939
Views
87
CrossRef citations to date
0
Altmetric
Original Articles

A Critical Analysis on the Efficiency of Activated Carbons from Low-Cost Precursors for Heavy Metals Remediation

, , &
Pages 613-668 | Published online: 12 May 2014

REFERENCES

  • Celik, A., and Demirbas, A. (2005). Removal of heavy metal ions from aqueous solutions via adsorption onto modified lignin from pulping wastes. Energy Sources 27, 1167–1177.
  • Pastircakova, K. (2004). Determination of trace metal concentrations in ashes from various biomass materials. Energy Edu. Sci. Technol. 13, 97–104.
  • Friberg, L., and Elinder, C.G. (1985). Encyclopedia of occupational health (3rd ed.). Geneva: International Labor Organization.
  • Garg, U.K., Kaur, M.P., Garg, V.K., and Sud, D. (2007). Removal of hexavalent Cr from aqueous solutions by agricultural waste biomass. J. Hazard. Mater. 140, 60–68.
  • Randall, J.M., Hautala, E., and Waiss, A.C. Jr. (1974). Removal and recycling of heavy metal ions from mining and industrial waste streams with agricultutral by-products. Fourth Mineral Waste Utilization Symposium, Chicago, Illinois.
  • Ferner, D.J. (2001). Toxicity, heavy metals. eMed J. 2, 1–3.
  • International Occupational Safety and Health Information Centre. (1999). Metals. Basics of chemical safety. Geneva: ILO.
  • Gonzalez, A.R., Ndung’u, K., and Flegal, A.R. (2005). Natural occurrence of hexavalent chromium in the Aromas Red Sands Aquifer, California. Environ. Sci. Technol. 39, 5505–5511.
  • Boening, D.W. (2000). Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40, 1335–1351.
  • Yu, B., Zhang, Y., Shukla, A., Shukla, S.S., and Dorris, K.L. (2000). The removal of heavy metal from aqueous solutions by sawdust adsorption: removal of copper. J. Hazard. Mater. 80, 33–42.
  • Hetherington, L.E., Brown, T.J., Benham, A.J., Lusty, P.A. J., and Idoine, N.E. (2007). World Mineral Production 2001–05 (vol. 45). Keyworth, England: Nottingham British Geological Survey.
  • Forray, F.L., and Hallbauer, D.K. (2000). A study of the pollution of the Aries River (Romania) using capillary electrophoresis as analytical technique. Environ. Geol. 29, 1372–1384.
  • Cadmium exposure and human health. http://www.cadmium.org.
  • Kotas, J., and Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 107, 263–283.
  • International Programme on Chemical Safety. Chemical safety information from intergovernmental organizations. Retrieved from http://www.inchem.org/pages/ehc.html (January 2010).
  • U.S. Geological Survey. (2009). Mineral commodity summaries. Retrieved from http://minerals.usgs.gov/minerals/pubs/mcs/2009/mcs2009.pdf
  • Doula, M., Ioannou, A., and Dimirkou, A. (2000). Thermodynamics of copper adsorption-desorption by Ca-. kaolinite. Adsorption 6, 325–335.
  • World Health Organization. (2004). Copper in drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality, Geneva.
  • Perry, R.H., Green, D.W., and Maloney, J.O. (1997). Perry's chemical engineers’ handbook (7th ed.). New York: McGraw-Hill.
  • J··uttner, K., Galla, U., and Schmieder, H. (2000). Electrochemical approaches to environmental problems in the process industry. Electrochim. Acta 45, 2575–2594.
  • Yang, X.J., Fane, A.J., and McNaughton, S. (2001). Removal and recovery of heavy metals from wastewater by supported liquid membranes. Water Sci. Technol. 43, 341–348.
  • Bose, P., Bose, M.A., and Kumar, S. (2002). Critical evaluation of treatment strategies involving adsorption and chelation for wastewater containing copper, zinc, and cyanide. Adv. Environ. Res. 7, 179–195.
  • Wingenfelder, U., Hansen, C., Furrer, G., and Schulin, R. (2005). Removal of heavy metals from mine water by natural zeolites. Environ. Sci. Technol. 39, 4606–4613.
  • Dobrevsky, I., Todorova-Dimova, M., and Panayotova, T. (1996). Electroplating rinse wastewater treatment by ion exchange. Desalination 108, 277–280.
  • Korngold, E., Belayev, N., and Aronov, L. (2003). Removal of chromates from drinking water by anion exchangers. Sep. Purif. Technol. 33, 179–187.
  • Ahmed, S., Chughtai, S., and Keane, M.A. (1998). The removal of cadmium and lead from aqueous solution by ion exchange with Na–Y zeolite. Sep. Purif. Technol. 13, 57–64.
  • Cheng, R.C., Liang, S., Wang, H.C., and Beuhler, M.D. (1994). Enhanced coagulation for arsenic removal. J. Am. Water Works Assoc. 86, 79–90.
  • Edwards, M. (1994). Chemistry of arsenic removal during coagulation and Fe–Mn oxidation. J. Am. Water Works Assoc. 86, 64–78.
  • Wang, L.K., Fahey, E.M., and Wu, Z.C. (2004). Dissolved air flotation. In: L.K. Wang, Y.T. Hung, and N.K. Shammas (Eds.), Physicochemical treatment processes, vol. 45, Humana Press, New Jersey, 431–500.
  • Matis, K.A., Zouboulis, A.I., Lazaridis, N.K., and Hancock, I.C. (2003). Sorptive flotation for metal ions recovery. Int. J. Miner. Process. 70, 99–108.
  • Matis, K.A., Zouboulis, A.I., Gallios, G.P., Erwe, T., Blöcher, C. (2004). Application of flotation for the separation of metal-loaded zeolite. Chemosphere 55, 65–72.
  • Chakravarti, A.K., Chowdhury, S.B., Chakrabarty, S., Chakrabarty, T., and Mukherjee, D.C. (1995). Liquid membrane multiple emulsion process of chromium (VI) separation from wastewaters. Colloids Surf. A: Physicochem. Eng. Aspects 103, 59–71.
  • Kongsricharoern, N., and Polprasert, C. (1996). Chromium removal by a bipolar electrochemical precipitation process. Water Sci. Technol. 34, 109–116.
  • Dabrowski, A. (2001). Adsorption, from theory to practice. Adv. Colloid Interface Sci. 93, 135–224.
  • Bansal, R.C., and Goyal, M. (2005). Activated carbon adsorption. Boca Raton, FL: Taylor and Francis.
  • Naiya, T.K., Bhattacharya, A.K., and Das, S.K. (2009). Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina. J. Colloid Interface Sci. 333, 14–26.
  • Hao, J., Han, M.J., Wang, C., and Meng, X. (2009). Enhanced removal of arsenite from water by a mesoporous hybrid material – Thiol-functionalized silica coated activated alumina. Micropor. Mesopor. Mater. 124, 1–7.
  • Mahmoud, M.E., Osman, M.M., Hafez, O.F., and Elmelegy, E. (2010). Removal and preconcentration of lead (II), copper (II), chromium (III) and iron (III) from wastewaters by surface developed alumina adsorbents with immobilized 1-nitroso-2-naphthol. J. Hazard. Mater. 173, 349–357.
  • Karabelli, D., Ünal, S., Shahwan, T., and Eroğlu, A.E. (2011). Preparation and characterization of alumina-supported iron nanoparticles and its application for the removal of aqueous Cu2+ ions. Chem. Eng. J. 168, 979–983.
  • Zhang, Y., Qu, R., Sun, C., Wang, C., Ji, C., Chen, H., and Yin, P. (2009). Chemical modification of silica-gel with diethylenetriamine via an end-group protection approach for adsorption to Hg(II). Appl. Surf. Sci. 255, 5818–5826.
  • Aguado, J., Arsuaga, J.M., Arencibia, A., Lindo., M., and Gascón, V. (2009). Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. J. Hazard. Mater. 163, 213–221.
  • Chutia, P., Kato, S., Kojima, T., and Satokawa, S. (2009). Arsenic adsorption from aqueous solution on synthetic zeolites. J. Hazard. Mater. 162, 440–447.
  • Repo, E., Kurniawan, T.A., Warchol, J.K., and Sillanpää, M.E. T. (2009). Removal of Co(II) and Ni(II) ions from contaminated water using silica gel functionalized with EDTA and/or DTPA as chelating agents. J. Hazard. Mater. 171, 1071–1080.
  • Ríos, C.A., Williams, C.D., and Roberts, C.L. (2008). Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites, J. Hazard. Mater. 156, 23–35.
  • Wang, S., and Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 156, 11–24.
  • Do, D.D. (1998). Adsorption analysis: Equilibria and kinetics. London: Imperial College Press.
  • Kuennen, R.W., Taylor, R.M., Van Dyke, K., and Groenevelt, K. (1992). Removing lead from drinking water with a point-of-use GAC fixed-bed adsorber. J. Am. Water Works Assoc. 84, 91–101.
  • Macias-Garcia, A., Valenzuela-Calahorro, C., Gomez-Serrano, V., and Espínosa-Mansilla, A. (1993). Adsorption of Pb2+ by heat-treated acid sulfurized activated carbon. Carbon 31, 1249–1255.
  • Gabaldón, G., Marzal, P., Ferrer, J., and Seco, A. (1996). Single and competitive adsorption of Cd2+ and Zn2+ onto a granular activated carbon. Water Res. 30, 3050–3060.
  • Carrott, P.J. M., Carrott, M.M. L. R., and Nabais, J.M. V. (1998). Influence of surface ionization on the adsorption of aqueous mercury chlorocomplexes by activated carbons. Carbon 36, 11–17.
  • Carrott, P.J. M., Carrott, M.M. L. R., Nabais, J.M. V., Ramalho, J.P. P. (1997). Influence of surface ionization on the adsorption of aqueous zinc species by activated carbons. Carbon 35, 403–410.
  • Gabaldón, G., Marzal, P., Seco, A., and Gonzalez, J.A. (2000). Cadmium and copper removal by a granular activated carbon in laboratory column systems. Sep. Sci. Technol. 35, 1039–1053.
  • Vaigan, A.A., Alavi Moghaddam, M.R., and Hashemi, H. (2010). Aerobic sequencing batch reactor system with granular activated carbon for the treatment of wastewater containing a reactive. Environ. Eng. Manage. J. 9, 407–411.
  • Babel, S., and Kurniawan, T.A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J. Hazard. Mater. 97, 219–243.
  • Streat, M., Patrick, J.W., and Pérez, M.J. (1995). Sorption of phenol and para-chlorophenol from water using conventional and novel activated carbons. Water Res. 29, 467–472.
  • Pollard, S.J. T., Fowler, G.D., Sollars, C.J., and Perry, R. (1992). Low-cost adsorbents for waste and wastewater treatment: a review. Sci. Total Environ. 116, 31–52.
  • Gupta, V.K., and Ali, I. (2002). Encyclopedia of surface and colloid science (vol. 45). New York: Marcel Dekker.
  • Gupta, V.K., and Ali, I. (2003). Encyclopedia of surface and colloid science (pp. 1–34). New York: Marcel Dekker.
  • Bailey, S.E., Olin, T.J., Bricka, M., and Adrian, D.D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Res. 33, 2469–2479.
  • Shukla, A., Zhang, Y.-H., Dubey, P., Margrave, J.L., and Shukla, S.S. (2002). The role of sawdust in the removal of unwanted materials from water. J. Hazard. Mater. 95, 137–152
  • Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresour. Technol. 97, 1061–1085.
  • Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: A review. Process Biochem. 40, 997–1026.
  • Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresour. Technol. 97, 1061–1085.
  • Mohan, D., and Pittman, J.C. U. (2006). Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 137, 762–811.
  • Kurniawan, T.A., Chan, G.Y. S., Lo, W.-H., and Babel, S. (2006). Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci. Total Environ. 366, 409–426.
  • Ahluwalia, S.S., and Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol. 98, 2243–2257.
  • Gerente, C., Lee, V.K. C., Cloirec, P.L., and McKay, G. (2007). Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Crit. Rev. Environ. Sci. Technol. 37, 41–127.
  • Demirbas, A. (2008). Heavy metal adsorption onto agro-based waste materials: A review J. Hazard. Mater. 157, 220–229.
  • Wan Ngah, W.S., and Hanafiah, M.A. K. M. (2008). Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresour. Technol 99, 3935–3948.
  • Sud, D., Mahajan, G., and Kaur, M.P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Bioresour. Technol. 99, 6017–6027.
  • Nurchi, V.M., and Villaescusa, I. (2008). Agricultural biomasses as sorbents of some trace metals. Coord. Chem. Rev. 252, 1178–1188.
  • Gupta, V.K., and Suhas. (2009). Application of low cost adsorbents for dye removal- A review. J. Environ. Manage. 90, 2313–2342.
  • Gupta, V.K., Carrott, P.J. M., Ribeiro Carrott, M.M. L., and Suhas. (2009). Low cost adsorbents: Growing approach to wastewater treatment – A review. Crit. Rev. Environ. Sci. Technol. 39, 783–842.
  • Wang, J., and Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnol Adv. 27, 195–226.
  • Foo, K.Y., and Hameed, B.H. (2009). Utilization of rice husk ash as novel adsorbent: A judicious recycling of the colloidal agricultural waste. Adv. Coll. Interface Sci. 152, 39–47.
  • Farooq, U., Kozinski, J.A., Khan, M.A., and Athar, M. (2010). Biosorption of heavy metal ions using wheat based biosorbents – A review of the recent literature. Bioresour. Technol. 101, 5043–5053.
  • Garcia-Reyes, R.B., and Rangel-Mendez, J.R. (2010). Adsorption kinetics of chromium(III) ions on agro-waste materials. Bioresour. Technol. 101, 8099–8108.
  • Bhatnagar, A., and Sillanpaa, M. (2010). Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review. Chem. Eng. J. 157, 277–296.
  • Ali, I., and Gupta, V.K. (2007). Advances in water treatment by adsorption technology. Nat. Protocols 1, 2661–2667.
  • Fan, Y., Zhang, F.S., and Feng, Y. (2008). An effective adsorbent developed from municipal solid waste and coal co-combustion ash for As(V) removal from aqueous solutions. J. Hazard. Mater. 159, 313–318.
  • Tofan, L., Paduraru, C., Bilba, D., and Rotariu, M. (2008). Thermal power plants ash as sorbent for the removal of Cu(II) and Zn(II) ions from wastewaters. J. Hazard. Mater. 156, 1–8.
  • Bhattacharya, A.K., Naiya, T.K., Mandal, S.N., and Das, S.K. (2008). Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents. Chem Eng J. 137, 529–541.
  • Wang, S., Soudi, M., Li, L., and Zhu, Z.H. (2006). Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater. J. Hazard. Mater. 133, 243–251.
  • Cho, H., Oh, D., and Kim, K. (2005). A study on removal characteristics of heavy metals from aqueous solution by fly ash. J. Hazard. Mater. 127, 187–195.
  • Bayat, B. (2002). Combined removal of zinc (II) and cadmium (II) from aqueous solutions by adsorption onto high-calcium Turkish fly ash. Water Air Soil Pollut. 136, 69–92.
  • Gupta, V.K., Mohan, D., and Sharma, S. (1998). Removal of lead from wastewater using baggasse fly ash – a sugar industry waste material. Sep. Sci. Technol. 33, 1331–1333.
  • Gupta, V.K., and Ali, I. (2000). Utilisation of baggasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater. Sep. Purif. Technol. 18, 13–140.
  • Gupta, V.K., and Sharma, S. (2003). Removal of zinc from aqueous solutions using baggasse fly ash – a low cost adsorbent. Ind. Eng. Chem. Res. 42, 6619–6624.
  • Gupta, V.K., Jain, C.K., Ali, I., Sharma, M., and Saini, V.K. (2003). Removal of cadmium and nickel from wastewater using baggasse fly ash – a sugar industry waste. Water Res. 37, 4038–4044.
  • Gupta, V.K., and Ali, I. (2004). Removal of lead and chromium from wastewater using bagasse fly ash – a sugar industry waste. J. Colloid Interface Sci., 271, 321–328.
  • Kocabaş, Z.O., and Yürüm, Y. (2011). Kinetic modeling of arsenic removal from water by ferric ion loaded red mud. Sep. Sci. Technol. 46, 2380–2390.
  • Agrawal, A., Sahu, K.K., and Pandey, B.D. (2004). A comparative adsorption study of copper on various industrial solid wastes. AIChE J. 50, 2430–2438.
  • López, E., Soto, B., Arias, M., Núńez, A., Rubinos, D., and Barral, M.T. (1998). Adsorbent properties of red mud and its use for wastewater treatment. Water Res. 32, 1314–1322
  • Gupta, V.K., Gupta, M., and Sharma, S. (2001). Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminum industry waste. Water Res. 35, 1125–1134.
  • Santona, L., Castaldi, P., and Melis, P. (2006). Evaluation of the interaction mechanisms between red muds and heavy metals. J. Hazard. Mater. 136, 324–329.
  • Gupta, V.K., and Sharma, S. (2002). Removal of cadmium and zinc from aqueous solutions using red mud. Environ. Sci. Technol. 36, 3612–3617.
  • Vaclavikova, M., Misaelides, P., Gallios, G., Jakabsky, S., and Hredzak, S. (2005). Removal of cadmium, zinc, copper and lead by red mud, an iron oxides containing hydrometallurgical waste. Stud. Surf. Sci. Catal. 155, 517–525.
  • Altundog˘an HS, Altundog˘an S, Tümen, F., and Bildik, M. (2002). Arsenic adsorption from aqueous solutions by activated red mud. Waste Manage. 22, 357–363.
  • Kanel, S.R., Choi, H., Kim, J.Y., Vigneswaran, S., and Shim, W.G. (2006). Removal of arsenic(III) from groundwater using low-cost industrial by-products-blast furnace slag. Water Qual. Res. J. Can. 41, 130–139.
  • Srivastava, S.K., Gupta, V.K., and Mohan, D. (1997). Removal of lead and chromium using activated slag developed from blast furnace waste material. J. Environ. Eng. (ASCE), 123, 461–468.
  • Bhatnagar, A., Jain, A.K., Minocha, A.K., and Singh, S. (2006). Removal of lead ions from aqueous solutions by different types of industrial waste materials: Equilibrium and kinetic studies. Sep. Sci. Technol. 41, 1881–1892.
  • Gupta, V.K., Rastogi, A., Dwivedi, M.K., and Mohan, D. (1997). Process development for the removal of zinc and cadmium from wastewater using slag - a blast furnace waste material. Sep. Sci. Technol. 32, 2883–2912.
  • Gupta, V.K. (1998). Equilibrium uptake, sorption dynamics, process optimization, and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent. Ind. Eng. Chem. Res. (ACS) 37, 192–202.
  • Kim, D.H., Shin, M.C., Choi, H.D., Seo, C.I., and Baek, K. (2008). Removal mechanisms of copper using steel-making slag: adsorption and precipitation, Desalination 223, 283–289.
  • Naiya, T.K., Bhattacharya, A.K., and Das, S.K. (2009). Clarified sludge (basic oxygen furnace sludge) - an adsorbent for removal of Pb(II) from aqueous solutions - kinetics, thermodynamics and desorption studies. J. Hazard. Mater. 170, 252–262.
  • Martín, M.I., López, F.A., Pérez, C., López-Delgado, A., and Alguacil, F.J. (2005). Adsorption of heavy metals from aqueous solutions with by-products of the steelmaking industry. J. Chem. Technol. Biotechnol. 80, 1223–1229.
  • Bhatnagar, A., Jain, A.K., Minocha, A.K., and Singh, S. (2006). Removal of lead ions from aqueous solutions by different types of industrial waste materials: Equilibrium and kinetic studies. Sep. Sci. Technol. 41, 1881–1892.
  • Namasivayam, C., and Senthilkumar, S. (1997). Recycling of industrial solid waste for the removal of mercury (II) by adsorption process. Chemosphere 34, 357–375.
  • Namasivayam, C., and Ranganathan, K. (1995). Removal of lead(II) by adsorption onto “waste” Iron(III)/Chromium(III) hydroxide from aqueous solution and radiator manufacturing industry wastewater. Ind. Eng. Chem. Res. 34, 869–873.
  • Gupta, V.K., Rastogi, A., and Nayak, A. (2010). Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J. Colloid Interface Sci. 342, 135–141.
  • Gupta, V.K., Srivastava, S.K., Mohan, D., and Sharma, S. (1997). Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions. Waste Manage. 17, 517–522.
  • Srivastava, S.K., Gupta, V.K., and Mohan, D. (1996). Kinetic parameters for the removal of lead and chromium from waste water using activated carbon from fertilizer waste material. Environ. Modell. Assess. 1, 281–290.
  • Manchón-Vizuete, E., Macías-García, A., Nadal Gisbert, A., Fernández-González, C., and Gómez-Serrano, V. (2005). Adsorption of mercury by carbonaceous adsorbents prepared from rubber of tyre wastes. J. Hazard. Mater. 119, 231–238.
  • Rowley, A.G., Husband, F.M., and Cunningham, A.B. (1984). Mechanisms of metal adsorption from aqueous solutions by waste tire rubbers. Water Res. 18, 981–984.
  • Oliveira, D.Q. L., Goncalves, M., Oliveira, L.C. A., Guilherme, L.R. G. (2008). Removal of As(V) and Cr(VI) from aqueous solutions using solid waste from leather industry. J. Hazard. Mater. 151, 280–284.
  • Fathima, N.N., Aravindhan, R., Rao, J.R., and Nair, B.U. (2005). Solid waste removes toxic liquid waste: adsorption of chromium(VI) by iron complexed protein waste. Environ. Sci. Technol. 39, 2804–2810.
  • Srivastava, S.K., Singh, A.K., and Sharma, A. (1994). Studies on the uptake of lead and zinc by lignin obtained from black liquor—a paper industry waste material. Environ. Technol. 15, 353–361.
  • Wu, Y., Zhang, S., Guo, X., and Huang, H. (2008). Adsorption of chromium(III) on lignin. Bioresour. Technol. 99, 7709–7715.
  • Reddy, D.H. K., Seshaiah, K., Reddy, A.V. R., Rao, M.M., and Wang, M.C. (2010). Biosorption of Pb2+ from aqueous solutions by Moringa oleifera bark: equilibrium and kinetic studies. J. Hazard. Mater. 174, 831–838.
  • Subbaiah, M.V., Vijaya, Y., Kumar, N.S., Reddy, A.S., and Krishnaiah, A. (2009). Biosorption of nickel from aqueous solutions by Acacia leucocephala bark: Kinetics and equilibrium studies. Colloids Surf., B: Biointerfaces 74, 260–265.
  • Oo, C.W., Kassim, M.J., and Pizzi, A. (2009). Characterization and performance of Rhizophora apiculata mangrove polyflavonoid tannins in the adsorption of copper (II) and lead (II). Ind. Crops Products 30, 152–161.
  • Mohan, S., and Sumitha, K. (2008). Removal of Cu (II) by adsorption using Casuarina Equisetifolia bark. Environ. Eng. Sci. 25, 497–506.
  • Padmini, E., and Sridhar, S. (2007). Effect of pH and contact time on the uptake of heavy metals from industrial effluents by Pongamia pinnata Bark. Asian J. Microbiol. Biotechnol. Envrion. Sci. 9, 187–190.
  • Selvaraj, K., Manonmani, S., and Pattabhi, S. (2003). Removal of hexavalent chromium using distillery sludge. Bioresour. Technol. 89, 207–211.
  • Pan, S.C., Lin, C.C., and Tseng, D.H. (2003). Reusing sewage sludge ash as adsorbent for copper removal from wastewater. Resour. Conserv. Recycl. 39, 79–90.
  • Zhai, Y., Wei, X., Zeng, G., Zhang, D., and Chu, K. (2004). Study of adsorbent derived from sewage sludge for the removal of Cd2+, Ni2+ in aqueous solutions. Sep. Pur. Technol. 38, 191–196.
  • Thapanapong, P., Jarinya, S., and Fuangfa, U. (2011). Removal of heavy metal ions by iron oxide coated sewage sludge. J. Hazard. Mater. 186, 502–507.
  • Rozada, F., Otero, M., Morán, A., and Garcí, A.I. (2008). Adsorption of heavy metals onto sewage sludge-derived materials. Bioresour. Technol. 99, 6332–6338.
  • Wong, K.K., Lee, C.K., Low, K.S., and Haron, M.J. (2003). Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere 50, 23–28.
  • Ajmal, M., Rao, R.A. K., Anwar, S., Ahamad, J., and Ahmad, R. (2003). Adsorption studies on rice husk: removal and recovery of Cd(II) from wastewater. Bioresour. Technol. 86, 147–149.
  • Naiya, T.K., Bhattacharya, A.K., Mandal, S., and Das, S.K. (2009). The sorption of lead(II) ions on rice husk ash. J. Hazard. Mater. 163, 1254–1264.
  • Kumar, U., and Bandyopadhyay, M. (2006). Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresour. Technol. 97, 104–109.
  • Zafar, M.N., Nadeem, R., and Hanif, M.A. (2007). Biosorption of nickel from protonated rice bran. J. Hazard. Mater. 143, 478–485.
  • Ye, H., Zhu, Q., and Du, D. (2010). Adsorptive removal of Cd(II) from aqueous solution using natural and modified rice husk. Bioresour. Technol. 101, 5175–5179.
  • Akhtar, M., Iqbal, S., Kausar, A., Bhanger, M.I., and Shaheen, M.A. (2010). An economically viable method for the removal of selected divalent metal ions from aqueous solutions using activated rice husk. Colloids Surf., B: Biointerfaces 75, 149–155.
  • El-Shafey, E.I. (2007). Sorption of Cd(II) and Se(IV) from aqueous solution using modified rice husk. J. Hazard. Mater. 147, 546–555.
  • El-Shafey, E.I. (2010). Removal of Zn(II) and Hg(II) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk. J. Hazard. Mater. 175, 319–327.
  • Farooq, U., Khan, M.A., Athar, M., and Kozinski, J.A. (2011). Effect of modification of environmentally friendly biosorbent wheat (Triticum aestivum) on the biosorptive removal of cadmium(II) ions from aqueous solution. Chem. Eng. J. 171, 400–410.
  • Farooq, U., Khan, M.A., and Athar, M. (2007). Triticum aestivum: A novel biosorbent for lead (II) ions. Agrochimica 51, 309–318.
  • Tan, G., and Xiao, D. (2009). Adsorption of cadmium ion from aqueous solution by ground wheat stems. J. Hazard. Mater. 164, 1359–1363.
  • Dang, V.B. H., Doan, H.D., Dang-Vu, T., and Lohi, A. (2009). Equilibrium and kinetics of biosorption of cadmium (II) and copper (II) ions by wheat straw. Bioresour. Technol. 100, 211–219.
  • Chen, S., Yue, Q., Gao, B., and Xu, X. (2010). Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(VI) using modified wheat residue. J. Colloid Interface Sci. 349, 256–264.
  • Wang, X.S., Chen, L.F., Li, F.Y., Chen, K.L., Wan, W.Y., and Tang, Y.J. (2010). Removal of Cr (VI) with wheat-residue derived black carbon: Reaction mechanism and adsorption performance. J. Hazard. Mater. 175, 816–822.
  • Bulut, Y., and Baysal, Z. (2006). Removal of Pb(II) from wastewater using wheat bran. J. Environ. Manage. 78, 107–113.
  • Farajzadeh, M.A., and Monji, A.B. (2004). Adsorption characteristic of wheat bran towards heavy metal cations. Sep. Purif. Technol. 38, 197–207.
  • Dupont, L., and Guillon, E. (2003). Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran. Environ. Sci. Technol. 37, 4235–4241.
  • Nameni, M., Alavi, Moghadam, M.R., and Arami, M. (2008). Adsorption of hexavalent chromium from aqueous solutions by wheat bran. Int. J. Environ. Sci. Technol. 5, 161–168.
  • Singh, K.K., Hasan, H.S., Talat, M., Singh, V.K., and Gangwar, S.K. (2009). Removal of Cr(VI) from aqueous solutions using wheat bran. Chem. Eng. J. 151, 113–121.
  • Aydın, H., Bulut, Y., and Yerlikaya, C. (2008). Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. J. Environ. Manage. 87, 37–45.
  • Basci, N., Kocadagistan, E., and Kocadagistan, B. (2004). Biosorption of copper (II) from aqueous solutions by wheat shell. Desalination 164, 135–140.
  • Dupont, L., Bouanda, J., Dumonceau, J., and Aplincourt, M. (2005). Biosorption of Cu(II) and Zn(II) onto a lignocellulosic substrate extracted from wheat bran. Environ. Chem. Lett. 2, 165–168.
  • Ozer, A., Ozer, D., and Ozer, A. (2004). The adsorption of copper (II) ions on to dehydrate wheat bran (DWB): determination of the equilibrium and thermodynamic parameters. Process Biochem. 39, 2183–2191.
  • Wang, X.S., Li, Z.Z., and Sun, C. (2009). A comparative study of removal of Cu(II) from aqueous solutions by locally low-cost materials: marine macroalgae and agricultural by-products. Desalination 235, 146–159.
  • Nouri, L., and Hamdaoui, O. (2007). Ultrasonication-assisted sorption of cadmium from aqueous phase by wheat bran. J. Phys. Chem. A 111, 8456–8463.
  • Nouri, L., Ghodbane, I., Hamdaoui, O., and Chiha, M. (2007). Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran. J. Hazard. Mater. 149, 115–125.
  • Sekhar, M.C. (2008). Removal of lead from aqueous effluents by adsorption on coconut shell carbon. J. Environ. Sci. Eng. 50, 137–140.
  • Amuda, O.S., Giwa, A.A., and Bello, I.A. (2007). Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochem. Eng. J. 36, 174–181.
  • Pino, G.H., Mesquita, L.M. S., Torem, M.L. and Pinto, G.A. S. P. (2006). Biosorption of cadmium by green coconut shell powder. Min. Eng. 19, 380–387.
  • Nityanandi, D., and Subbhuraam, C.V. (2009). Kinetics and thermodynamic of adsorption of chromium(VI) from aqueous solution using puresorbe. J. Hazard. Mater. 170, 876–882.
  • Kadirvelu, K., and Namasivayam, C. (2000). Agricultural by-product as metal adsorbent: Sorption of lead(II) from aqueous solution onto coirpith carbon. Environ. Technol. 21, 1091–1097.
  • Parab, H., Joshi, S., Shenoy, N., Lali, A., Sarma, U.S., and Sudersanan, M. (2006). Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith. Process Biochem. 41, 609–615.
  • Kadirvelu, K., and Namasivayam, C. (2003). Activated carbon from coconut coirpith as metal adsorbent: Adsorption of Cd(II) from aqueous solution. Adv. Envrion. Res. 7, 471–478.
  • Anirudhan, T.S., Divya, L., and Ramachandran, M. (2008). Mercury(II) removal from aqueous solutions and wastewaters using a novel cation exchanger derived from coconut coir pith and its recovery. J. Hazard. Mater. 157, 620–626.
  • Ho, Y.-S., and Ofomaja, A.E. (2006). Biosorption thermodynamics of cadmium on coconut copra meal as biosorbent. Biochem. Eng. J. 30, 117–123.
  • Babel, S., and Kurniawan, T.A. (2004). Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere 54, 951–967.
  • Suryavanshi, U.S., and Shukla, S.R. (2009). Adsorption of Ga(III) on oxidized coir. Ind. Eng. Chem. Res. 48, 870–876.
  • Zuorro, A., and Lavecchia, R. (2010). Adsorption of Pb(II) on spent leaves of green and black tea. Am. J. Appl. Sci. 7, 153–159.
  • Ahluwalia, S.S., and Goyal, D. (2005). Removal of heavy metals by waste tea leaves from aqueous solution. Eng. Life Sci. 5, 158–162.
  • Amarasinghe, B.M. W. P. K., and Williams, R.A. (2007). Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J. 132, 299–309.
  • Cay, S., Uyanık, A., Özas, A. (2004). Single and binary component adsorption of copper (II) and cadmium(II) from aqueous solutions using tea-industry waste. Sep. Purif. Technol. 38, 273–280.
  • Wasewar, K.L., Atif, M., Prasad, B., and Mishra, I.M. (2009). Batch adsorption of zinc on tea factory waste. Desalination 244, 66–71.
  • Azouaou, N., Sadaoui, Z., Djaafri, A., and Mokaddem, H. (2010). Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics. J. Hazard. Mater. 184, 126–134.
  • Minamisawa, M., Nakajima, S., Minamisawa, H., Yoshida, S., and Takai, N. (2005). Removal of copper (II) and cadmium(II) from water using roasted coffee beans. In E. Lichtfouse, J. Schwarzbauer, and D. Robert (Eds.), Environmental chemistry green chemistry and pollutants in ecosystems, Springer, Berlin, p. 259.
  • Boudrahem, F., Aissani-Benissad, F., Aït-Amar, H. (2009). Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride. J. Environ. Manage. 90, 3031–3039.
  • Anandkumar, J., and Mandal, B. (2009). Removal of Cr(VI) from aqueous solution using Bael fruit (Aegle marmelos correa) shell as an adsorbent. J. Hazard. Mater. 168, 633–640.
  • Vázquez, G., Calvo, M., Freire, M.S., González-Alvarez, J., and Antorrena, G. (2009). Chestnut shell as heavy metal adsorbent: optimization study of lead, copper and zinc cations removal. J. Hazard. Mater. 172, 1402–1414.
  • Yao, Z.-Y., Qi, J.-H., and Wang, L.-H. (2010). Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto chestnut shell. J. Hazard. Mater. 174, 137–143.
  • Pehlivan, E., Altun, T., Cetin, S., and Bhanger, M.I. (2009). Lead sorption by waste biomass of hazelnut and almond shell. J. Hazard. Mater. 167, 1203–1208.
  • Pehlivan, E., and Altun, T. (2008). Biosorption of chromium(VI) ion from aqueous solutions using walnut, hazelnut and almond shell. J. Hazard. Mater. 155, 378–384.
  • Zabihi, M., Ahmadpour, A., and Haghighi Asl, A. (2009). Removal of mercury from water by carbonaceous sorbents derived from walnut shell. J. Hazard. Mater. 167, 230–236.
  • Xu, T., and Liu, X. (2008). Peanut shell activated carbon: characterization, surface modification and adsorption of Pb2+ from aqueous solution. J. Chem. Eng. 16, 401–406.
  • Zhu, C.-S., Wang, L.-P., and Chen, W. (2009). Removal of Cu(II) from aqueous solution by agricultural by-product: peanut hull. J. Hazard. Mater. 168, 739–746.
  • Johnson, P.D., Watson, M.A., Brown, J., and Jefcoat, I.A. (2002). Peanut hull pellets as a single use sorbent for the capture of Cu(II) from wastewater. Waste Manage. 22, 471–480.
  • Li, Q., Zhai, J., Zhang, W., Wang, M., Zhou (2008). A study on adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by peanut husk. Bull. Chem. Soc. Ethiopia 22, 19–26.
  • Dubey, S.P., and Gopal, K. (2007). Adsorption of chromium(VI) on low cost adsorbents derived from agricultural waste material: a comparative study. J. Hazard. Mater. 145, 465–470.
  • Bhatnagar, A., and Minocha, A.K. (2010). Biosorption optimization of nickel removal from water using Punica granatum peels waste. Colloids Surf., B: Biointerfaces 76, 544–548.
  • Anwar, J., Shafique, U., Waheed-uz-Zaman, S.M., Dar, A., and Anwar, S. (2010). Removal of Pb(II) and Cd(II) from water by adsorption on peels of banana. Bioresour. Technol.
  • Memon, J.R., Memon, S.Q., Bhanger, M.I., ZuhraMemon, G., El-Turki, A., and Allen, G.C. (2008). Characterization of banana peel by scanning electron microscopy and FT-IR spectroscopy and its use for cadmium removal. Colloids Surf., B: Biointerfaces 66, 260–265.
  • Memon, J.R., Memon, S.Q., Bhanger, M.I., El-Turki, A., Hallam, K.R., and Allen, G.C. (2009). Banana peel: a green and economical sorbent for the selective removal of Cr(VI) from industrial wastewater. Colloids Surf., B: Biointerfaces. 70, 232–237.
  • Moreno-Piraján, J.C., and Giraldo, L. (2011). Activated carbon obtained by pyrolysis of potato peel for the removal of heavy metal copper (II) from aqueous solutions. J. Anal. Appl. Pyrol. 90, 42–47.
  • Iqbal, M., Saeed, A., and Zafar, S.I. (2009). FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. J. Hazard. Mater. 164, 161–171.
  • Iqbal, M., Saeed, A., and Kalim, I. (2009). Characterization of adsorptive capacity and investigation of mechanism of Cu2+, Ni2+ and Zn2+ adsorption on mango peel waste from constituted metal solution and genuine electroplating effluent. Sep. Sci. Technol. 44, 3770–3791.
  • Ajmal, M., Rao, R.A. K., Ahmad, R., and Ahmad, J. (2000). Adsorption studies on Citrus reticulate (fruit peel of orange): removal and recovery of Ni(II) from electroplating wastewater. J. Hazard. Mater. 79, 117–131.
  • Sha, L., Xueyi, G., Ningchuan, F., and Qinghua, T. (2009). Adsorption of Cu2+ and Cd2+ from aqueous solution by mercapto-acetic acid modified orange peel. Colloids Surf., B: Biointerfaces 73, 10–14.
  • Bhatnagar, A., Minocha, A.K., and Sillanpää, M. (2010). Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochem. Eng. J. 48, 181–186.
  • Saikaew, W., Kaewsarn, P., and Saikaew, W. (2009). Pomelo Peel: agricultural waste for biosorption of cadmium ions from aqueous solutions. World Acad. Sci. Eng. Technol. 56, 287–291.
  • Ramana, D.K. V., Jamuna, K., Satyanarayana, B., Venkateswarlu, B., Rao, M.M., and Seshaiah, K. (2010). Removal of heavy metals from aqueous solutions using activated carbon prepared from Cicer arietinum. Toxicol. Environ. Chem. 92, 1447–1460.
  • Mohammad, M., Maitra, S., Ahmad, N., Bustam, A., Sen, T.K., and Dutta, B.K. (2010). Metal ion removal from aqueous solution using physic seed hull. J. Hazard. Mater. 179, 363–372.
  • Karunakaran, K., and Thamilarasu, P. (2010). Removal of Fe(III) from aqueous solutions using ricinus communis seed shell and polypyrrole coated ricinus communis seed shell activated carbons. Int. J. Chem Technol. Res. 2, 26–35.
  • Kahraman, S., Dogan, N., and Erdemoglu, S. (2008). Use of various agricultural wastes for the removal of heavy metal ions. Inter. J. Environ. Pollut. 34, 275–284.
  • Gupta, V.K., Rastogi, A., and Nayak, A. (2010). Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J. Colloid Interface Sci. 342, 135–141.
  • Gupta, V.K., and Rastogi, A. (2009). Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. J. Hazard. Mater. 163, 396–402.
  • Gupta, V.K., and Rastogi, A. (2008). Equilibrium and kinetic modeling of cadmium (II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J. Hazard. Mater. 153, 759–766.
  • Gupta, V.K., and Rastogi, A. (2008). Biosorption of lead from aqueous solutions by nonliving algal biomass Oedogonium sp. and Nostoc sp. - a comparative study. Colloids Surf., B 64, 170–178.
  • Solisio, C., Lodi, A., Soletto, D., and Converti, A. (2008). Cadmium biosorption on Spirulina platensis biomass. Bioresour. Technol. 99, 5933–5937.
  • Gupta, V.K., and Rastogi, A. (2008). Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies. J. Hazard. Mater. 152, 407–414.
  • Gupta, V.K., Srivastava, A.K., and Jain, N. (2001). Biosorption of chromium (VI) from aqueous solutions by green algae Spirogyra species. Water Res. 35, 4079–4085.
  • Gupta, V.K., Rastogi, A., Saini, V.K., and Jain, N. (2006). Biosorption of copper (II) from aqueous solutions by algae spirogyra species. J. Colloid Interface Sci. 296, 53–60.
  • Gupta, V.K., and Rastogi, A. (2008). Sorption and desorption studies of chromium (VI) from nonviable cyanobacterium Nostoc muscorum biomass. J. Hazard. Mater. 154, 347–354.
  • Kalyani, S., Srinivasa Rao, P., and Krishnaiah, A. (2004). Removal of nickel (II) from aqueous solutions using marine macroalgae as the sorbing biomass. Chemosphere 57, 1225–1229.
  • Herrero, R., Cordero, B., Lodeiro, P., Rey-Castro, C., and Sastre de Vicente, M.E. (2006). Interaction of cadmium (II) and protons with dead biomass of marine algae Fucus sp. Marine Chem. 99, 106–116.
  • El-Sikaily, A., El Nemr, A., Khaled, A., and Abdelwehab, O. (2007). Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. J. Hazard. Mater. 148, 216–228.
  • Yu, C., Lu, Z., Ge, F., and Zhao, E. (2011). Biosorption of cadmium onto Pseudomonas fluorescens: Application of isotherm and kinetic models. Adv. Mater. Res. 171–172, 49–52
  • Wang, X.S., Huang, L.P., Li, Y., and Chen, J. (2010). Removal of copper(II) ions from aqueous solution using sphingomonas paucimobolis biomass. Adsorp. Sci. Technol. 28, 137–147.
  • Gaur, N., and Dhankhar, R. (2009). Removal of Zn+2 ions from aqueous solution using anabaena variabilis: Equilibrium and kinetic studies. Int. J. Environ. Res. 3, 605–616.
  • Zheng, G.H., Wang, L., Zhou, Q., and Li, F.T. (2008). Optimisation of cell surface and structural components for improving adsorption capacity of Pseudomonas putida 5-x to Cu2+. Int. J. Environ. Pollut. 34, 285–296.
  • Anjana, K., Kaushik, A., Kiran, B., and Nisha, R. (2007). Biosorption of Cr(VI) by immobilized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil. J. Hazard. Mater. 148, 383–386.
  • Rodelo, G., Go′mez, A., Ruiz-Manri′quez, A. (2002). Biosorption of Pb(II) by Thiobacillus ferrooxidans. Rev. Int. Contam. Amb. 18, 33–37.
  • Razmovski, R., and Šćiban, M. (2008). Iron(III) biosorption by Polyporus squamosus. Afr. J. Biotechnol. 7, 1693–1699.
  • Ferraiolo, G., Zilli, M., and Converti, A. (1990). Fly ash disposal and utilization. J. Chem. Technol. Biotechnol. 47, 281–305.
  • Wang, S., Soudi, M., Li, L., and Zhu, Z.H. (2006). Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater. J. Hazard. Mater. 133, 243–251.
  • Querol, X., Moreno, N., Umana, J.C., Alastuey, A., Hernandez, E., Lopez-Soler, A., and Plana, F. (2002). Synthesis of zeolites from fly ash: an overview. Int. J. Coal Geol. 50, 413–423.
  • Aly, H.M., Daifullah, A.A. M. (1998). Potential use of baggasse pith for the treatment of wastewater containing metals. Adsorp. Sci. Technol. 16, 33–38.
  • Taha, G.M. (2006). Utilization of low-cost waste material baggasse fly ash in removing of Cu2+, Ni2+, Zn2+, and Cr3+ from industrial waste water. Ground Water Monit. Remed. 26, 137–141.
  • Wang, S., Ang, H.M., and Tadé, M.O. (2008). Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere 72, 1621–1635.
  • Atun, G., and Hisarli, G. (2000). A Study of surface properties of red mud by potentiometric method. J. Colloid Interface Sci. 228, 40–45.
  • Dimitrova, S.V. (1996). Metal sorption on blast-furnace slag. Water Res. 30, 228–232.
  • Srivastava, S.K., Tyagi, R., and Pant, N. (1989). Adsorption of heavy metal ions on carbonaceous material developed from the waste slurry generated in local fertilizer plants. Water Res. 23, 1161–1165.
  • Williams, P.T., Besler, S., and Taylor, D.T. (1990). The pyrolysis of scrap automobile tyres. Fuel. 69, 1474–1482.
  • Murillo, R., Aylón, E., Navarro, M.V., Callén, M.S., Aranda, A., Mastral, A.M., (2006). The application of thermal processes to valorise waste tyre. Fuel Process. Technol. 87, 143–147.
  • Castells, X.E. (2000). Reciclaje de Residuos Industriales, Díaz Santos, Madrid, 495
  • Knocke, W.R., and Hemphill, L.H. (1981). Mercury (II) sorption by waste rubber. Water Res. 15, 275–282.
  • Mechant, A.A., and Petrich, M.A. (1993). Pyrolysis of scrap tire and conversion of chars to activated carbon. AIChE J. 39, 1370–1376.
  • Teng, H., Serio, M.A., Wojtowicz, M.A., Bassilakis, B., and Solomon, P.R. (1995). Reprocessing of used tires into activated carbon and other products. Ind. Eng. Chem. Res. 34, 3102–3111.
  • Cunliffe, A., and Williams, P.T. (1999). Influence of process conditions on the rate of activation of chars derived from pyrolysis of used tires. Energy Fuel 13, 166–175.
  • Lin, Y.R., and Teng, H. (2002). Mesoporous carbons from waste tire char and their application in wastewater discoloration. Micropor. Mesopor. Mater. 54, 167–174.
  • San Miguel, G., Fowler, G.D., and Sollars, C.J. (2003). A study of the characteristics of activated carbons produced by steam and carbon dioxide activation of waste tyre rubber. Carbon 41, 1009–1016.
  • Helleur, R., Popovic, N., Ikura, M., Stanciulescu, M., and Liu, D. (2001). Characterization and potential applications of pyrolytic char from ablative pyrolysis of used tires. J. Anal. Appl. Pyrol. 58, 813–824.
  • Ariyadejwanich, P., Tanthapanichakoon, W., Nakagawa, K., Mukai, S.R., and Tamon, H. (2003). Preparation and characterization of mesoporous activated carbon from waste tire. Carbon 41, 157–164.
  • Zabaniotou, A., Madau, P., Oudenne, P.D., Jung, C.G., Delplancke, M.P., and Fontana, A.J. (2004). Active carbon production from used tire in two-stage procedure: industrial pyrolysis and bench scale activation with H2O–CO2 mixture. Anal. Appl. Pyrol. 72, 289–297.
  • Mui, E.L. K., Ko, D.C. K., and Mckay, G. (2004). Production of active carbon from waste tyres-a review. Carbon 42, 2789–2805.
  • González, J.F., Encinar, J.M., González-García, C.M., Sabio, E., Ramiro, A., Canito, J.L., and Gañán, J. (2006). Preparation of activated carbons from used tyres by gasification with steam and carbon dioxide. J. Appl. Surf. Sci. 252, 5999–6004.
  • Suuberg, E.M., and Aarna, I. (2007). Porosity development in carbon derived from scrap automobile tires. Carbon 4, 1719–1726.
  • Betancur, M., Martínez, J.D., and Murillo, R. (2009). Production of activated carbon by waste tire thermochemical degradation with CO2. J. Hazard. Mater. 168, 882–887.
  • Suuberg, E.M., and Aarna, I. (2009). Kinetics of tire derived fuel (TDF) char oxidation and accompanying changes in surface area. Fuel 88, 179–186.
  • López, G., Olazar, M., Artetxe, M., Amutio, M., Elordi, G., and Bilbao, J. (2009). Steam activation of pyrolytic tyre char at different temperatures. J. Anal. Appl. Pyrol. 85, 539–543.
  • Hashem, A., Akasha, R.A., Ghith, A., and Hussein, D.A. (2005). Adsorbent based on agricultural wastes for heavy metal and dye removal: A review. Energy Edu. Sci. Technol. 19, 69–86.
  • Ahmedna, M., Marshall, W.E., and Rao, R.M. (2000). Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties. Bioresour. Technol. 71, 113–123.
  • Volesky, B., and Holan, Z.R. (1995). Biosorption of heavy metals. Biotechnol. Progr. 11, 235–250.
  • Rahman, I.A., Ismail, J., and Osman, H. (1997). Effect of nitric acid digestion on organic materials and silica in rice husk. J. Mater. Chem. 7, 1505–1509.
  • Lawther, J.M., Sun, R., and Banks, B. (1995). Extraction, fractionation and characterization of structural polysaccharides from wheat straw. J. Agric. Food Chem. 43, 667–675.
  • Basso, M.C., Cerrella, E.G., and Cukierman, A.L. (2002). Lignocellulosic materials as potential biosorbents of trace toxic metals from wastewater. Chem. Res. 41, 3580–3585.
  • Qaiser, S., Saleemi, A.R., and Ahmad, M.M. (2007). Heavy metal uptake by agro based waste materials. Environ. Biotechnol. 10, 409–416.
  • Acemioglu, B., and Alma, H.M. (2001). Equilibrium studies on adsorption of Cu(II) from aqueous solution onto cellulose. J. Colloid Interface Sci. 243, 81–84.
  • Grover, R. (1974). Adsorption and desorption of trifluralin, triallate, and diallate by various adsorbents. Weed Sci. 22, 405–408.
  • Peterson, E.A., and Sober, H.A. (1956). Chromatography of proteins I. Cellulose ion exchange adsorbents. J. Am. Chem. Soc. 78, 751–755.
  • Volesky, B., and Holan, Z.R. (1995). Biosorption of heavy metals. Biotechnol. Progr. 11, 235–250.
  • Schiewer, S., and Volesky, B. (2000). Biosorption by marine algae. In J.J. Valdes (Ed.): Remediation. Dordrecht, the Netherlands: Kluwer Academic, pp. 139–169.
  • Holan, Z.R., Volesky, B., and Prasetyo, I. (1993). Biosorption of cadmium by biomass of marine algae. Biotechnol. Bioeng. 41, 819–825.
  • Matheickal, J.T., and Yu, Q. (1999). Biosorption of lead (II) and copper (II) from aqueous solutions by pre-treated biomass of Australian marine algae. Bioresour. Technol. 69, 223–229.
  • Matheickal, J.T., Yu, Q., and Woodburn, G.M. (1999). Biosorption of cadmium (II) from aqueous solutions by pre-treated biomass of marine alga Durvillaea potatorum. Water Res. 33, 335–342.
  • Yu, Q., Matheickal, J.T., Yin, P., and Kaewsarn, P. (1999). Heavy metal uptake capacities of common marine macro algal biomass. Water Res. 33, 1534–1537.
  • Leusch, A., Holan, Z.R., and Volesky, B. (1995). Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically reinforced biomass of marine algae. J. Chem. Technol. Biotechnol. 62, 279–288.
  • Do··nmez, G., Aksu, Z., O·· ztu·· rk, A., and Kutsal, T. (1999). A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem. 34, 885–892.
  • Aksu, Z., Acikel, U..., and Kutsal, T. (1997). Application of multicomponent adsorption isotherms to simultaneous biosorption of iron (III) and chromium (VI) on C. vulgaris. J. Chem. Technol. Biotechnol. 70, 368–378.
  • Aksu, Z., Acikel, Ü., and Kutsal, T. (1999). Investigation of simultaneous biosorption of copper (II) and chromium (VI) on dried Chlorella vulgaris from binary metal mixtures: application of multicomponent adsorption isotherms. Sep. Sci. Technol. 34, 501–524.
  • Holan, Z.R., and Volesky, B. (1994). Biosorption of lead and nickel by biomass of marine algae. Biotechnol. Bioeng. 43, 1001–1009.
  • Liu, Z., Zhang, F.-S., and Sasai, R. (2010). Arsenate removal from water using Fe3O4-loaded activated carbon prepared from waste biomass. Chem. Eng. J. 160, 57–62.
  • Kratochvil, D., and Volesky, B. (1998). Advances in the biosorption of heavy metals. Trends Biotechnol. 16, 291–300.
  • Kapoor, A., and Viraraghavan, T. (1995). Fungal biosorption—an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour. Technol. 53, 195–206.
  • Rodríguez-Reinoso, F., and Molina-Sabio, M. (1992). Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon 30, 1111–1118.
  • Encinar, J.M., Beltran, F.J., Ramiro, A., and Gonzales J.F. (1998). Pyrolysis / gasification of agricultural residues by carbon dioxide in presence of different additives: influence of variables. Fuel Process. Technol. 55, 219–233.
  • El–Sheikh, A.H., Newman, A.P., Al–Daffaee, H.K., Phull, S and Cresswell, N. (2004). Characterization of activated carbon prepared from a single cultivar of Jordanian Olive stones by chemical and physicochemical techniques. J. Anal. Appl. Pyrol. 71, 151–164.
  • Ganan, J., Gonzalez, J.F., Gonzalez-Garcia, C.M., Ramiro, A., Sabio, E., and Roman, S. (2006). Carbon dioxide-activated carbons from almond tree prunings: Preparation and characterization. Appl. Surf. Sci. 252, 5993–5998.
  • Johns, M.M., Marshall, W.E., and Toles C.A. (1998). Agricultural by-product as granular activated carbons for adsorbing dissolved metals and organics. J. Chem. Technol. Biotechnol. 71, 131–140.
  • Lua A.C., and Guo, J. (2001). Preparation and characterization of activated carbons from oil-palm stones for gas-phase adsorption. Colloids Surf., A: Physicochem Eng. Aspects 179, 151–162.
  • Juang, R.S., Wu, F.C., and Tseng R.L. (2002). Characterization and use of activated carbons prepared from bagasses for liquid-phase adsorption. Colloids Surf., A: Physicochem. Eng. Aspects 201, 191–199.
  • Gupta, V.K., Ganjali, M.R., Nayak, A., Bhushan, B., and Agarwal, S. (2012). Enhanced heavy metals removal and recovery by mesoporous adsorbent prepared from waste rubber tire. Chem. Eng. J. 197, 330.
  • Hesas, R.H., Daud, WMAW, Sahu, J.N., and Niya, A.A. (2013). The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review. J. Anal. Appl. Pyrol. 100, 1–11.
  • Thakur, S.K., Kong, T.S., and Gupta, M. (2007). Microwave synthesis and characterization of metastable (Al/Ti) and hybrid (Al/Ti + SiC) composite. Mater. Sci. Eng. 452–453, 61–69.
  • Maldhure, A.V., and Ekhe, J.D. (2011). Preparation and characterizations of microwave assisted activated carbons from industrial waste lignin for Cu(II) sorption. Chem. Eng. J. 168, 1103–1111.
  • Foo, K.Y., and Hameed, B.H. (2011). Preparation and characterization of activated carbon from sunflower seed oil residue via microwave assisted K2CO3 activation. Bioresour. Technol. 102, 9814–9817.
  • Foo, K.Y., and Hameed, B.H. (2012). Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbons via microwave assisted K2CO3 activation. Bioresour. Technol. 104, 679–686.
  • Foo, K.Y., and Hameed, B.H. (2011). Preparation and characterization of activated carbon from sunflower seed oil residue via microwave assisted K2CO3 activation. Bioresour. Technol. 102, 9794–9799.
  • Genç-Fuhrman, H., Tjell, J.C., and McConchie, D. (2004). Adsorption of arsenic from water using activated neutralized red mud. Environ. Sci. Technol. 38, 2428–2434.
  • Palma, G., Freer, J., and Baeza, J. (2003). Removal of metal ions by modified Pinus radiata bark and tannins from water solutions. Water Res. 37, 4974–4980.
  • Hsieh, C.T., Teng, HS. (2000). “Influence of mesopore volume andadsorbate size on adsorption capacities of activated carbons in aqueous solutions. Carbon 38, 863–869.
  • Moreno-Castilla, C., Rivera-Utrilla, J., Joly, J.P., Lopez-Ramon M.V., Ferro-Garcia, M.A., and Carrasco-Marin F. (1995). Thermal regeneration of an activated carbon exhausted with different substituted phenols. Carbon 33, 1417–1423.
  • Ferro-Garcá, M.A., Utrera-Hidalgo, E., Rivera-Utrilla, J., Moreno-Castilla, C., and Joly, J.P. (1993). Regeneration of activated carbons exhausted with chlorophenols. Carbon 31, 857–863.
  • DeWalle, F.B., and Chian, E.S. K. (1977). Biological regeneration of powdered activated carbon added to activated sludge units. Water Res 11, 439–446.
  • Wen, Q.B., Li, C.T., Cai, Z.H., Zhang, W., Gao, H.L., Chen, L.J., Zeng, G.M., Shu, X., and Zhao, Y.P. (2011). Study on activated carbon derived from sewage sludge for adsorption of gaseous formaldehyde. Bioresour. Technol. 102, 942–947.
  • Robers, A., Figura, M., Thiesen, P.H., and Niemeyer, B. (2005). Desorption of odor-active compounds by microwaves, ultrasound, and water. AIChE J. 51, 502–510.
  • Guo, D.S., Shi, Q.T., He, B.B., and Yuan, X.Y. (2011). Different solvents for the regeneration of the exhausted activated carbon used in the treatment of coking wastewater. J. Hazard. Mater. 186, 1788–1793.
  • Aktas, O., and Cecen, F (2009). Cometabolic bioregeneration of activated carbons loaded with 2-chlorophenol. Bioresour. Technol. 100, 4604–4610.
  • Liu, X.T., Quan, X., Bo, L.L., Chen, S., and Zhao, Y.Z. (2004). Simultaneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by microwave irradiation. Carbon 42, 415–22.
  • Foo, K.Y., and Hameed, B.H. (2009). Recent developments in the preparation and regeneration of activated carbons by microwaves. Adv. Colloid Interface Sci. 149, 19–27.
  • Ania, C.O., Menendez, J.A., Parra, J.B., and Pis, J.J. (2004). Microwave-induced regeneration of activated carbons polluted with phenol. A comparison with conventional thermal regeneration. Carbon 42, 1383–1387.
  • Berenguer, R., Marco-Lozar, J.P., Quijada, C., Cazorla-Amoros, D., and Morallon E. (2010). Electrochemical regeneration and porosity recovery of phenol-saturated granular activated carbon in an alkaline medium. Carbon 48, 2734–2745.
  • Berenquer, R., Marco-Lozar, J.P., Quijada, C., Cazorla-Amoros, D., and Morallon E. (2009). Effect of electrochemical treatments on the surface chemistry of activation. Carbon 47, 1018–1027.
  • Salvador, F., Jimenez, CS. (1996). A new method for regenerating activated carbon by thermal desorption with liquid water under subcritical conditions. Carbon 34, 511–516.
  • Lim, J., and Okada, M. (2005). Regeneration of granular activated carbon using ultrasound. Ultrason. Sonochem. 12, 277–282.
  • Tang, S., Lu, N., Li, J., and Wu, Y. (2012). Design and application of an up-scaled dielectric barrier discharge plasma reactor for regeneration of phenol-saturated granular activated carbon. Sep. Purif. Technol. 95, 73–79.
  • Qu, G.Z., Li, J., Wu, Y., Li, G.F., and Li, D. (2009). Regeneration of acid orange 7-exhausted granular activated carbon with dielectric barrier discharge plasma. Chem. Eng. J. 146, 168–173.
  • Qu, G.Z., Lu, N., Li, J., Wu, Y., Li, G.F., Li D. (2009). Simulataneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by dielectric barrier discharge plasma. J. Hazard. Mater. 172, 472–478.
  • Anirudhan, T.S., and Sreekumari, S.S. (2011). Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J. Environ. Sci. 23, 1989–1998.
  • O’Connell, D.W., Birkinshaw, C., and O’Dwyer, T.F. (2008). Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour. Technol. 99, 6709–6724.
  • Gupta, V.K., Agarwal, S., Singh, P., and Pathania, D. (2013). Acrylic acid grafted cellulosic Luffa cylindrical fiber for the removal of dye and metal ions. Carbohydr. Polym. 98, 1214–1221.
  • Anirudhan, T.S., Sreekumari, S.S., and Jalajamony, S. (2013). An investigation into the adsorption of thorium(IV) from aqueous solutions by a carboxylate-functionalised graft copolymer derived from titanium dioxide-densified cellulose. J. Environ. Radioactivity 116, 141–147.
  • Isobea, N., Chen, X., Kim, U.-Z., Kimura, S., Wadaa, M., Saitoa, T., and Isogai, A. (2013). TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent. J. Hazard. Mater. 260, 195–201.
  • Shuaiyang, W., Huiling, L., Junli, R., Chuanfu, L., Feng, P., and Runcang, S. (2013). Preparation of xylan citrate—a potential adsorbent for industrial wastewater treatment. Carbohydr. Polym. 92, 1960–1965.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.