693
Views
39
CrossRef citations to date
0
Altmetric
Original Articles

Fouling and Inactivation of Titanium Dioxide-Based Photocatalytic Systems

, , &
Pages 1880-1915 | Published online: 29 May 2015

REFERENCES

  • Fujishima, A., and Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38.
  • Formenti, M., Juillet, F., and Teichner, S.J. (1970). Photooxidation of paraffins and olefins in presence of anatase at ambient temperature. Comptes Rendus Hebdomadaires des Seances de L’Academie des Sciences Serie C 270, 138–141.
  • Djeghri, N., Juillet, F., Formenti, M., and Teichner, S.J. (1974). Photointeraction on the surface of titanium dioxide between oxygen and alkanes. Faraday Discussions of the Chemical Society 58, 185–193.
  • Fenoll, J., Flores, P., Hellín, P., Martínez, C.M., and Navarro, S. (2012). Photodegradation of eight miscellaneous pesticides in drinking water after treatment with semiconductor materials under sunlight at pilot plant scale. Chemical Engineering Journal 204–206, 54–64.
  • Yap, P.S., and Lim, T.T. (2011). Effect of aqueous matrix species on synergistic removal of bisphenol-A under solar irradiation using nitrogen-doped TiO2/AC composite. Applied Catalysis B: Environmental 101, 709–717.
  • Carbonaro, S., Sugihara, M.N., and Strathmann, T.J. (2013). Continuous-flow photocatalytic treatment of pharmaceutical micropollutants: Activity, inhibition, and deactivation of TiO2 photocatalysts in wastewater effluent. Applied Catalysis B: Environmental 129, 1–12.
  • Mehos, M.S., and Turchi, C.S. (1993). Field testing solar photocatalytic detoxification on TCE contaminated groundwater. Environmental Progress 12, 194–199.
  • Mills, A., and Hunte, S.L. (1997). An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology. A, Chemistry 108, 1–35.
  • Litter, M. (1999). Heterogeneous photocatalysis transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental 23, 89–114.
  • Mohamed, H.H., and Bahnemann, D.W. (2012). The role of electron transfer in photocatalysis: Fact and fictions. Applied Catalysis B: Environmental 128, 91–104.
  • Fujishima, A., Zhang, X., and Tryk, D. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports 63, 515–582.
  • Ward, M.D., White, J.R., and Bard, A.J. (1983). Electrochemical investigation of the energetics of particulate titanium dioxide photocatalysts. The methyl viologen-acetate system. Journal of the American Chemical Society 105, 27–31.
  • Watanabe, T., Fujishima, A., Tatsuoki, O., and Honda, K.-I. (1976). pH-Dependence of spectral sensitization at semiconductor electrodes. Bulletin of the Chemical Society of Japan 49, 8–11.
  • Zhang, Y., Chen, Y., Westerhoff, P., and Crittenden, J. (2009). Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Research 43, 4249–4257.
  • Ottofuelling, S., Von Der Kammer, F., and Hofmann, T. (2011). Commercial titanium dioxide nanoparticles in both natural and synthetic water: comprehensive multidimensional testing and prediction of aggregation behavior. Environmental Science & Technology 45, 10045–10052.
  • Mozia, S., Tomaszewska, M., and Morawski, A.W. (2005). Decomposition of nonionic surfactant in a labyrinth flow photoreactor with immobilized TiO2 bed. Applied Catalysis B: Environmental 59, 155–160.
  • Burns, R.A., Crittenden, J.C., Hand, D.W., Selzer, V.H., Sutter, L.L., and Salman, S.R. (1999). Effect of inorganic ions in heterogeneous photocatalysis of TCE. Journal of Environmental Engineering 125, 77–85.
  • Li, S., Ma, Z., Zhang, J., Wu, Y., and Gong, Y. (2008). A comparative study of photocatalytic degradation of phenol of TiO2 and ZnO in the presence of manganese dioxides. Catalysis Today 139, 109–112.
  • Van Doorslaer, X., Heynderickx, P.M., Demeestere, K., Debevere, K., Van Langenhove, H., and Dewulf, J. (2012). TiO2 mediated heterogeneous photocatalytic degradation of moxifloxacin: Operational variables and scavenger study. Applied Catalysis B: Environmental 111–112, 150–156.
  • Kashif, N., and Ouyang, F. (2009). Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2. Journal of Environmental Sciences 21, 527–533.
  • Dionysiou, D.D., Suidan, M.T., Bekou, E., Baudin, I., and Laîné, J.-M. (2000). Effect of ionic strength and hydrogen peroxide on the photocatalytic degradation of 4-chlorobenzoic acid in water. Applied Catalysis B: Environmental 26, 153–171.
  • Aguedach, A., Brosillon, S., Morvan, J., and Lhadi, E.K. (2008). Influence of ionic strength in the adsorption and during photocatalysis of reactive black 5 azo dye on TiO2 coated on non woven paper with SiO2 as a binder. Journal of Hazardous Materials 150, 250–256.
  • Lair, A., Ferronato, C., Chovelon, J.-M., and Herrmann, J.-M. (2008). Naphthalene degradation in water by heterogeneous photocatalysis: An investigation of the influence of inorganic anions. Journal of Photochemistry and Photobiology A: Chemistry 193, 193–203.
  • Yang, S.Y., Chen, Y.X., Lou, L.P., and Wu, X.N. (2005). Involvement of chloride anion in photocatalytic process. Journal Of Environmental Sciences (China) 17, 761–765.
  • Kormann, C., Bahnemann, D.W., and Hoffmann, M.R. (1991). Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions. Environmental Science & Technology 25, 494–500.
  • Grebel, J.E., Pignatello, J.J., and Mitch, W.A. (2010). Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters. Environmental Science & Technology 44, 6822–6828.
  • Machulek, A.Jr., Moraes, J.E. F., Vautier-Giongo, C., Silverio, C.A., Friedrich, L.C., Nascimento, C.A. O., Gonzalez, M.C., and Quina, F.H. (2007). Abatement of the inhibitory effect of chloride anions on the photo-Fenton process. Environmental Science & Technology 41, 8459–8463.
  • Farhataziz and Ross, A.B. (1977). Selected specific rates of reactions of transients from water in aqueous solution. III. Hydroxyl radical and perhydroxyl radical and their radical ions. National Standard Reference Data Series.
  • Rabani, J., Yamashita, K., Ushida, K., Stark, J., and Kira, A. (1998). Fundamental reactions in illuminated titanium dioxide nanocrystallite layers studied by pulsed laser. The Journal of Physical Chemistry B 102, 1689–1695.
  • Chen, Y., Yang, S., Wang, K., and Lou, L. (2005). Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of acid orange 7. Journal of Photochemistry and Photobiology A: Chemistry 172, 47–54.
  • Palominos, R., Freer, J., Mondaca, M.A., and Mansilla, H.D. (2008). Evidence for hole participation during the photocatalytic oxidation of the antibiotic flumequine. Journal of Photochemistry and Photobiology A: Chemistry 193, 139–145.
  • Connor, P.A., and McQuillan, A.J. (1999). Phosphate adsorption onto TiO2 from aqueous solutions an in situ internal reflection infrared spectroscopic study. Langmuir 15, 2916–2921.
  • Zhao, D., Chen, C., Wang, Y., Ji, H., Ma, W., Zang, L., and Zhao, J. (2008). Surface modification of TiO2 by phosphate: Effect on photocatalytic activity and mechanism implication. The Journal of Physical Chemistry C 112, 5993–6001.
  • Kim, J., and Choi, W. (2011). TiO2 modified with both phosphate and platinum and its photocatalytic activities. Applied Catalysis B: Environmental 106, 39–45.
  • Sheng, H., Li, Q., Ma, W., Ji, H., Chen, C., and Zhao, J. (2013). Photocatalytic degradation of organic pollutants on surface anionized TiO2: Common effect of anions for high hole-availability by water. Applied Catalysis B: Environmental 138–139, 212–218.
  • Huie, R.E., Neta, P., and Division, C.K. (1987). Rate constants for some oxidations of S(IV) by radicals in aqueous solutions. Atmospheric Environment (1967) 21, 1743–1747.
  • Hu, C., Yu, J.C., Hao, Z., and Wong, P.K. K. (2003). Effects of acidity and inorganic ions on the photocatalytic degradation of different azo dyes. Applied Catalysis B: Environmental 46, 35–47.
  • Chen, S., and Cao, G. (2005). Study on the photocatalytic reduction of dichromate and photocatalytic oxidation of dichlorvos. Chemosphere 60, 1308–1315.
  • Hua, Z., Zhang, M.P., Xia, Z.F., and Low, G.K. C. (1995). Titanium-dioxide mediated photocatalytic degradation of monocrotophos. Water Research 29, 2681–2688.
  • Mazellier, P., Leroy, E., De Laat, J., and Legube, B. (2002). Transformation of carbendazim induced by the H2O2/UV system in the presence of hydrogenocarbonate ions: involvement of the carbonate radical. New Journal of Chemistry 26, 1784–1790.
  • Larson, R.A., and Zepp, R.G. (1988). Reactivity of the carbonate radical with aniline derivatives. Environmental Toxicology and Chemistry 7, 265–274.
  • Kumar, A., and Mathur, N. (2006). Photocatalytic degradation of aniline at the interface of TiO2 suspensions containing carbonate ions. Journal of Colloid and Interface Science 300, 244–52.
  • Chen, J.Q., Hu, Z.J., Wang, D., Gao, C.J., and Ji, R. (2010). Photocatalytic mineralization of dimethoate in aqueous solutions using TiO2: Parameters and by-products analysis. Desalination 258, 28–33.
  • Acevedo, A.N., Carpio, E.A., Rodr´iguez, J., and Manzano, M.A. (2012). Disinfection of natural water by solar photocatalysis using immobilized TiO2 devices: Efficiency in eliminating indicator bacteria and operating life of the system. Journal of Solar Energy Engineering 134, 011008.
  • Chen, H.Y., Zahraa, O., and Bouchy, M. (1997). Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of TiO 2 by inorganic ions. Journal of Photochemistry and … 108, 37–44.
  • Lucas Vaz, J.L., Boussaoud, A., Ait Ichou, Y., and Petit-Ramel, M. (1998). Photominéralisation de l’uracile et des 5-halogeno-uraciles sur le dioxyde de titane. Effet du pH et de quelques anions sur la photodégradation de l’uracile. Analusis 26, 83–87.
  • Abdullah, M., Low, G.K. C., and Matthews, R.W. (1990). Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. Journal of Physical Chemistry 94, 6820–6825.
  • Qourzal, S., Tamimi, M., Assabbane, A., and Ait-Ichou, Y. (2007). Influence de certains ions inorganiques, de l’éthanol et du peroxyde d’hydrogène sur la photominéralisation du β-naphtol en présence de TiO2. Comptes Rendus Chimie 10, 1187–1194.
  • Zepp, R.G., Hoigne, J., and Bader, H. (1987). Nitrate-induced photooxidation of trace organic chemicals in water. Environmental Science & Technology 21, 443–450.
  • Bekbölet, M., Boyacioglu, Z., and Özkaraova, B. (1998). The influence of solution matrix on the photocatalytic removal of color from natural waters. Water Science and Technology 38, 155–162.
  • Du, Y., Goldstein, S., and Rabani, J. (2011). The catalytic effects of copper ions on photo-oxidation in TiO2 suspensions: The role of superoxide radicals. Journal of Photochemistry and Photobiology A: Chemistry 225, 1–7.
  • Brezová, V., Blažková, A., Borošová, E., Čeppan, M., and Fiala, R. (1995). The influence of dissolved metal ions on the photocatalytic degradation of phenol in aqueous TiO2 suspensions. Journal of Molecular Catalysis A: Chemical 98, 109–116.
  • Laera, G., Jin, B., Zhu, H., and Lopez, A. (2011). Photocatalytic activity of TiO2 nanofibers in simulated and real municipal effluents. Catalysis Today 161, 147–152.
  • Li, X.Z., Fan, C.M., and Sun, Y.P. (2002). Enhancement of photocatalytic oxidation of humic acid in TiO2 suspensions by increasing cation strength. Chemosphere 48, 453–460.
  • Vanýsek, P. (2013). Electrochemical series. In W.M. Haynes (Ed.), CRC handbook of chemistry and physics (94th ed.). Boca Raton, FL: CRC Press, pp. 5-80–5-89.
  • Rajeshwar, K., Chenthamarakshan, C.R., Ming, Y., and Sun, W. (2002). Cathodic photoprocesses on titania films and in aqueous suspensions. Journal of Electroanalytical Chemistry 538–539, 173–182.
  • Lozano, A., Garcia, J., Dormènech, X., and Casado, J. (1992). Heterogeneous photocatalytic oxidation of manganese(II) over TiO2. Journal of Photochemistry and Photobiology A: Chemistry 69, 237–240.
  • Ming, Y., Chenthamarakshan, C.R., and Rajeshwar, K. (2002). Radical-mediated photoreduction of manganese(II) species in UV-irradiated titania suspensions. Journal of Photochemistry and Photobiology A: Chemistry 147, 199–204.
  • Prairie, M.R., Evans, L.R., Stange, B.M., and Martinez, S.L. (1993). An investigation of titanium dioxide photocatalysis for the treatment of water contaminated with metals and organic chemicals. Environmental Science & Technology 27, 1776–1782.
  • Li, S., Ma, Z., Zhang, J., and Liu, J. (2008). Photocatalytic activity of TiO2 and ZnO in the presence of manganese dioxides. Catalysis Communications 9, 1482–1486.
  • Addamo, M., Bellardita, M., Carriazo, D., Di Paola, A., Milioto, S., Palmisano, L., and Rives, V. (2008). Inorganic gels as precursors of TiO2 photocatalysts prepared by low temperature microwave or thermal treatment. Applied Catalysis B: Environmental 84, 742–748.
  • Rao, N.N., and Chaturvedi, V. (2007). Photoactivity of TiO2-coated pebbles. Industrial & Engineering Chemistry Research 46, 4406–4414.
  • Butler, E.C., and Davis, A.P. (1993). Photocatalytic oxidation in aqueous titanium dioxide suspensions: the influence of dissolved transition metals. Journal of Photochemistry and Photobiology A: Chemistry 70, 273–283.
  • Chen, J.N., Chan, Y.C., and Lu, M.C. (1999). Photocatalytic oxidation of chlorophenols in the presence of manganese ions. Water Science and Technology 39, 225–230.
  • Tuprakay, S., and Liengcharernsit, W. (2005). Lifetime and regeneration of immobilized titania for photocatalytic removal of aqueous hexavalent chromium. Journal of hazardous materials 124, 53–8.
  • Wang, N., Xu, Y., Zhu, L., Shen, X., and Tang, H. (2009). Reconsideration to the deactivation of TiO2 catalyst during simultaneous photocatalytic reduction of Cr(VI) and oxidation of salicylic acid. Journal of Photochemistry and Photobiology A: Chemistry 201, 121–127.
  • Siboni, M.S., Samadi, M.-T., Jae-Kyu, Y., and Seung-Mok, L. (2012). Photocatalytic removal of CPR(VI) and Ni(II) by UV/TiO2: kinetic study. Desalination & Water Treatment 40, 77–83.
  • Yang, J.-K., and Lee, S.-M. (2006). Removal of Cr(VI) and humic acid by using TiO2 photocatalysis. Chemosphere 63, 1677–84.
  • He, C., Xiong, Y., and Zhu, X. (2002). Strategies for regeneration of copper (0)-deposited TiO2 photocatalytic film. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering 37, 1545–1562.
  • Zou, S.W., How, C.W., and Chen, J.P. (2007). Photocatalytic treatment of wastewater contaminated with organic waste and copper ions from the semiconductor industry. Industrial & Engineering Chemistry Research 46, 6566–6571.
  • Yamazaki, S., Takemura, N., Yoshinaga, Y., and Yoshida, A. (2003). Transmittance change of the TiO2 thin film by photoreductive deposition of Cu(II). Journal of Photochemistry and Photobiology A: Chemistry 161, 57–60.
  • Foster, N.S., Noble, R.D., and Koval, C.A. (1993). Reversible photoreductive deposition and oxidative dissolution of copper ions in titanium dioxide aqueous suspensions. Environmental Science & Technology 27, 350–356.
  • Lam, S.W., Hermawan, M., Coleman, H.M., Fisher, K., and Amal, R. (2007). The role of copper(II) ions in the photocatalytic oxidation of 1,4-dioxane. Journal of Molecular Catalysis A: Chemical 278, 152–159.
  • Lam, S., Chiang, K., Lim, T., Amal, R., and Low, G. (2005). Effect of charge trapping species of cupric ions on the photocatalytic oxidation of resorcinol. Applied Catalysis B: Environmental 55, 123–132.
  • Klauson, D., and Preis, S. (2007). The influence of iron ions on the aqueous photocatalytic oxidation of deicing agents. International Journal of Photoenergy, 2007, Article ID 89359.
  • Baran, W., Makowski, A., and Wardas, W. (2003). The influence of FeCl3 on the photocatalytic degradation of dissolved azo dyes in aqueous TiO2 suspensions. Chemosphere 53, 87–95.
  • Knight, R.J., and Sylva, R.N. (1975). Spectrophotometric investigation of iron(III) hydrolysis in light and heavy water at 25°C. Journal of Inorganic and Nuclear Chemistry 37, 779–783.
  • Arakaki, T., and Faust, B.C. (1998). Sources, sinks, and mechanisms of hydroxyl radical (• OH) photoproduction and consumption in authentic acidic continental cloud waters from Whiteface Mountain, New York: The role of the Fe(r) (r = II, III) photochemical cycle. Journal of Geophysical Research 103, 3487–3504.
  • Faust, B.C., and Hoigné, J. (1990). Photolysis of Fe (III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain. Atmospheric Environment. Part A. General Topics 24, 79–89.
  • Forouzan, F., Richards, T.C., and Bard, A.J. (1996). Photoinduced reaction at TiO2 particles. Photodeposition from NiII solutions with oxalate. The Journal of Physical Chemistry 100, 18123–18127.
  • Lin, W.Y., and Rajeshwar, K. (1997). Photocatalytic removal of nickel from aqueous solutions using ultraviolet‐irradiated TiO2. Journal of the Electrochemical Society 144, 2751–2756.
  • Carrier, M., Perol, N., Herrmann, J.-M., Bordes, C., Horikoshi, S., Paisse, J.O., Baudot, R., and Guillard, C. (2006). Kinetics and reactional pathway of Imazapyr photocatalytic degradation Influence of pH and metallic ions. Applied Catalysis B: Environmental 65, 11–20.
  • Murruni, L., Conde, F., Leyva, G., and Litter, M.I. (2008). Photocatalytic reduction of Pb(II) over TiO2: New insights on the effect of different electron donors. Applied Catalysis B: Environmental 84, 563–569.
  • Chenthamarakshan, C.R., Yang, H., Savage, C.R., and Rajeshwar, K. (1999). Photocatalytic reactions of divalent lead ions in UV-irradiated titania suspensions. Research on Chemical Intermediates 25, 861–876.
  • Murruni, L., Leyva, G., and Litter, M.I. (2007). Photocatalytic removal of Pb(II) over TiO2 and Pt–TiO2 powders. Catalysis Today 129, 127–135.
  • Yang, Z.P., and Zhang, C.J. (2010). Kinetics of photocatalytic reduction of Pb(II) on nanocrystalline TiO2 coatings: A quartz crystal microbalance study. Thin Solid Films 518, 6006–6009.
  • Chen, S., and Liu, Y. (2007). Study on the photocatalytic degradation of glyphosate by TiO(2) photocatalyst. Chemosphere, 67, 1010–1017.
  • Lu, M.C., Chen, J.N., and Lin, H.D. (1999). The influence of metal ions on the photocatalytic oxidation of 2‐chlorophenol in aqueous titanium dioxide suspensions. Journal of Environmental Science and Health, Part B 34, 17–32.
  • Somasundaram, S., Ming, Y., Chenthamarakshan, C.R., Schelly, Z.A., and Rajeshwar, K. (2004). Free radical-mediated heterogeneous photocatalytic reduction of metal ions in UV-irradiated titanium dioxide suspensions. Journal of Physical Chemistry B 108, 4784–4788.
  • Lopez-Alvarez, B., Torres-Palma, R.A., and Peñuela, G. (2011). Solar photocatalitycal treatment of carbofuran at lab and pilot scale: effect of classical parameters, evaluation of the toxicity and analysis of organic by-products. Journal of Hazardous Materials 191, 196–203.
  • Lin, C., and Lin, K.S. (2007). Photocatalytic oxidation of toxic organohalides with TiO2/UV: the effects of humic substances and organic mixtures. Chemosphere, 66, 1872–1877.
  • Goldstein, S., Behar, D., and Rabani, J. (2008). Mechanism of visible light photocatalytic oxidation of methanol in aerated aqueous suspensions of carbon-doped TiO2. The Journal of Physical Chemistry C 112, 15134–15139.
  • Hazime, R., Ferronato, C., Fine, L., Salvador, A., Jaber, F., and Chovelon, J.M. (2012). Photocatalytic degradation of imazalil in an aqueous suspension of TiO2 and influence of alcohols on the degradation. Applied Catalysis B: Environmental 126, 90–99.
  • Epling, G., and Lin, C. (2002). Investigation of retardation effects on the titanium dioxide photodegradation system. Chemosphere, 46, 937–944.
  • Sojić, D.V., Anderluh, V.B., Orcić, D.Z., and Abramović, B.F. (2009). Photodegradation of clopyralid in TiO2 suspensions: identification of intermediates and reaction pathways. Journal of Hazardous Materials 168, 94–101.
  • Kim, S.H., and Shon, H.K. (2007). Adsorption characterization for multicomponent organic matters by titanium oxide (TiO2) in wastewater. Separation Science and Technology 42, 1775–1792.
  • Yang, K., Lin, D., and Xing, B. (2009). Interactions of humic acid with nanosized inorganic oxides. Langmuir 25, 3571–3576.
  • Wiszniowski, J., Robert, D., Surmacz-Gorska, J., Miksch, K., and Weber, J.-V. (2002). Photocatalytic decomposition of humic acids on TiO2: Part I: Discussion of adsorption and mechanism. Journal of Photochemistry and Photobiology A: Chemistry 152, 267–273.
  • Enriquez, R., and Pichat, P. (2001). Interactions of humic acid, quinoline, and TiO2 in water in relation to quinoline photocatalytic removal. Langmuir 17, 6132–6137.
  • Bekbölet, M., and Balcioglu, I. (1996). Photocatalytic degradation kinetics of humic acid in aqueous TiO2 dispersions: The influence of hydrogen peroxide and bicarbonate ion. Water Science and Technology 34, 73–80.
  • Liu, S., Lim, M., Fabris, R., Chow, C., Chiang, K., Drikas, M., and Amal, R. (2008). Removal of humic acid using TiO2 photocatalytic process—fractionation and molecular weight characterisation studies. Chemosphere 72, 263–271.
  • Mori, M., Sugita, T., Mase, A., Funatogawa, T., Kikuchi, M., Aizawa, K., Kato, S., Saito, Y., Ito, T., and Itabashi, H. (2013). Photodecomposition of humic acid and natural organic matter in swamp water using a TiO(2)-coated ceramic foam filter: potential for the formation of disinfection byproducts. Chemosphere 90, 1359–1365.
  • Zhang, C.X., and Wang, Y.X. (2011). Effects of dissolved organic matter in landfill leachate on photodegradation of environmental endocrine disruptors. International Journal of Environment and Pollution 45, 69–80.
  • Doll, T.E., and Frimmel, F.H. (2005). Photocatalytic degradation of carbamazepine, clofibric acid and iomeprol with P25 and Hombikat UV100 in the presence of natural organic matter (NOM) and other organic water constituents. Water Research 39, 403–411.
  • Krýsa, J., Novotná, P., Kment, Š., and Mills, A. (2011). Effect of glass substrate and deposition technique on the properties of sol gel TiO2 thin films. Journal of Photochemistry and Photobiology A: Chemistry 222, 81–86.
  • Lopez, L., Daoud, W.A., Dutta, D., Panther, B.C., and Turney, T.W. (2013). Effect of substrate on surface morphology and photocatalysis of large-scale TiO2 films. Applied Surface Science 265, 162–168.
  • Nam, H.J., Amemiya, T., Murabayashi, M., and Itoh, K. (2004). Photocatalytic activity of sol-gel TiO2 thin films on various kinds of glass substrates the effects of Na+ and primary particle size. The Journal of Physical Chemistry B 108, 8254–8259.
  • Kment, Š., Gregora, I., Kmentová, H., Novotná, P., Hubička, Z., Krýsa, J., Sajdl, P., Dejneka, A., Brunclíková, M., Jastrabík, L., and Hrabovský, M. (2012). Raman spectroscopy of dip-coated and spin-coated sol–gel TiO2 thin films on different types of glass substrate. Journal of Sol-Gel Science and Technology 63, 294–306.
  • Aubry, E., Lambert, J., Demange, V., and Billard, A. (2012). Effect of Na diffusion from glass substrate on the microstructural and photocatalytic properties of post-annealed TiO2 films synthesised by reactive sputtering. Surface and Coatings Technology 206, 4999–5005.
  • Chen, Y., and Dionysiou, D.D. (2006). Correlation of structural properties and film thickness to photocatalytic activity of thick TiO2 films coated on stainless steel. Applied Catalysis B: Environmental 69, 24–33.
  • Balasubramanian, G., Dionysiou, D.D., Suidan, M.T., Subramanian, V., Baudin, I., and Laîné, J.M. (2003). Titania powder modified sol-gel process for photocatalytic applications. Journal of Materials Science 38, 823–831.
  • Guillard, C., Beaugiraud, B., Dutriez, C., Herrmann, J.-M., Jaffrezic, H., Jaffrezic-Renault, N., and Lacroix, M. (2002). Physicochemical properties and photocatalytic activities of TiO 2-films prepared by sol–gel methods. Applied Catalysis B 39, 331–342.
  • Vargová, M., Plesch, G., Vogt, U.F., Zahoran, M., Gorbár, M., and Jesenák, K. (2011). TiO2 thick films supported on reticulated macroporous Al2O3 foams and their photoactivity in phenol mineralization. Applied Surface Science 257, 4678–4684.
  • Chen, S.-Z., Zhang, P.-Y., Zhu, W.-P., Chen, L., and Xu, S.-M. (2006). Deactivation of TiO2 photocatalytic films loaded on aluminum: XPS and AFM analyses. Applied Surface Science 252, 7532–7538.
  • Fox, M.A., and Dulay, M.T. (1993). Heterogeneous photocatalysis. Chemical Reviews 93, 341–357.
  • Chen, Y., and Dionysiou, D.D., (2006). TiO2 photocatalytic films on stainless steel: The role of Degussa P-25 in modified sol–gel methods. Applied Catalysis B: Environmental 62, 255–264.
  • Evans, P., and Sheel, D.W. (2007). Photoactive and antibacterial TiO2 thin films on stainless steel. Surface and Coatings Technology 201, 9319–9324.
  • Rao, N.N., and Chaturvedi, V. (2007). Photoactivity of TiO2 coated pebbles. Industrial & Engineering Chemistry Research 46, 4406–4414.
  • Xie, T.-H., and Lin, J. (2007). Origin of photocatalytic deactivation of TiO2 film coated on ceramic substrate. The Journal of Physical Chemistry C 111, 9968–9974.
  • Hund-Rinke, K., and Simon, M. (2006). Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environmental Science and Pollution Research International 13, 225–32.
  • Cardinale, B.J., Bier, R., and Kwan, C. (2012). Effects of TiO2 nanoparticles on the growth and metabolism of three species of freshwater algae. Journal of Nanoparticle Research 14, 913–913.
  • Metzler, D.M., Li, M., Erdem, A., and Huang, C.P. (2011). Responses of algae to photocatalytic nano-TiO2 particles with an emphasis on the effect of particle size. Chemical Engineering Journal 170, 538–546.
  • Rao, K.V. S., Subrahmanyam, M., and Boule, P. (2004). Immobilized TiO2 photocatalyst during long-term use: decrease of its activity. Applied Catalysis B: Environmental 49, 239–249.
  • Peill, N.J., and Hoffmann, M.R. (1996). Chemical and physical characterization of a TiO2-coated fiber optic cable reactor. Environmental Science & Technology 30, 2806–2812.
  • Černigoj, U., Štangar, U.L., and Trebše, P. (2007). Evaluation of a novel Carberry type photoreactor for the degradation of organic pollutants in water. Journal of Photochemistry and Photobiology A: Chemistry 188, 169–176.
  • Bideau, M., Claudel, B., Dubien, C., Faure, L., and Kazouan, H. (1995). On the “immobilization” of titanium dioxide in the photocatalytic oxidation of spent waters. Journal of Photochemistry and Photobiology A: Chemistry 91, 137–144.
  • Souzanchi, S., Vahabzadeh, F., Fazel, S., and Hosseini, S.N. (2013). Performance of an annular sieve-plate column photoreactor using immobilized TiO2 on stainless steel support for phenol degradation. Chemical Engineering Journal 223, 268–276.
  • Fernhndez, A., Lassaletta, G., Jimknez, V.M., Justo, A., Fernández, A., Jiménez, V.M., González-Elipe, A.R., Herrmann, J.M., Tahiri, H., and Ait-Ichou, Y. (1995). Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Applied Catalysis B: Environmental 7, 49–63.
  • Karches, M., Morstein, M., Rudolf Von Rohr, P., Pozzo, R.L., Giombi, J.L., and Baltanás, M.A. (2002). Plasma-CVD-coated glass beads as photocatalyst for water decontamination. Catalysis Today 72, 267–279.
  • Mills, A., Lepre, A., Elliott, N., Bhopal, S., Parkin, I.P., and O’Neill, S.A. (2003). Characterisation of the photocatalyst Pilkington Activ: a reference film photocatalyst? Journal of Photochemistry and Photobiology A: Chemistry 160, 213–224.
  • Olabarrieta, J., Zorita, S., Peña, I., Rioja, N., Monzón, O., Benguria, P., and Scifo, L. (2012). Aging of photocatalytic coatings under a water flow: Long run performance and TiO2 nanoparticles release. Applied Catalysis B: Environmental 123–124, 182–192.
  • Kiser, M.A., Westerhoff, P., Benn, T., Wang, Y., Pérez-Rivera, J., and Hristovski, K. (2009). Titanium nanomaterial removal and release from wastewater treatment plants. Environmental Science & Technology 43, 6757–6763.
  • Westerhoff, P., Song, G., Hristovski, K., and Kiser, M.A. (2011). Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. Journal of Environmental Monitoring 13, 1195–1203.
  • Kaegi, R., Ulrich, A., Sinnet, B., Vonbank, R., Wichser, A., Zuleeg, S., Simmler, H., Brunner, S., Vonmont, H., Burkhardt, M., and Boller, M. (2008). Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environmental Pollution 156, 233–239.
  • Zhang, L., Zhang, P., and Chen, S. (2007). Influence of pretreatment of titanium substrate on long-term stability of TiO2 film. Chinese Journal of Catalysis 28, 299–306.
  • Behnajady, M.A., Amirmohammadi-Sorkhabi, S., Modirshahla, N., and Shokri, M. (2011). Investigation of the efficiency of a tubular continuous-flow photoreactor with supported titanium dioxide nanoparticles in the removal of 4-nitrophenol: operational parameters, kinetics analysis and mineralization studies. Water Science & Technology 64, 56–56.
  • Gautam, S., Kamble, S.P., Sawant, S.B., and Pangarkar, V.G. (2005). Photocatalytic degradation of 4-nitroaniline using solar and artificial UV radiation. Chemical Engineering Journal 110, 129–137.
  • Mi, L., Xu, P., Shen, H., and Wang, P.-N. (2008). Recovery of visible-light photocatalytic efficiency of N-doped TiO2 nanoparticulate films. Journal of Photochemistry and Photobiology A: Chemistry 193, 222–227.
  • Hwang, S.-J., Petucci, C., and Raftery, D. (1998). In situ solid-state NMR studies of trichloroethylene photocatalysis: formation and characterization of surface-bound intermediates. Journal of the American Chemical Society 120, 4388–4397.
  • Miranda-García, N., Suárez, S., Sánchez, B., Coronado, J.M., Malato, S., and Maldonado, M.I. (2011). Photocatalytic degradsation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Applied Catalysis B: Environmental 103, 294–301.
  • Glaze, W.H., Kenneke, J.F., and Ferry, J.L. (1993). Chlorinated byproducts from the titanium oxide-mediated photodegradation of trichloroethylene and tetrachloroethylene in water. Environmental Science & Technology 27, 177–184.
  • Molnar, J.J., Agbaba, J.R., Dalmacija, B.D., Klašnja, M.T., Dalmacija, M.B., and Kragulj, M.M. (2012). A comparative study of the effects of ozonation and TiO2-catalyzed ozonation on the selected chlorine disinfection by-product precursor content and structure. Science of the Total Environment 425, 169–175.
  • Kent, F.C., Montreuil, K.R., Brookman, R.M., Sanderson, R., Dahn, J.R., and Gagnon, G.A. (2011). Photocatalytic oxidation of DBP precursors using UV with suspended and fixed TiO2. Water Research, 45, 6173–6180.
  • Tercero Espinoza, L.A., and Frimmel, F.H. (2008). Formation of brominated products in irradiated titanium dioxide suspensions containing bromide and dissolved organic carbon. Water Research, 42, 1778–1784.
  • Philippe, K.K., Hans, C., Macadam, J., Jefferson, B., Hart, J., and Parsons, S.A. (2010). Photocatalytic oxidation of natural organic matter surrogates and the impact on trihalomethane formation potential. Chemosphere 81, 1509–1516.
  • Denny, F., McCaffrey, P., Scott, J., Peng, G.D., and Amal, R. (2011). A mesoporous SiO2 intermediate layer for improving light propagation in a bundled tube photoreactor. Chemical Engineering Science 66, 3641–3647.
  • Xu, S., Ng, J., Wang, Y., Du, A.J., and Sun, D.D. (2012). Simultaneous copper ion removal and hydrogen production from water over a TiO2 nanotube photocatalyst. Water Science and Technology 65, 533–538.
  • Mohamed, M.M., Othman, I., and Mohamed, R.M. (2007). Synthesis and characterization of MnOx/TiO2 nanoparticles for photocatalytic oxidation of indigo carmine dye. Journal of Photochemistry and Photobiology A: Chemistry 191, 153–161.
  • Gandhi, V.G., Mishra, M.K., and Joshi, P.A. (2012). A study on deactivation and regeneration of titanium dioxide during photocatalytic degradation of phthalic acid. Journal of Industrial and Engineering Chemistry 18, 1902–1907.
  • Özkan, A., Özkan, M.H., Gürkan, R., Akçay, M., and Sökmen, M. (2004). Photocatalytic degradation of a textile azo dye, Sirius Gelb GC on TiO2 or Ag-TiO2 particles in the absence and presence of UV irradiation: the effects of some inorganic anions on the photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry 163, 29–35.
  • Franch, M.I., Peral, J., Domenech, X., and Ayllon, J.A. (2005). Aluminum(III) adsorption: a soft and simple method to prevent TiO2 deactivation during salicylic acid photodegradation. Chemical Communications 1851–1853.
  • Buxton, G.V., Greenstock, C.L., Helman, W.P., and Ross, A.B. (1988). Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals ·OH/·O− in Aqueous Solution. Journal of Physical and Chemical Reference Data 17, 513–886.
  • Kochany, J., and Lipczynska-Kochany, E. (1992). Application of the EPR spin-trapping technique for the investigation of the reactions of carbonate, bicarbonate, and phosphate anions with hydroxyl radicals generated by the photolysis of H2O2. Chemosphere 25, 1769–1782.
  • Tang, Y., Thorn, R.P., Mauldin, R.L. III, and Wine, P.H. (1988). Kinetics and spectroscopy of the SO4− radical in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry 44, 243–258.
  • Wang, K., Zhang, J., Lou, L., Yang, S., and Chen, Y. (2004). UV or visible light induced photodegradation of AO7 on TiO2 particles: the influence of inorganic anions. Journal of Photochemistry and Photobiology A: Chemistry 165, 201–207.
  • Liang, H.C., Li, X.Z., Yang, Y.H., and Sze, K.H. (2008). Effects of dissolved oxygen, pH, and anions on the 2,3-dichlorophenol degradation by photocatalytic reaction with anodic TiO2 nanotube films. Chemosphere 73, 805–812.
  • Zhu, X., Nanny, M.A., and Butler, E.C. (2007). Effect of inorganic anions on the titanium dioxide-based photocatalytic oxidation of aqueous ammonia and nitrite. Journal of Photochemistry and Photobiology A: Chemistry 185, 289–294.
  • Guillard, C., Puzenat, E., Lachheb, H., Houas, A., and Herrmann, J.-M. (2005). Why inorganic salts decrease the TiO 2 photocatalytic efficiency. International Journal of Photoenergy 7, 1–9.
  • Bekbölet, M., and Balcioglu, I. (1996). Photocatalytic degradation kinetics of humic acid in aqueous TiO2 dispersions: The influence of hydrogen peroxide and bicarbonate ion. Water Science and Technology 34, 73–80.
  • Sugihara, M.N., Moeller, D., Paul, T., and Strathmann, T.J. (2013). TiO2-photocatalyzed transformation of the recalcitrant X-ray contrast agent diatrizoate. Applied Catalysis B: Environmental 129, 114–122.
  • Hua, Z., Zhang, M.P., Xia, Z.F., and Low, G.K. C. (1995). Titanium dioxide mediated photocatalytic degradation of monocrotophos. Water Research 29, 2681–2688.
  • Uyguner, C.S., and Bekbolet, M. (2007). Contribution of metal species to the heterogeneous photocatalytic degradation of natural organic matter. International Journal of Photoenergy, 2007, Article ID 23156.
  • López-Muñoz, M.J., Aguado, J., and Ruperez, B. (2007). The influence of dissolved transition metals on the photocatalytic degradation of phenol with TiO2. Research on Chemical Intermediates, 33, 377–392.
  • Keshmiri, M., Mohseni, M., and Troczynski, T. (2004). Development of novel TiO2 sol–gel-derived composite and its photocatalytic activities for trichloroethylene oxidation. Applied Catalysis B: Environmental 53, 209–219.
  • Yu, J., Xiong, J., Cheng, B., and Liu, S.Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Applied Catalysis B: Environmental 60, 211–221.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.