2,111
Views
107
CrossRef citations to date
0
Altmetric
Original Articles

Approach of Cost-Effective Adsorbents for Oil Removal from Oily Water

Pages 1916-1945 | Published online: 29 May 2015

REFERENCES

  • Abdel Wahab, O. (2014). Assessment of raw luffa as a natural hollow oleophilic fibrous sorbent for oil spill cleanup. Alexandria Eng. J., 53, 213–218.
  • Abdullah, M.A., Rahmah, A.U., and Man, Z. (2010). Physicochemical and sorption characteristics of Malaysian Ceiba pentandra (L) Gaertn as natural oil sorbent. J. Hazar. Mater., 177, 683–691.
  • Aboul-Gheit, A.K., Khalil, F.H., and Abdel-Moghny, T. (2006). Adsorption of spilled oil from seawater by waste plastic. Oil Gas Sci. Technol. Rev. IFP, 61(2), 259–268.
  • Aguilera, F., Méndez, J., Pásaro, E., and Laffon, B. (2010). Review on the effects of exposure to spilled oils on human health. J. Appl. Toxicol., 30(4), 291–301.
  • Ahmad, A.L., Bhatia, S., Ibrahim, N., and Sumathi, S. (2005). Adsorption of residual oil from palm oil mill effluent using rubber powder. Brazil J. Chem. Eng., 22, 371–379.
  • Ahmad, A.L., Sumathi, S., and Hameed, B.H. (2005). Adsorption of residue oil from palm oil mill effluent using powder and flake chitosan: equilibrium and kinetic studies. Water Res., 39(12), 2483–2494.
  • Ali, N., El-harbawi, M., Jabal, A.A., and Yin, C. (2012). Characteristics and oil sorption effectiveness of kapok fibre, sugarcane bagasse and rice husks: oil removal suitability matrix. Environ. Technol., 33(4), 481–486
  • Alonso-Alvarez, C., Pérez, C., and Velando, A. (2007). Effects of acute exposure to heavy fuel oil from the Prestige spill on a seabird. Aquat. Toxicol., 84, 103–110.
  • Amat-Bronnert, A., Castegnaro, M., and Pfohl-Leszkowicz, A. (2007). Genotoxic activity and induction of biotransformation enzymes in two human cell lines after treatment by Erika fuel extract. Environ. Toxicol. Pharmacol., 23, 89–95.
  • Amir, D.Z., Bleiman, N., and Mishael, Y.G. (2013). Sepiolite as an effective natural porous adsorbent for surface oil-spill. Microporous Mesoporous Mater., 169, 153–159.
  • Angelova, D., Usunov, I., Uzunova, S., Gigova, A. and Minchev, L. (2011). Kinetics of oil and oil products adsorption by carbonized rice husks. Chem. Eng. J., 172, 306–311.
  • Annunciado, T.R., Sydenstricker, T.H. D., and Amico, S.C. (2005). Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Mar. Pollut. Bull., 50, 1340–1346.
  • Anthony, W.S. (1994). Absorption of oil with cotton products and kenaf. Appl. Eng. Agric., 10(3), 357–361.
  • Aparecida, M., Milhome, L., de Keukeleire, D., Ribeiro, J.P., Nascimento, R.F., Carvalho, T.V., and Queiroz, D.C. (2009). Removal of phenol and conventional pollutants from aqueous effluent by chitosan and chitin. Química Nova, 32(8), 2122–2127.
  • Banerjee, S.B., Joshi, M.V., and Jayaram, R.V. (2006). Treatment of oil spills using organo fly-ash. Desalination, 195, 32–39.
  • Banerjee, S.S., Joshi, M.V., and Jayaram, R.V. (2006). Treatment of oil spill by sorption technique using fatty acid grafted sawdust. Chemosphere, 64, 1026–1031.
  • Bastani, D., Safekordi, A.A., Alihosseini, A., and Taghikhani, V. (2006). Study of oil sorption by expanded perlite at 298.15K. Sep. Purif. Technol., 52, 295–300.
  • Boehm, H.P. (1966). Advances in catalysis, Vol. 45. New York, NY: Academic Press.
  • Cambiella, A., Ortea, E., Rıos, G., Benito, J.M., Pazos, C., and Coca, J. (2006). Treatment of oil-in-water emulsions: performance of a sawdust bed filter, J. Hazard. Mater., 131, 195–199.
  • Carmody, O., Frost, R., Xi, Y., and Kokot, S. (2007). Adsorption of hydrocarbons on organo-clays implications for oil spill remediation. J. Colloid Interface Sci., 305(1), 17–24.
  • Ceylan, D., Dogu, S., Karacik, B., and Yakan, S.D. (2009). Evaluation of butyl rubber as sorbent material for the removal of oil and polycyclic aromatic hydrocarbons from seawater. Environ. Sci. Technol., 43(10), 3846–3852.
  • Chena, M., Jianga, W., Wang, F., Shena, P., Maa, P., Gua, J., Maoa, J., and Li, F. (2013). Synthesis of highly hydrophobic floating magnetic polymer nano-composites for the removal of oils from water surface. Appl. Surf. Sci., 286, 249256.
  • Cho, Y.K., Park, E.J., and Kim, Y.D. (2013). Removal of oil by gelation using hydrophobic silica nano-particles. J. Ind. Eng. Chem., doi: 10.1016/j.jiec.2013.08.005
  • Cojocaru, C., Macoveanu, M., and Cretescu, I. (2011). Peat-based sorbents for the removal of oil spills from water surface: application of artificial neural network modeling. Colloids Surf. A: Physicochem. Eng. Aspects, 384, 675684.
  • Crisafully, R., Milhome, M.A. L., Cavalcante, R.M., Silveira, E.R., and Nascimento, K.R. F. (2008). Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin. Bioresour. Technol., 99, 4515–4519.
  • Da Silva, U.G., Melo, M.A. F., de Silva, A.F., and Farias, R.A. (2003). Adsorption of crude oil on anhydrous and hydrophobized vermiculite. J. Colloid Interface Sci., 260, 302–304.
  • Deschamps, G., Caruel, H., Borredon, M.E., Bonnin, C., and Vignoles, C. (2003). Oil removal from water by selective sorption on hydrophobic cotton fibers. 1. Study of sorption properties and comparison with other cotton fiber-based sorbents. Environ. Sci. Technol., 37(5), 1013–1015.
  • Fan, Z.L., Qin, X.J., Sun, H.X., Zhu, Z.Q., and Pei, C. (2013). Super-hydrophobic mesoporous graphene for separation and absorption. Chem. Plus Chem., 78(10), 1282–1287.
  • Fan, Z., Yan, J., Ning, G., Wei, T., Qian, W., Zhang, S., Zheng, C., Zhang, Q., and Wei, F. (2010). Oil sorption and recovery by using vertically aligned carbon nanotubes. Carbon, 48, 4197–4214.
  • Fang, P., Mao, P., Chen, J., Du, Y., and Hou, X. (2013). Synthesis and properties of a ternary polyacrylate copolymer resin for the absorption of oil spills. J. Appl. Polym. Sci., 131(8), 1–9.
  • Gammoun, A., Tahiri, S., Albizane, A., Aziz, M., J. Moros, Garrigues, S., and dela Guardia, M. (2007). Separation of motor oils, oily waste sand hydrocarbons from contaminated water by sorption on chrome shavings. J. Hazard. Mater., 145, 148–153
  • Garten, V.A., and Weiss, D.E. (1957). Ion- and electron-exchange properties of activated carbon in relation to its behavior as a catalyst and adsorbent. Rev. Pure Appl. Chem., 7, 69–122.
  • Gea, B., Zhanga, Z., Zhua, X., Rena, G., Mena, X., and Zhou, X. (2013). A magnetically super hydrophobic bulk material for oil removal Colloids Surf. A: Physicochem. Eng. Aspects, 429, 129–133.
  • Gui, X., Zeng, Z., Lin, Z., Gan, Q., Xiang, R., Zhu, Y., Cao, A., and Tang, Z. (2013). Magnetic and highly recyclable macroporous carbon nanotubes for spilled oil sorption and separation. ACS Appl. Mater. Interfaces, 5(12), 5845–5850.
  • Gui, X.C., Wei, J.Q., Wang, K.L., Cao, A.Y., Zhu, H.W., Jia, Y., Shu, Q.K., and Wu, D.H. (2010). Carbon nanotube sponges. Adv. Mater., 22, 617–621.
  • Guia, X., Lic, H., Wanga, K., Weia, J., Jiaa, Y., Lia, Z., Fana, L., Caoc, A., Zhua, H., and Wua, D. (2011). Recyclable carbon nanotube sponges for oil absorption. Acta Materialia, 59, 4798–4804.
  • Haussard, M., Gaballah, I., Kanari, N., Donato, P., Barres, O., and Villieras, F. (2003). Separation of hydrocarbons and lipid from water using treated bark. Water Res., 37, 362–374. http://www.itopf.com/informationservices/publications/documents/STATSPACK2011.pdf
  • Hu, Y., Liu, X., Zou, J., Gu, T., Chai, W., and Li, H. (2013). Graphite/isobutylene-isoprene rubber highly porous cryogels as new sorbents for oil spills and organic liquids. ACS Appl. Mater. Interfaces, 5(16), 7737–7742.
  • Husseien, M., Amer, A.A., and El-maghraby, A. (2008). Experimental investigation of thermal modification influence on sorption qualities of barley straw. J. Appl. Sci. Res., 4(6), 652–657.
  • Husseien, M., Amer, A.A., El-Maghraby, A., and Hamedallah, N. (2009). A comprehensive characterization of corn stalk and study of carbonized corn stalk in dye and gas oil sorption. J. Anal. Appl. Pyrolysis, 86, 360–363.
  • Hussein, M., Amer, A.A. and Sawsan, I. (2011). Heavy oil spill cleanup using law grade raw cotton fibers: Trial for practical application. J. Pet. Technol. Alternative Fuels, 2(8), 132–140.
  • Hussein, M., Amer, A.A., and Sawsan, I. (2008). Oil spill sorption using carbonized pith bagasse: trial for practical application. Int. J. Environ. Sci. Technol., 5(2), 233–242.
  • Ibrahim, S., Ang, H., and Wang, S. (2009). Removal of emulsified food and mineral oils from wastewater using surfactant modified barley straw. Bioresour. Technol., 100, 5744–5749.
  • Inagakia, M., Kawaharaa, A., and Konno, A. (2002). Sorption and recovery of heavy oils using carbonized fir fibers and recycling. Carbon, 40(1), 105–111.
  • Jadhav, A.S., Naniwadekar, M.Y., Shinde, N., and Anekar, S.V. (2011). Study of adsorption of oil from oily water using human hair. Inter. J. Adv. Eng. Technol., 2(2), 37–51.
  • Ji, F., Li, C., Dong, X., Li, Y., and Wang, D. (2009). Separation of oil from oily wastewater by sorption and coalescence technique using ethanol grafted polyacrylonitrile. J. Hazard. Mater., 164, 1346–1351.
  • Karakasi, O.K., and Moutsatsou, A. (2010). Surface modification of high calcium fly ash for its application in oil spill cleanup. Fuel, 89, 3966–3970.
  • Karakutuk, I., and Okay O. (2010). Macroporous rubber gels as reusable sorbents for the removal of oil from surface waters. Reactive Funct. Polym., 70, 585–595.
  • Khalilova, K.K., and Mamedov, M.V. (2008). A technique of water treatment from oil pollutants, J. Water Chem. Technol.. 30(3), 187–190.
  • Khan, E., Virojnagud, W., and Ratpukdi, T. (2004). Use of biomass sorbents for oil removal from gas station runoff. Chemosphere, 57(7), 681–689.
  • Lemiere, S., Cossu-Leguille, C., Bispo, A., Jourdain, M.J., Lanhers, M. C., Burnel, D., Vasseur, P. (2005). DNA damage measured by the single-cell gel electrophoresis (comet) assay in mammals fed with mussels contaminated by the ‘Erika’ oil-spill. Mutation Res., 581, 11–21.
  • Li, D., Zhu, F. Yi, Z., Li, J., Na, P., and Wang, N. (2013). Preparation and Characterization of Cellulose Fibers from Corn Straw as Natural Oil Sorbents. Ind. Eng. Chem. Res., 52, 516–524.
  • Li, J., Luo, M., Zhao, C., Li, C., Wang, W., Zu, Y., and Fu, Y. (2013). Oil removal from water with yellow horn shell residues treated by ionic liquid. Bioresource Technol., 128, 673–678.
  • Li, M., Pan, H., Huang, S., and Scholz, M. (2013). Controlled experimental study on removing diesel oil spillages using agricultural waste products. Chem. Eng. Technol., 36(4), 673–680.
  • Likon, M., Remskar, M., Ducman, V., and Svegl, F. (2013). Populus seed fibers as a natural source for production of oil super absorbents. J. Environ. Manage., 114, 158–167.
  • Lim, T., and Huang, X. (2007). Evaluation of kapok (Ceiba pentandra (L.) Gaertn.) as a natural hollow hydrophobic–oleophilic fibrous sorbent for oil spill cleanup. Chemosphere, 66, 955–963.
  • Lin, C., Hong, Y., A. Hu, H. (2010). Using a composite material containing waste tire powder and polypropylene fiber cut end to recover spilled oil. Waste Manage., 30, 263–267.
  • Lin, J., Shang, Y., Ding, B., Yang, J., Yu, J., and Al-Deyab, S.S. (2012). Nanoporous polystyrene fibers for oil spill cleanup. Mar. Pollut. Bull., 64, 347–352.
  • Lina, C., Huangb, C., and Shern, C. (2008). Recycling waste tire powder for the recovery of oil spills. Res. Conservation Recycl., 52, 1162–1166.
  • Liu, P.J., Meng, P.J., Liu, L.L., Wang, J.T., and Leu, M.Y. (2012). Impacts of human activities on coral reef ecosystems of southern Taiwan: a long-term study. Mar. Pollut. Bull., 64(6), 1129–1135.
  • Mathavan G.N., and Viraraghavan, T. (1989). Use of peat in the treatment of oily waters. Water Air Soil Pollut., 45, 17–26.
  • Medeiros, M.A., Sansiviero, M.T. C., Araújo, M.H., and Lago, R.M. (2009). Modification of vermiculite by polymerization and carbonization of glycerol to produce highly efficient materials for oil removal. Appl. Clay Sci., 45, 213–219.
  • Moriwaki, H., Kitajima, S., Kurashima, M., Hagiwara, A., Haraguchi, K., Shirai, K., Kanekatsu, R., and Kiguchi, K. (2009). Utilization of silkworm cocoon waste as a sorbent for the removal of oil from water. J. Hazard. Mater., 165, 266–270.
  • Muhammad, I.M., El-Nafaty, U.A., Abdulsalam, S., and Makarfi, Y.I. (2012). Removal of oil from oil produced water using eggshell. Civil Environ. Res., 2(8), 52–63.
  • Mysore, D., Viraragavan, T., and Jin, Y. (2005). Treatment of oily waters using vermiculite. Water Res., 39, 2643–2653.
  • Nduka, J.K., and Uchegbusi, V.I. (2013). Extension of comparison of the mopping ability of chemically modified and unmodified biological wastes on crude oil and its lower fractions. British J. Appl. Sci. Technol., 3(2), 220–244.
  • Nguyen, S.T., Feng, J., Le, N.T., Le, A.T. T., Hoang, N., Tan, V.B. C., and Duong, H.M. (2013). Cellulose aerogel from paper waste for crude oil spill cleaning. Ind. Eng. Chem. Res., doi: 10.1021/ie4032567
  • Oh, Y.S., Maeng, J., and Kim, S.J. (2000). Use of microorganism-immobilized polyurethane foams to absorb and degrade oil on water surface. Appl. Microbiol. BioTechnol., 54(3), 418–423.
  • Okiel, K., El-Sayed, M., and El-Kady, M.Y. (2011). Treatment of oil–water emulsions by adsorption onto activated carbon, bentonite and deposited carbon. Egyptian J. Pet., 20, 9–15.
  • Pasila, A. (2004). A biological oil adsorption filter. Mar. Pollut. Bull., 49(11–12), 1006–1012.
  • Payne, K.C., Jackson, C.D., Aizpurua, C.E., Rojas, O.J., and Hubbe, M.A. (2012). Oil spills abatement: factors affecting oil uptake by cellulosic fibers. Environ. Sci. Technol., 46, 7725–7730.
  • Pitakpoolsil, W., and Hunsom, M. (2013). Adsorption of pollutants from biodiesel wastewater using chitosan flakes. J. Taiwan Inst. Chem. Eng., 44, 963–971.
  • Puri, B.R. (1970). Surfaces complexes on carbons. In Walker Jr., P.L. (Ed.), Chemistry and physics of carbon, vol. 45. New York, NY: Marcel Dekker.
  • Quevedo, J.A., Patel, G., and Pfeffer, R. (2009). Removal of oil from water by inverse fluidization of aerogels. Ind. Eng. Chem. Res., 48, 191–201.
  • Radetic, M., Ilic, V., Radojevic, D., Miladinovic, R., Jocic, D., and Jovancic, P. (2008). Efficiency of recycled wool-based nonwoven material for the removal of oils from water. Chemosphere, 70, 525–530.
  • Rajakovic, V., Aleksic, G., Radetic, M., and Rajakovic, L. (2007). Efficiency of oil removal from real wastewater with different sorbent materials. J. Hazard. Mater., 143, 494–499.
  • Rajakovic-Ognjanovic, V., Aleksi′c, G., and Rajakovi′, L. (2008). Governing factors for motor oil removal from water with different sorption materials. J. Hazard. Mater., 154, 558–563.
  • Rengasamy, R.S., Das, D., and Karan, C.P. (2011). Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers. J. Hazard. Mater., 186, 526–532.
  • Riazi M.R., and Edalat, M. (1996). Prediction of the rate of oil removal from seawater by evaporation and dissolution. J. Pet. Sci. Eng., 16, 291–300.
  • Ribeiro, T.H., Rubio, J., and Smith, R.W. (2003). A dried hydrophobic aquaphyte as an oil filter for oil/water emulsions. Spill Sci. Technol. Bull., 8, 483–489.
  • Saitoa, M., Ishiia, N., Ogurab, S., Maemura, S., and Suzuki, H. (2003). Development and water tank tests of sugi bark sorbent (SBS). Spill Sci. Technol. Bull., 8(5–6), 75–482.
  • Sakthivel, T., Reid, D.L., Goldstein, I., Hench, L., and Seal, S. (2013). Hydrophobic high surface area zeolites derived from fly ash for oil spill remediation. Environ. Sci. Technol., 47(11), 5843–5850.
  • Santander, M., Rodrigues, R.T., and Rubio, J. (2011). Modified jet flotation in oil (petroleum) emulsion/water separations. Colloid Surf., 375(1–3), 237–244.
  • Sarawade, P.B., Kim, J., Hilonga, A., Quang, D.V., and Kim, H.T. (2011). Synthesis of hydrophilic and hydrophobic xerogels with superior properties using sodium silicate. Microporous Mesoporous Mater., 139, 138–147.
  • Sayed, S.A., El Sayed, A.S., and Zayed, A.M. (2004). Removal of oil spills from salt water by magnesium, calcium carbonates and oxides. J. Appl. Sci. Environ. Manage., 8(1), 71–78.
  • Sayed, S.A., and Zayed, A.M. (2006). Investigation of the effectiveness of some adsorbent materials in oil spill clean-ups. Desalination, 194, 90–100.
  • Shin, C., and Chase, G.G. (2004). Water-in-oil coalescence in micro-nanofiber composite filters. AIChE J., 50(2), 343–350.
  • Shugo, N., and Tatsuya, T. (2011). Highly oil absorbing amorphous silica particles. European Patent EP 1651566.
  • Sidik, S.M., Jalil, A.A., Triwahyono, S., Adam, S.H., Satar, M.A. H., and Hameed, B.H. (2012). Modified oil palm leaves adsorbent with enhanced hydrophobicity for crude oil removal. Chem. Eng. J., 203, 9–18.
  • Sidiras, D., Batziasi, F., Konstantinon, I., and Tsapatsis, M. (2011). Development of a new oil spill adsorbent from auto hydrolysis modified ligno cellulosic waste material. Recent Research. Chem., Biol. Environ. Culture, ISBN: 978-1-61804-060-2, 163–168.
  • Simonovic, B.R., Arandelovic, D., Jovanovic, M., Kovacevic, B., Pezoi, L., and Jovanovic, A. (2009). Removal of mineral oil and wastewater pollutants using hard coal. Chem. Ind. Chem. Eng. Q., 15(2), 57–62.
  • Singh, V., Kendall, R.J., Hake, K., and Ramkumar, S. (2013). Crude oil sorption by raw cotton. Ind. Eng. Chem. Res., 52(18), 6277–6281.
  • Sokker, H.H., El-Sawyb, N.M., Hassanc, M.A., and El-Anadouli, B.E. (2011). Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization. J. Hazard. Mater., 190, 359–365.
  • Srinivasan, A., and Viraraghavan, T. (2008). Removal of oil by walnut shell media. Bioresour. Technol., 99(17), 8217–8220.
  • Srinivasan, A., and Viraraghavan, T. (2010). Oil removal from water using biomaterials, Bioresour. Technol., 101, 6594–6600.
  • Sun, X.F., Sun, R.C., and Sun, J.X. (2004). Acetylation of sugarcane bagasse using NBS as a catalyst under mild reaction conditions for the production of oil sorption-active materials. Bioresour. Technol., 95, 343–350.
  • Suni, S., Kosunen, A., Hautala, M., Pasila, A., and Romantschuk, M. (2004). Use of a by-product of peat excavation, cotton grass fibre, as a sorbent for oil-spills. Mar. Pollut. Bull., 49(11–12), 916–921.
  • Syed, S., Alhazzaa, M.I., and Asif M. (2011). Treatment of oily water using hydrophobic nano-silica. Chem. Eng. J., 167, 99–103.
  • Tansel, B., and Pascual, B. (2011). Removal of emulsified fuel oils from brackish and pond water by dissolved air flotation with and without polyelectrolyte use: pilotscale investigation for estuarine and near shore applications. Chemosphere, 85(7), 1182–1186.
  • Toyoda, M., and Inagaki, M. (2003). Sorption and recovery of heavy oils by using exfoliated graphite. Spill Sci. Technol. Bull., 8(5–6), 467–474.
  • Viraraghavan, T.. and Moazed, H. (2003). Removal of oil from water by bentonite. Fresenius Environ. Bull., 12, 1092–1097.
  • Vlaev, L., Petkov, P., Dimitrov, A., and Genieva, S. (2011). Cleanup of water polluted with crude oil or diesel fuel using rice husks ash, J. Taiwan Inst. Chem. Eng., 42, 957–964.
  • Wahi, R., Chuah, L.A., Choong, T.S. Y., Ngaini, Z., and Nourouzi, M.M. (2013). Oil removal from aqueous state by natural fibrous sorbent: an overview. Sep. Purif. Technol., 113, 51–63.
  • Wang, B., Rengasamy, K., Lu, X., Xuan, J., and Leung, M.K. H. (2013). Hollow carbon fibers derived from natural cotton as effective sorbents for oil spill cleanup. Ind. Eng. Chem. Res., 52(51), 18251–18261.
  • Wang, D., Silbaugh, T., Pfeffer, R., and Lin, Y.S. (2010). Removal of emulsified oil from water by inverse fluidization of hydrophobic aerogels. Powder Technol., 203, 298–309.
  • Wang, J., Zheng, Y., and Wang, A. (2013). Investigation of acetylated kapok fibers on the sorption of oil in water. J. Environ. Sci., 25(2), 246–253.
  • Wang, J.T., Zheng, Y.A., and Wang, A.Q. (2012). Super-hydrophobic kapok fiber oil-absorbent: preparation and high oil absorbency. Chem. Eng. J., 213, 1–7.
  • Wanga, D., McLaughlin, E., and Pfeffer, R. (2012). Adsorption of oils from pure liquid and oil–water emulsion on hydrophobic silica aerogels. Sep. Purif. Technol., 99, 28–35.
  • Wanga, J., Zheng, Y., Kang, Y., and Wang, A. (2013). Investigation of oil sorption capability of PBMA/SiO2 coated kapok fiber. Chem. Eng. J., 223, 632–637.
  • Wanga, J., Zheng, Y., and Wang, A. (2013). Coated kapok fiber for removal of spilled oil. Mar. Pollut. Bull., 69, 91–96.
  • Wanga, J., Zhenga, Y., and Wang, A. (2012). Effect of kapok fiber treated with various solvents on oil absorbency. Ind. Crops Products, 40, 178–184.
  • Wei, Q.F., Mather, R.R., Fotheringham, A.F., and Yang, R.D. (2003). Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery. Mar. Pollut. Bull., 46, 780–783.
  • Wu, J., Wang, N., Wang, L., Dong, H., and Zhao, Y. (2012). Electrospun porous structure fibrous film with high oil adsorption capacity. ACS Appl. Mater. Interfaces, 4(6), 3207–3212.
  • Yuan, F., Wei, J., Tang, E., and Zhao, K. (2009). Synthesis of butyl acrylate grafted polypropylene fiber and its applications on oil-adsorption in floating water. e-Polymers, 89, 1–8.
  • Yuan, J.K., Liu, X.G., Akbulut, O., Hu, J.Q., Suib, S.L., Kong, J., and Stellacci, F. (2008). Super wetting nanowire membranes for selective absorption. Nat. Nanotechnol., 3, 332–336.
  • Yuan, X., and Chung, T.C. M. (2012). Novel solution to oil spill recovery: using thermo degradable polyolefin oil superabsorbent polymer (oil–SAP). Energy Fuels, 26(8), 4896–4902.
  • Zhang, A., Chen, M., Du, C., Guo, H., Bai, H., and Li, L. (2013). Poly(dimethylsiloxane) oil absorbent with a three-dimensionally interconnected porous structure and swellable skeleton. ACS Appl. Mater. Interfaces, 5(20), 10201–10206.
  • Zhanga, Y., Wei, S., Liua, F., Dua, Y., Liua, S., Ji, Y., Yokoib, T., Tatsumib, T., and Xiaoa, F. (2009). Super hydrophobic nano-porous polymers as efficient adsorbents for organic compounds. Nano Today, 4, 135–142.
  • Zhao, M., Huang, J., Zhang, Q., Luo, W., and Wei, F. (2011). Improvement of oil adsorption performance by a sponge-like natural vermiculite-carbon nanotube hybrid. Appl. Clay Sci., 53, 1–7.
  • Zhou, Y., Tang, X., Hu, X., Fritschi, S., and Lu, J. (2008). Emulsified oily wastewater treatment using a hybrid-modified resin and activated carbon system. Sep. Purif. Technol., 63, 400–406.
  • Zhou, Y., Tang, X., Xu, Y., and Lu, J. (2010). Effect of quaternary ammonium surfactant modification on oil removal capability of polystyrene resin. Sep. Sci. Technol., 75, 266–272.
  • Zhou, Y.B., Tang, X.Y., Hu, X.M., Fritschi, S., and Lu, J. (2008). Emulsified oily wastewater treatment using a hybrid-modified resin and activated carbon system. Sep. Purif. Technol., 63(2), 400–406.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.