 38(3), 90–93.
  • Beecher, N., Carr, S., Donovan, J.F., Jeyanayagam, S., Khunjar, W.O., Latimar, R., McFadden, L., Moss, L.H., Polo, C., and Stone, L. (2013). Enabling the future: Advancing resource recovery from biosolids. Alexandria, VA: Water Environment Federation. http://www.wef.org/uploadedFiles/Biosolids/PDFs/ENABLING%20THE%20FUTURE.pdf.
  • Park, J.H., Choppala, G.K., Bolan, N.S., Chung, J.W., and Chuasavathi, T. (2011). Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil, 348(1–2), 439–451.
  • Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., and Crowley, D. (2011). Biochar effects on soil biota – A review. Soil Biol. Biochem., 43(9), 1812–1836.
  • Johnston, A.E., and Richards, I.R. (2004). Effectiveness of different precipitated phosphates as phosphorus sources for plants. Phosph. Res. Bull., 15, 52–59.
  • Ryu, H.D., Lim, C.S., Kim, Y.K., Kim, K.Y., and Lee, S.I. (2012). Recovery of struvite obtained from semiconductor wastewater and reuse as a slow-release fertilizer. Environ. Eng. Sci., 29(6), 540–548.
  • Gell, K., de Ruijter, F.J., Kuntke, P., de Graff, M., and Smit, A.L. (2011). Safety and effectiveness of struvite from black water and urine as a phosphorus fertilizer. J. Agric. Sci., 3(3), 67–80.
  • Munch, E.V., and Barr, K. (2001). Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams. Water Res., 35(1), 151–159.
  • Forrest, A.L., Fattah, K.P., Mavinic, D.S., and Koch, F.A. (2008). Optimizing struvite production for phosphate recovery in WWTP. J. Environ. Eng., 134(5), 395–402.
  • Liu, Y., Kwag, J.H., Kim, J.H., and Ra, C. (2011). Recovery of nitrogen and phosphorus by struvite crystallization from swine wastewater. Desalination, 277(1–3), 364–369.
  • Di Iaconi, C., Rossetti, S., Lopez, A., and Ried, A. (2011). Effective treatment of stabilized municipal landfill leachates. Chem. Eng. J., 168(3), 1085–1092.
  • Uysal, A., Yilmazel, Y.D., and Demirer, G.N. (2010). The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. J. Hazard. Mater., 181, 248–254.
  • Gohlke, O., Weber, T., Seguin, P., and Laborel, Y. (2010). A new process for NOx reduction in combustion systems for the generation of energy from waste. Waste Manage. (Oxford), 30(7), 1348–1354.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.