2,376
Views
72
CrossRef citations to date
0
Altmetric
Original Articles

Natural Nanoparticles: Implications for Environment and Human Health

, &
Pages 861-904 | Published online: 31 Dec 2014

REFERENCES

  • Buseck, P.R., and Adachi, K. (2008). Nanoparticles in the environment. Elements 4, 389–394.
  • Buzea, C., Pacheco, I., and Robbie, K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2, 17–71.
  • Auffan, M., Rose, J., Bottero, J.-Y., Lowry, G.V., Jolivet, J.-P., and Wiesner, M.R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 4(10), 634–641.
  • Hochella Jr.M. F. (2008). Nanogeoscience: From origins to cutting-edge applications. Elements 4, 373–379.
  • Kretzschmar, R., and Schaefer, T. (2005). Metal retention and transport on colloidal particles in the environment. Elements205–210.
  • Theng, B.K. G., and Yuan, G. (2008). Nanoparticles in the soil environment. Elements 4(6), 395–399.
  • Baalousha, M., Kammer, F.V. D., Motelica-Heino, M., Hilal, H.S., and Le Coustumer, P. (2006). Size fractionation and characterization of natural colloids by flow-field flow fractionation coupled to multi-angle laser light scattering. J Chromatogr. A 1104, 272–281.
  • Tsao, T.M., Chen, Y.M., and Wang, M.K. (2011). Origin, separation and identification of environmental nanoparticles: A review. J. Environ. Monit. 13, 1156–1163.
  • Hochella Jr.M. F., Lower, S.K., Maurice, P.A., Penn, R.L., Sahai, N., Saparks, D.L., and Twining, B.S. (2007). Nanominerals, mineral nanoparticles, and earth systems. Science 319, 1631–1635.
  • Wigginton, N.S., Haus, K.L., and Hochella Jr. M.F. (2007). Aquatic environmental nanoparticles. J. Environ. Monit. 9, 1306–1316.
  • Nam, Y.J., and Lead, J.R. (2008). An overview of their chemistry, interactions and potential environmental implications. Sci. Total Environ. 400, 396–414.
  • Liu, W.T. (2006). Nanoparticles and their biological and environmental applications. J Biosci. Bioeng. 102, 1–7.
  • Wiesner, M.R., Lowry, G.V., Jones, K.L., Hochella Jr. M.F., De Giulio, R.T., Casman, F., and Bernhardt, E.S. (2009). Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ. Sci. Technol. 43, 6458–6462.
  • Biswas, P., and Wu, C.H. (2005). Nanoparticles and the environment (Critical review). J. Air Waste Manage. Assoc. 55, 708–746.
  • The national nanotechnology initiative at five years: Assessment and recommendations of the national nanotechnology advisory panel. In Executive office of the President of the United States: President's Council of Advisors on Science and Technology, 2005.
  • Stumm, W., and Morgan, J.J. (1996). Aquatic chemistry. New York, NY: Wiley-Interscience.
  • Raj, T., and Antaryami, M. (2010). ZnO nanoparticles. In K. D. Sattler (Ed.), Handbook of nanophysics (pp. 1–20). Boca Raton, FL: CRC Press.
  • Holister, P., Weener, J.W., Vas, C.R., and Harper, T. (2003). Nanoparticles: Technology white papers nr.3. In Cientifica: 2003.
  • Scholl, J.A., Koh, A.L., and Dionne, J.A. (2012). Quantum plasmon resonances of individual metallic nanoparticles. Nature 483, 421–427.
  • Sau, T.K., Rogach, A.L., Jäckel, F., Klar, T.A., and Feldmann, J. (2010). Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv. Mater. 22(16), 1805–1825.
  • Issa, B., Obaidat, I.M., Albiss, B.A., and Haik, Y. (2013). Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 14, 21266–21305.
  • Lu, A.H., Salabas, E.L., and Schuth, F. (2007). Magnetic nanoparticles: Synthesis, protection, functionalization and application. Angew. Chem. Int. Ed. 46, 1222–1244.
  • SCENIHR. (2006). The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies In Scientific committee of emerging and newly identified health risks. Europian commission-health and consumer protection.
  • Whitby, K.T. (1978). Physical characteristics of sulphur aerosols. Atmos. Environ. 12, 135–159.
  • Seinfeld, J.H., and Pandis, S.N. (2006) Atmospheric chemistry and physics, from air pollution to climate change (1203 pp.). New York, NY: John Wiley.
  • Schmid, G. (2002). Metals. In Nanoscale materials in chemistry (pp. 15–59). John Wiley & Sons, Inc: New York.
  • Waychunas, G.A., Kim, C.S., and Banfield, J.F. (2005). Nanoparticulate iron oxide minerals in soils and sediments: Unique properties and contaminant scavenging mechanisms. J. Nanopart. Res. 7(4), 409–433.
  • Chen, B., Zhang, H., Dunphy-Guzman, K.A., Spagnoli, D., Kruger, M.B., Muthu, D.V. S., Kunz, M., Fakra, S., Hu, J.Z., Guo, Q.Z., and Banfield, J.F. (2009). Size-dependent elasticity of nanocrystalline titania. Phys. Rev. B 79(12), 125406.
  • Zhang, H., Chen, B., and Banfield, J.F. (2009). The size dependence of the surface free energy of titania nanocrystals. Phys. Chem. Chem. Phys. 11, 2553–2558.
  • Vayssieres, L. (2009). On the effect of nanoparticle size on water-oxide interfacial-chemistry. J. Phys. Chem. C, 113, 4733–4736.
  • Grassian, V.H. (2008). When size really matters: Size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environment. J. Phys. Chem. C, 112, 18303–18313.
  • Pettibone, J.M., Cwiertny, D.M., Scherer, M., and Grassian, V.H. (2008). Adsorption of organic acids on TiO2 nanoparticles: Effects on pH, nanoparticle size, and nanoparticle aggregation. Langmuir 24, 6659–6667.
  • Abbas, Z., Labbez, C., Nordholm, S., and Ahlberg, E. (2008). Size-dependent surface charging of nanoparticles. J. Phys. Chem. C, 112, 5715–5723.
  • Qafoku, N.P. (2010). Terrestrial nanoparticles and their controls on soil-/geo-processes and reactions. In D.L. Sparks (Ed.), Advances in agronomy ( Chapter 2, Vol. 45, pp. 33–91). San Diego, CA: Academic Press.
  • Auffan, M., Rose, J., Proux, O., Borschneck, D., Masion, A., Chaurand, P., Hazemann, J.L., Chaneac, C., Jolivet, J.P., Wiesner, M.R., Van Geen, A., and Bottero, J.Y. (2008). Enhanced adsoprtion of arsenic onto maghemites nanoaprticles: As(III) as a probe of the surface structure and heterogeneity. Langmuir 24, 3215–3222.
  • Carta, D., Casula, M.F., Corrias, A., Falqui, A., Navarra, G., and Pinna, G. (2009). Structural and magnetic characterization of synthetic ferrihydrite nanoparticles. Mater. Chem. Phys. 113, 349–355.
  • Waychunas, G.A. (2009). Natural nanoparticle structure, properties and reactivity from X-ray studies. Powder Diffr. 24(02), 89–93.
  • Nowack, B., and Bucheli, T.D. (2007). Occurrence, behaviour and effects of nanoparticles in the environment. Environ. Pollut. 150, 5–12.
  • Roco, M.C. (2003). Nanotechnology: Convergence with modern biology and medicine. Curr. Opin. Biotechnol. 14, 337–346.
  • Behra, R. (2009). Effects of engineered nanoparticles. Eawag: Dubendorf, Switzerland.
  • Schneider, J., Hock, N., Weimer, S., and Borrmann, S. (2005). Nucleation particles in diesel exhaust: Composition inferred from in situ mass spectrometric analysis. Environ. Sci. Technol. 39, 6153–6161.
  • Baumann, T. (2010). Nanoparticles in groundwater-occurrence and applications. In F.H. Frimmel and R. Niessner (Eds.), Nanoparticles in the water cycle: Properties, analysis and environmental relevance (Chapter 3). Springer: Berlin Heidelberg, p. 23–34.
  • Banfield, J.F., and Navrotsky, A. (2001). Mineralogy and geochemistry, IUPAC series. Washington, DC: Mineralogical Society of America.
  • Tsao, T.M., Wang, M.K., Chen, M.C., Takeuchi, Y., Matsuura, S., and Ochiai, H. (2005). A case study of the pore water pressure fluctuation on the slip surface using horizontal borehole works on drainage well. Eng. Geol. 78, 105–118.
  • Chester, J.S., Chester, F.M., and Kronenberg, A.K. (2005). Fracture surface energy of the Punchbowl fault, San Andreas system. Nature 437, 133–136.
  • Chowdhury, R. (2009). Fate and transport of nanoparticles in the subsurface environment. NRC Proposal
  • Ghosh, S., Mashayekhi, H., Pan, B., Bhowmik, P., and Xing, B. (2008). Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter. Langmuir 24(21), 12385–12391.
  • Yang, K., Lin, D., and Xing, B. (2009). Interaction of humic acid with nanosized inorganic oxides. Langmuir 25(6), 3571–3576.
  • Wang, P., and Keller, A.A. (2009). Natural and engineered nano and colloidal transport:role of zeta potential in prediction of particle deposition. Langmuir Article ASAP, DOI:10.1021/la900134f: 2009.
  • Hiemstra, T., Antelo, J., van Rotterdam, A.M. D., and van Riemsdijk, W.H. (2010). Nanoparticles in natural systems II: The natural oxide fraction at interaction with natural organic matter and phosphate. Geochim. Cosmochim. Acta 74(1), 59–69.
  • Hansel, C.M., Benner, S.G., Neiss, J., Dohnalkova, A., Kukkadapu, R.K., and Fendorf, S. (2003). Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochim. Cosmochim. Acta 67, 2977–2992.
  • Kukkadapu, R.K., Zachara, J.M., Fredrickson, J.K., Kennedy, D.W., Dohnalkova, A.C., and McCready, D.E. (2005). Ferrous hydroxy carbonate is a stable transformation product of biogenic magnetite. Am. Mineral. 90, 510–515.
  • Villalobos, M., Lanson, B., Manceau, A., Toner, B., and Sposito, G. (2006). Structural model for the biogenic Mn oxide produced by Pseudomonas putida. Am. Mineral. 91, 489–502.
  • Villabos, M., Bargar, J., and Sposito, G. (2005). Mechanism of Pb (II) sorption on a biogenic mangenese oxide. Environ. Sci. Technol. 39, 569–576.
  • Adani, F., Salati, S., Spagnol, M., Tambone, F., Genevini, P., Pilu, R., and NIerop, K.G. J. (2009). Nanometer-scale structure of alkali-soluble bio-macromolecules of maize plant residues explains their recalcitrance in soil. Chemosphere 76, 523–528.
  • Buzea, C., Pacheco, I., and Robbie, K. (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2, 17–71.
  • Joner, E. J., Hartnik, T., and Amundsen, C. E. (2007). Environmental fate and ecotoxicity of engineered nanoparticles. Bioforsk: Norwegian pollution control authority.
  • Christian, P., Von Der Kammer, F., Baalousha, M., and Hofmann, T. (2008). Nanoparticles: Structure, properties, preparation and behavior in environmental media. Ecotoxicology 17, 326–343.
  • Baalousha, M. (2009). Aggregation and disaggregation of iron oxide nanoparticles: Influence of particles condentration, pH, and natural organic matter. Sci. Total Environ. 407(6), 2093–2101.
  • Baalousha, M., and Lead, J.R. (2009). Overview of nanoscience in the environment. In J.R. Lead and E. Smith (Eds.), Environmental and human health impacts of nanotechnology (Chapter 1).West Sussex: John Wiley & Sons.
  • Sahai, N., Lee, Y., Xu, H., Ciardelli, M., and Gaillard, J.F. (2007). Geochim. Cosmochim. Acta 71, 3193.
  • Ulyantsev, A., Lesnikov, E., Matveeva, I.S., Karpov, O.V., Lapshin, V.B., and Syroeshkin, A. (2010). Laser technologies for detection nanoparticles in environmental media. Chem. Eng. Trans. 22, 221–226.
  • Carney, R.P., Kim, J.Y., Qian, H., Jin, R., Mehenni, H., Stellacci, F., and Bakr, O.M. (2011). Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation. Nat. Commun. 2, 335.
  • Tang, Z., Wu, L., Luo, Y., and Christie, P. (2009). Size fractionation and characterization of nanocolloidal particles in soils. Environ. Geochem. Health 31, 1–10.
  • Zäanker, H., and Schierz, A. (2012). Engineered nanoparticles and their identification among natural nanoparticles. Ann. Rev. Anal. Chem. 5, 107–132.
  • Heithmar, E.M. (2011). Screening methods for metal-containing nanoparticles in water: APM 32. Las Vegas, NV: U. S. Environmental Protection Agency.
  • Cao, A. (2003). Light scattering. Recent applications. Anal. Lett. 36, 3185.
  • Kammer, F.V. D., Legros, S., Hofmann, T., Larsen, E.H., and Loeschner, K. (2011). Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. TrAC, Trends Anal. Chem. 30(3), 425–436.
  • Tiede, K., Hassellöv, M., Breitbarth, E., Chaudhry, Q., and Boxall, A.B. (2009). Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J. Chromatogr. A 1216, 503–509.
  • Abdulkadir, Y., Daaboul, G.G., Connor, J.H., Goldberg, B.B., and Unl, M.S. (2012). Single nanoparticle detectors for biological applications. Nanoscale 4, 715–726.
  • Ramanan, B., Holmes, W.M., Sloan, W.T., and Phoenix, V.R. (2012). Investigation of nanoparticle transport inside coarse-grained geological media using magnetic resonance imaging. Environ. Sci. Technol. 46(1), 360–366.
  • Scheinost, A.C., Abend, S., Pandya, K.I., and Spark, D.L. (2001). Kinetic controls on Cu and Pb sorption by ferrihydrite. Environ. Sci. Technol. 35, 1090–1096.
  • Fortner, J.D., Kim, D.I., Boyd, M., Falkner, J.C., Moran, S., Colvin, V.L., Hughes, J.B., and Kim, J.H. (2007). Reaction of water-stable C60 aggregates with ozone. Environ. Sci. Technol. 41(21), 7497–7502.
  • Masumoto, K., Ohtsuki, T., Sueki, K., Kikuchi, K., and Mitsugashira, T. (1999). Direct synthesis of radioactive carbon labeled fullerenes using nuclear reactions. J. Radioanal. Nuclear Chem. 239, 201–206.
  • Yamago, S., Tokuyama, H., Nakamura, E., Kikuchi, K., Kananishi, S., Sueki, K., Nakahara, H., Enomoto, S., and Ambe, F. (1995). In vivo biological behavior of a water-miscible fullerene – C-14 labeling, absorption, distribution, excretion and acute toxicity. Chem. Biol. 2, 385–389.
  • Shareef, A., Li, G.H., and Kookana, R.S. (2010). Quantitative determination of fullerene (C-60) in soils by high performance liquid chromatography and accelerated solvent extraction technique. Environ. Chem. 7(3), 292–297.
  • Penn, R.L., Zhu, C., Xu, H., and Veblen, D.R. (2001). Iron oxide coatings on sand grains from the Atlantic coastal plain: High resolution transmission electron microscopy characterization. Geology 29, 843–846.
  • Gilbert, B., Ono, R.K., Ching, K.A., and Kim, C.S. (2009). The effects of nanoparticle aggregation processes on aggregate structure and metal uptake. J. Colloid Interface Sci. 339, 285–295.
  • Hofmann, A., Pelletier, M., Michot, L., Stradner, A., Schurtenberger, P., and Kretzschmar, R. (2004). Characterization of the pores in hydrous ferric oxide aggregates formed by freezing and thawing. J. Colloid Interface Sci. 271, 163–173.
  • Spalla, O., Lyonnard, S., and Testard, F. (2003). Analysis of the small-angle intensity scattered by a porous and granular medium. J. Appl. Crystallogr. 36, 338–347.
  • Hassellöv, M., Kammer, F.V. D., and Beckett, R. (2007). Characterisation of aquatic colloids and macromolecules by field-flow fractionation. In K.J. Wilkinson and J.R. Lead (Eds.), Environmental colloids and particles (pp. 223–276). West Sussex: John Wiley & Sons, Ltd.
  • Plathe, K.L., Kammer, F.D. V., Hassellöv, M., Moore, J., Murayama, M., Hofmann, T., and Hochella Jr. M.F. (2010). Using FlFFF and aTEM to determine trace metal-nanoparticle associations in riverbed sediment. Environ. Chem. 7, 82–93.
  • Tiede, K., Boxall, A.B., Tear, S.P., Lewis, J., David, H., and Hassellov, M. (2008). Detection and characterization of engineered nanoparticles in food and the environment. Food Addit. Contam. 7, 795–821.
  • Rick, A.R., and Arai, Y. (2011). Role of natural nanoparticles in phosphorus transport processes in Ultisols. Soil Sci. Soc. Am. J. 75, 335–347.
  • Tiede, K., Tear, S.P., David, H., and Boxall, A.B. (2009). Imaging of engineered nanoparticles and their aggregates under fully liquid conditions in environmental matrices. Water Res. 43(13), 3335–3343.
  • Farreé, M., Sanchís, J., and Barceló, D. (2011). Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. Trends Anal. Chem. 30(3), 517–527.
  • Rose, J., Thill, A., and Brant, J. (2007). Methods for structural and chemical characterization of nanomaterials. In M.R. Wiesner and J.Y. Bottero (Eds.), Environmental nanotechnology. Applications and impacts of nanomaterials (pp. 105–154). New York, NY: McGraw Hill.
  • Kim, J.I., and Walther, C. (2007). Laser-induced breakdown detection. In K.J. Wilkinson and J.R. Lead (Eds.), Environmental colloids and particles (pp. 555–612). New York: Wiley.
  • Opel, K., Weiss, S., Huebener, S., Zanker, H., and Bernhard, G. (2007). Study of the solubility of amorphous and crystalline uranium dioxide by combined spectroscopic methods. Radiochim. Acta. 95, 143–149.
  • Walther, C., Cho, H.R., and Fanghanel, T. (2004). Measuring multimodal size distributions of aquatic colloids at trace concentrations. Appl. Phys. Lett. 85, 6329–6331.
  • Nurmi, J.T., Tratnyek, P.G., Sarathy, V., Baer, D.R., Amonette, J.E., Pecher, K., Wang, C., Linehan, J.C., Matson, D.W., Penn, R.L., and Driessen, M.D. (2005). Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics. Environ. Sci. Technol. 39, 1221–1230.
  • Chen, H., Chien, C., Petibois, C., Wang, C., Chu, Y.S., Lai, S.F., Hua, T.E., Chen, Y.Y., Cai, X., Kempson, I.M., Hwu, Y., and Margaritondo, G. (2011). Quantitative analysis of nanoparticle internalization in mammalian cells by high resolution X-ray microscopy. J. Biotechnol. 9: 14.
  • Gilbert, B., Lu, G.P., and Kim, C.S. (2007). Stable cluster formation in aqueous suspensions of iron oxyhydroxide nanoparticles. J. Colloid Interface Sci. 339, 285–295.
  • Handy, R.D., Owen, R., and Valsami-Jones, E. (2008). The ecotoxicology of nanoparticles and nanomaterials: Current status, knowledge gaps, challenges and future needs. Ecotoxicology 17, 315–325.
  • Baalousha, M., Manciulea, N., Cumberland, S., Kendall, K., and Lead, J.R. (2008). Aggregation and surface properties of iron oxide nanoparticles: Influence of pH and natural organic matter. Environ. Toxicol. Chem. 27, 1875.
  • French, R.A., Jacobson, A.R., Kim, B., Isley, S.L., Penn, R.L., and Baveye, P.C. (2009). Influence of ionic strength, pH and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ. Sci. Technol. 43, 1354–1359.
  • Guzman, K.A., Finneqan, M.P., and Banfield, J.F. (2006). Influence of surface potential on aggregation and transport of titania nanoparticles. Environ. Sci. Technol. 40(24), 7688–7693.
  • Loosli, F., Le Coustumer, P., and Stoll, S. (2013). TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability. Water. Res. 47(16), 6052–6063.
  • Sousa, V.S., and Teixeira, M.R. (2013). Aggregation kinetics and surface charge of CuO nanoparticles: The influence of pH, ionic strength and humic acids. Environ. Chem. 10(4), 313–322.
  • Zhang, A.Q., Tan, Q.Z., Li, H.J., Sui, L., Qian, D.J., and Chen, M. (2014). pH-Dependent shape changes of water-soluble CdS nanoparticles. J. Nanopart. Res. 16, 2197.
  • Larsen, B.A., Haag, M.A., Stowell, M.H. B., Walther, D.C., Pisano, A.P., and Stoldt, C.R. (2007). In Controlling nanoparticle aggregation in colloidal microwave absorbers via interface chemistry Active and passive smart structures and integrated systems. Proceedings of the SPIE; Matsuzaki, Y.; Ahmadian, M.; Leo, D. J., Eds. 6525, 652519, March 30, 2007, WA, USA.
  • Palomino, D., Yamunake, C., Coustumer, P.L., and Stoll, S. (2013). Stability of TiO2 nanoparticles in presence of fulvic acids. Importance of pH. J. Colloid Sci. Biotechnol. 2, 62–69.
  • Hofmann, A., Beinum, W.V., Meeussen, J.C. L., and Kretzschmar, R. (2005). Sorption kinetics of strontium in porous hydrous ferric oxide aggregates II. Comparison of experimental results and model predictions. J. Colloid Interface Sci. 283, 29–40.
  • Rico, C.M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J.R., and Gardea-Torresdey, J.L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 59, 3485–3498.
  • Lin, D., and Xing, B. (2008). Root uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol. 42(15), 5580–5585.
  • Hischemöller, A., Nordmann, J., Ptacek, P., Mummenhoff, K., and Haase, M. (2009). In-vivo imaging of the uptake of upconversion nanoparticles by plant roots. J Biomed. Nanotechnol. 5(3), 278–284.
  • Cifuentes, Z., Custardoy, L., de la Fuente, J.M., Marquina, C., Ibarra, M.R., Rubiales, D., and Pérez-de-Luque, A. (2010). Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. J Nanobiotechnol. 8: 26.
  • Smita, S., Gupta, S.K., Bartonova, A., Dusinska, M., Gutleb, A.C., and Rahman, Q. (2012). Nanoparticles in the environment: Assessment using the causal diagram approach. Environ. Health 11 (Suppl. 1): S13.
  • Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Miao, A.J., Quigg, A., Santschi, P.H., and Sigg, L. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17, 372–386.
  • Heathwaite, L., Haygarth, P., Matthews, R., Preedy, N., and Butler, P. (2005). Evaluating colloidal phosphorus delivery to surface waters from diffuse agricultural sources. J. Environ. Qual. 34, 287–298.
  • Hens, M., and Merckx, R. (2001). Functional characterization of colloidal phosphorus species in the soil solution of sandy soils. Environ. Sci. Technol. 35, 493–500.
  • Zhang, M.K. (2008). Effects of soil properties on phosphorus subsurface migration in sandy soils. Pedosphere 18, 599–610.
  • Ion, A.C., Ion, I., Culetu, A., and Gherase, D. (2010). Carbon-based nanomaterials. Environmental applications. Bucharest: University Politehnica of Bucharest.
  • Rick, A. R., and Arai, Y. (2010). Role of natural nanoparticles in phosphorus transport processes in Ultisols. Soil Sci. Soc. Am. J. 75, 335–347.
  • Haygarth, P.M., Warwick, M.S., House, W.A. (1997). Size distribution of colloidal molybdate reactive phosphorus in river waters and soil solution. Water Res. 31, 439–448.
  • Wang, D., Bradford, S.A., Paradelo, M., Peijnenburg, W.J. G. M., and Zhou, D. (2012). Facilitated transport of copper with hydroxyapatite nanoparticles in saturated sand. Soil Sci. Soc. Am. J. 76, 375–388.
  • Abudalo, R.A., Ryan, J.N., Harvey, R.W., Metge, D.W., and Landkamer, L. (2010). Influence of organic matter on the transport of Cryptosporidium parvum oocysts in a ferric oxyhydroxide-coated quartz sand saturated porous medium. Water Res. 44, 1104–1113.
  • Weng, L.P., Van Riemsdijk, W.H., and Hiemstra, T. (2008). Humic nanoparticles at the oxide-water interface: Interaction with phosphate ion adsorption. Environ. Sci. Technol. 42, 8747–8752.
  • Weng, L.P., van Riemsdijk, W.H., and Hiemstra, T. (2007). Adsorption of humic acids onto goethite: Effects of molar mass, pH and ionic strength. J. Colloid Interface Sci. 314, 107–118.
  • Zhang, H.Z., Rustad, J.R., and Banfield, J.F. (2007). Interaction between water molecules and zinc sulfide nanoaprticles studied by temperature-programmed desoprtion and molecular dynamics simulations. J. Phys. Chem. 111, 5008–5014.
  • Moreau, J.W., Weber, P.K., Martin, M.C., Gilbert, B., Hutcheon, I.D., and Banfield, J.F. (2007). Extracellular proteins limit the dispersal of biogenic nanoparticles. Science 316, 1600–1603.
  • Huang, P.M., Wang, M.K., and Chiu, C.Y. (2005). Soil mineral–organic matter–microbe interactions: Impacts on biogeochemical processes and biodiversity in soils. Pedobiologia 49, 609–635.
  • Huang, P.M. (2008). Soil physical-chemical-biological interfacial interactions: An overview. In Q. Huang, P.M. Huang, and A. Violante (Eds.), Soil mineral-microbe-organic interactions: Theories and applications ( Chapter 1, pp. 3–38). Berlin: Springer.
  • Theng, B.K. G., and Orchard, V.A. (1995). Interactions of clays with microorganisms and bacterial survival in soil: A physicochemical perspective. In P.M. Huang, J. Berthelin, J.-M. Bollag, W.G. McGill, and A.L. Page (Eds.), Environmental imapct of soil component interactions, vol II metals, other organics and microbial activities (pp. 123–143). Boca Raton, FL: CRC/Lewis Publishers.
  • Dong, H., and Lu, A. (2012). Mineral–microbe interactions and implications for remediation. Elements 8(2), 95–100.
  • Stotzky, G. (1986). Influence of soil mineral colloids on metabolic processes, growth, adhesion and ecology of microbes and viruses. In P.M. Huang (Ed.), Interactions of soil minerals with natural organics and microbes (pp. 305–428). Madison, WI: Soil Sci. Soc. Am.
  • Frankel, R.B., and Bazylinski, D.A. (2003). Biologically induced mineralization by bacteria. Rev. Mineral. Geochem. 54, 95–114.
  • Dove, P.M. (2010). The rise of skeletal biominerals. Elements 6, 37–42.
  • Konhauser, K.O. (2007). Introduction to geomicrobiology. Oxford: Blackwell Publishing.
  • Rogers, J.R., and Bennett, P.C. (2004). Mineral stimulation of subsurface microorganisms: Release of limiting nutrients from silicates. Chem. Geol. 203, 91–108.
  • Dong, H., Jaisi, D.P., Kim, J.W., and Zhang, G. (2009). Microbe-clay mineral interactions. Am. Mineral. 94, 1505–1519.
  • Lu, X., and Wang, H. (2012). Microbial oxidation of sulfide tailings and its environmental consequences. Elements 8, 119–124.
  • Filip, Z., and Hattori, T. (1984). Utilization of substrates and transformation of solid substrata. In K.C. Marshall (Ed.), Microbial adhesion and aggregation (pp. 251–282). Berlin: Springer.
  • Fletcher, M. (1991). The physiological activity of bacteria attached to solid surfaces. Adv. Microbiol. Physiol. 32, 53–85.
  • Cheng, Y., Holman, H.Y., and Lin, Z. (2012). Chromium and uranium mineralization as mediated by microbial activity. Elements 8, 107–112.
  • Southam, G. (2012). Minerals as substrates for life: The prokaryotic view. Elements 8, 101–106.
  • Hugenholtz, P., Goebel, B.M., and Pace, N.R. (1998). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765–4774.
  • Ehrlich, H.L., and Newman, D.K. (2008). Geomicrobiology ( 5th ed., 628 pp). Boca Raton, FL: CRC Press.
  • Tebo, B.M., Bargar, J.R., Clement, B.G., Dick, G.J., Murray, K.J., Parker, D., Verity, R., and Webb, S.M. (2004). Biogenic manganese oxides: Properties and mechanisms of formation. Annu. Rev. Earth Planet. Sci. 32, 287–328.
  • Kappler, A., and Straub, K.L. (2005). Geomicrobiological cycling of iron. Rev. Mineral. Geochem. 59, 85–108.
  • Hohmann, C., Winkler, E., Morin, G., and Kappler, A. (2010). Anaerobic Fe(II) oxidizing bacteria show As resistance and immobilize As during Fe(III) mineral precipitation. Environ. Sci. Technol. 44, 94–101.
  • McAllister, S.M., Davis, R.E., McBeth, J.M., Tebo, B.M., Emerson, D., and Moyer, C.L. (2011). Biodiversity and emerging biogeography of the neutrophilic iron-oxidizing Zetaproteobacteria. Appl. Environ. Microbiol. 77, 5445–5457.
  • Mann, A.W. (2010). Strong versus weak digestions: Ligand-based soil extraction geochemistry. Geochem.: Explor. Environ. Anal. 10, 17–26.
  • Gadd, G.M. (2007). Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 111, 3–49.
  • Uroz, S., Calvaruso, C., Turpault, M.P., and Frey-Klett, P. (2009). Mineral weathering by bacteria: Ecology, actors and mechanisms. Trends Microbiol. 17, 378–387.
  • Rogers, J.R., and Bennett, P.C. (2004). Microbial release and utilization of inorganic nutrients from feldspar, basalt, and glass. Chem. Geol. 203, 91–108.
  • Ginn, B.R., and Fein, J.B. (2008). The effect of species diversity on metal adsorption onto bacteria. Geochim. Cosmochim. Acta 72, 3939–3948.
  • Wall, J.D., and Krumholz, L.R. (2006). Uranium reduction. Ann. Rev. Microbiol. 60, 149–166.
  • Holden, J.F., and Adams, M.W. W. (2003). Microbe–metal interactions in marine hydrothermal vents. Curr. Opin. Chem. Biol. 7, 160–165.
  • Lloyd, J.R., Lovley, D.R., and Macaskie, L.E. (2003). Biotechnological application of metal-reducing microorganisms. Adv. Appl. Microbiol. 53, 85–128.
  • Lloyd, J.R. (2003). Microbial reduction of metals and radionuclides. FEMS Microbiol. Rev. 27, 411–425.
  • Lloyd, J.R., and Renshaw, J.C. (2005). Bioremediation of radioactive waste: Radionuclide-microbe interactions in laboratory and field-scale studies. Curr. Opin. Biotechnol. 16, 254–260.
  • Gadd, G.M. (2010). Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 156, 609–643.
  • Gadd, G.M. (2000). Microbial interactions with tributyltin compounds: Detoxification, accumulation, and environmental fate. Sci. Total Environ. 258, 119–127.
  • Mahdavi, S., Jalali, M., and Afkhami, A. (2012). Removal of heavy metals from aqueous solutions using Fe3O4, ZnO, and CuO nanoparticles. J. Nanopart. Res. 14, 846–864.
  • Afkhami, A., and Moosavi, R. (2010). Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles. J. Hazard. Mater. 174, 398–403.
  • Chen, Y.H., and Li, F.A. (2010). Kinetics study on removal of Cu2+ using goethite and hematite nano-photocatalysts. Colloid Interface Sci. 347, 277–281.
  • Ezoddina, M., Shemirania, F., Abdib, K., Khosravi Saghezchia, M., and Jamalic, M.R. (2010). Application of modified nano-alumina as a solid phase extraction sorbent for the preconcentration of Cd and Pb in water and herbal samples prior to flame atomic absorption spectrometry determination. J. Hazard. Mater. 178, 900–905.
  • Afkhami, A., Saber-Tehrani, M., and Bagheri, H. (2010). Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine. J. Hazard. Mater. 181, 836–844.
  • Afkhami, A., Bagheri, H., and Madrakian, T. (2011). Alumina nanoparticles grafted with functional groups as a new adsorbent in efficient removal of formaldehyde from water samples. Desalination 281, 151–158.
  • Ahmadzadeh Tofighy, M., and Mohammadi, T. (2011). Adsorption of divalent heavy metals ions from water using carbon nanotube sheets. J. Hazard. Mater. 185, 140–147.
  • Ghorbel-Abid, I., Jrad, A., Nahdi, K., and Trabelsi-Ayadi, M. (2009). Sorption of chromium (III) from aqueous solution using bentonitic clay. Desalination 246, 595–604.
  • Rahmani, A., Zavvar Mosavi, H., and Fazli, M. (2010). Effect of nanostructure alumina on adsorption of heavy metals. Desalination 253, 94–100.
  • Navrotsky, A. (2000). Nanomaterials in the environment, agriculture, and technology (NEAT). J. Nanopart. Res. 2, 321–323.
  • Hu, J., Chen, G., and Lo, M.C. (2006). Selective removal of heavy metals from industrial waste water using maghemite nanoparticles: Performance and mechanism. J. Environ. Eng. 132, 702–715.
  • Sharma, Y.C., and Srivastava, V. (2010). Separation of Ni(II) ions from aqueous solutions by magnetic nanoparticles. J. Chem. Eng. Data 55, 1441–1442.
  • Recillas, S., García, A., González, E., Casals, E., Puntes, V., Sánchez, A., and Font, X. (2011). Use of CeO2, TiO2 and Fe3O4 nanoparticles for the removal of lead from water: Toxicity of nanoparticles and derived compounds. Desalination 277, 213–220.
  • Sharma, V.K., and Sohn, M. (2009). Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environ. Int. 35, 743–759.
  • Mohan, D., and Pittman Jr. C.U. (2007). Arsenic removal from water/wastewater using adsorbents—A critical review. J. Hazard. Mater. 142, 1–53.
  • Choong, T.S. Y., Chuah, T.G., Robiah, Y., Gregory Koay, F.L., and Azni, I. (2007). Arsenic toxicity, health hazards and removal techniques from water: An overview. Desalination 217, 139–166.
  • Lara, F., Cornejo, L., Yáñez, J., Freer, J., and Mansilla, H.D. (2006). Solar-light assisted removal of arsenic from natural waters: Effect of iron and citrate concentrations. J. Chem. Technol. Biotechnol. 81, 1282–1287.
  • Sullivan, C., Tyrer, M., Cheeseman, C.R., and Graham, N.J. (2010). Disposal of water treatment wastes containing arsenic—A review. Sci. Total Environ. 408, 1770–1778.
  • Zhang, S.X., Niu, H.Y., Cai, Y.Q., Zhao, X.L., and Shi, Y.L. (2010). Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem. Eng. J. 158, 599–607.
  • Gupta, K., Basu, T., and Ghosh, U.C. (2009). Sorption characteristics of arsenic(V) for removal from water using agglomerated nanostructure iron(III)–zirconium(IV) bimetal mixed oxide. J. Chem. Eng. 54, 2222–2228.
  • Bissen, M., and Frimmel, F.H. (2003). Arsenic—A review. Part II. Oxidation of arsenic and its removal in water treatment. Acta Hydrochem. Hydrobiol. 31, 97–107.
  • Lorenzen, L., van Deventer, J.S. J., and Landi, W.M. (1995). Factors affecting the mechanism of the adsorption of arsenic species on activated carbon. Miner. Eng. 8, 557–569.
  • Schmidt, G.T., Vlasova, N., Zuzaan, D., Kersten, M., and Daus, B. (2008). Adsorption mechanism of arsenate by zirconyl-functionalized activated carbon. J. Colloid Interface Sci. 317, 228–234.
  • Biterna, M., Antonoglou, L., Lazou, E., and Voutsa, D. (2010). Arsenite removal from waters by zero valent iron: Batch and column tests. Chemosphere 78, 7–12.
  • Simeonidis, K., Gkinis, T., Tresintsi, S., Martinez-Boubeta, C., Vourlias, G., Tsiaoussis, I., Stavropoulos, G., Mitrakas, M., and Angelakeris, M. (2011). Magnetic separation of hematite-coated Fe3O4 particles used as arsenic adsorbents. Chem. Eng. J. 168, 1008–1015.
  • Oscarson, D.W., Huang, P.M., and Hammer, U.T. (1983). Oxidation and sorption of arsenite by manganese dioxide as influenced by surface coatings of iron and aluminum oxides and calcium carbonate. Water Air Soil Pollut. 20, 233–244.
  • Luo, X., Wang, C., Luo, S., Dong, S., Tu, X., and Zeng, G. (2012). Adsorption of As (III) and As (V) from water using magnetite Fe3O4-reduced graphite oxide–MnO2 nanocomposites. Chem. Eng. J. 187, 45–52.
  • Charlet, L., Morrin, G., Rose, J., Wang, Y., Auffan, M., Burnol, A., and Fernandez-Martinez, A. (2011). Reactivity at (nano)particle-water interfaces, redox processes, and arsenic transport in the environment. Comp. Rend. GeoSci. 343, 123–139.
  • Dixit, S., and Hering, J.G. (2003). Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environ. Sci. Technol. 37, 4182–4189.
  • Ona-Nguema, G., Morin, G., Juillot, F., Calas, G., and Brown, G.E. (2005). EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite. Environ. Sci. Technol. 39, 9147–9155.
  • Farquhar, M.L., Charnock, J.M., Livens, F.R., and Vaughan, D.J. (2002). Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lepidocrocite, mackinawite, and pyrite: An X-ray absorption spectroscopy study. Environ. Sci. Technol. 36, 1757–1762.
  • Manning, B.A., Hunt, M.L., Amrhein, C., and Yarmoff, J.A. (2002). Arsenic(III) and Arsenic(V) reactions with zerovalent iron corrosion products. Environ. Sci. Technol. 36, 5455–5461.
  • Kanel, S.R., Manning, B., Charlet, L., and Choi, H. (2005). Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Technol. 39, 1291–1298.
  • Jegadeesan, G., Al-Abed, S.R., Sundaram, V., Choi, H., Scheckel, K.G., and Dionysiou, D.D. (2010). Arsenic sorption on TiO2 nanoparticles: Size and crystallinity effects. Water Res. 44, 965–973.
  • Ngomsik, A.F., Bee, A., Draye, M., Cote, G., and Cabuil, V. (2005). Magnetic nano and microparticles for metal removal and environmental applications: A review. C. R. Chimie 8, 963–970.
  • Chowdhury, S.R., and Yanful, E.K. (2010). Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal. J. Environ. Manage. 91, 2238–2247.
  • Gupta, V.K., and Nayak, A. (2012). Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem. Eng. J. 180, 81–90.
  • Hu, J., Chen, G., and Lo, I.M. C. (2005). Removal and recovery of Cr(VI) from wastewater by maghaemite nanoparticles. Water Res. 39, 4528–4536.
  • Liu, J.F., Zhao, Z.S., and Jiang, G.B. (2008). Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol. 42, 6949–6954.
  • Huang, S.H., and Chen, D.H. (2009). Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J. Hazard. Mater. 163, 174–179.
  • Kersting, A.B., Efurd, D.W., Finnegant, D.L., Rokop, D.J., Smith, D.K., and Thompson, J.L. (1999). Migration of Plutonium in groundwater at the Nevada test site. Nature 397, 56–59.
  • Sen, T.K., and Khilar, K.C. (2006). Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv. Colloid Interface Sci. 119, 71–96.
  • Grolimund, D., Borkovec, M., Barmettler, K., and Sticher, H. (1996). Colloid facilitated transport of strongly sorbing contaminants in natural porous media: A laboratory column study. Environ. Sci. Technol. 30(10), 3118–3123.
  • Sharma, A., Hirata, T., Kawamoto, K., Deepagoda, C.T. K. K., Moldrup, P., and Komatsu, T. (2010). Mobilization and transport of natural and water dispersible colloids in repacked Okinawa red-yellow soil columns. In 19th World Congress of Soil Science-Soil Solutions for a Changing World, Brisbane, Australia, August 1–6, 2010.
  • Kretzschmar, R., and Schäfer, T. (2005). Metal retention and transport on colloidal particles in the environment. Elements 1, 205–210.
  • Johnson, W.P., and Amy, G.L. (1995). Facilitated transport and enhanced desorption of polycyclic aromatic hydrocarbons by natural organic matter in aquifer sediments. Environ. Sci. Technol. 29(3), 807–817.
  • Levard, C., Doelsch, E., Rose, J., Masion, A., Basile-Doelsch, I., Proux, O., Hazemann, J.-L., Borschneck, D., and Bottero, J.-Y. (2009). Ni speciation within an andosol: An original laboratory approach. Geochim. Cosmochim. Acta 73, 4750–4760.
  • Waychunas, G. A., Kim, C. S., and Banfield, J. F. (2005). Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J. Nanopart. Res. 7, 409–433.
  • Domingos, R.F., Tufenkji, N., and Wilkinson, K.J. (2009). Aggregation of titanium dioxide nanoparticles: Role of a fulvic acid. Environ. Sci. Technol. 43, 1282–1286.
  • Mendive, C.B., Bredow, T., Feldhoff, A., Blesa, M.A., and Bahnemann, D. (2009). Adsorption of oxalate on anatase (100) and rutile (110) surfaces in aqueous systems: Experimental results vs. theoretical predictions. Phys. Chem. Chem. Phys. 11(11), 1794–1808.
  • Hassellöv, M., and Kammer, F.V. D. (2008). Nanogeoscience: Iron oxides as geochemical nanovectors for metal transport in soil-river systems. Elements 4(6), 401–406.
  • Trivedi, P., Dyer, J.A., and Sparks, D.L. (2003). Lead sorption onto ferrihydrite. 1. A macroscopic and spectroscopic assessment. Environ. Sci. Technol. 37, 908–914.
  • Xu, Y., Boonfueng, T., Axe, L., Maeng, S., and Tyson, T. (2006). Surface complexation of Pb (II) on amorphous iron oxide and manganese oxide: Spectroscopic time studies. J. Colloid Interface Sci. 299, 28–40.
  • Madden, A.S., Hochella Jr.M. F., and Luxton, T.P. (2006). Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2+ sorption. Geochim. Cosmochim. Acta 70, 4095–4104.
  • He, Y.T., Wan, J.M., and Tokunaga, T. (2008). Kinetic stability of hematite nanoparticles: The effect of particle sizes. J. Nanopart. Res. 10, 321–332.
  • Liu, C., and Huang, P.M. (2004). Kinetics of 2,4-dichlorophenoxyacetic acid (2,4-D) adsorption by metal oxides, metal oxide-humic complexes, and humic acid. Soil Sci. 169, 497–504.
  • Sparks, D.L. (2003). Environmental soil chemistry (2nd ed.). San Diego, CA: Academic Press.
  • Huang, P.M., and Germida, J.J. (2002). Chemical and biological processes in the rhizosphere: Metal pollutants. In P.M. Huang, J.-M. Bollag, and N. Senesi (Eds.), Interactions Between Soil Particles and Microorganisms. Impact on the Terrestrial Ecosystem. IUPAC Series on Analytical and Physical Chemistry of Environmental Systems (Vol. 45). Chichester: Wiley.
  • Campbell, P.G. C., Lewis, A.G., Chapman, P.M., Crowder, A.A., Fletcher, W.K., Imber, B., Luoma, S.N., Stokes, P.M., and Winfrey, M. (1988). Biologically available metals in sediments. NRCC No. 27694. In National Research Council of Canada: Ottawa, Canada.
  • Karathanasis, A.D. (1999). Subsurface migration of copper and zinc mediated by soil colloids. Soil Sci. Soc. Am. J. 63, 830–838.
  • Forstner, U., Jacobs, P., and von der kammer, F. (2001). Impact of natural nanophases on heavy metal retention in zeolite-supported reactive filtration facilities for urban run-off treatment. Fresenius J Anal. Chem. 371, 652–659.
  • Kretzschmar, R., Borkovec, M., Grolimund, D., and Elimelech, M. (1999). Mobile subsurface colloids and their role in contaminants transport. Adv. Agron. 66, 121–193.
  • Cornelissen, G., Gustafsson, O., Bucheli, T.D., Jonker, M.T. O., Koelmans, A.A., and Van Noort, P.C. M. (2005). Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ. Sci. Technol. 39, 6881–6895.
  • Koelmans, A.A., Jonker, M.T. O., Cornelissen, G., Bucheli, T.D., Van Noort, P.C. M., and Gustafsson, O. (2006). Black carbon: The reverse of its dark side. Chemosphere 63, 365–377.
  • Crane, M. and Handy, R.D. (2007). An assessment of regulatory testing strategies and methods for characterizing the ecotoxicological hazards of nanomaterials. Report for Defra, London, UK. Retrieved from http://randd.defra.gov.uk/Document.aspx?DocumentID=2270.
  • Owen, R., and Handy, R.D. (2007). Formulating the problems for environmental risk assessment of nanomaterials. Environ. Sci. Technol. 41, 5582–5588.
  • Handy, R. D., Owen, R., and Valsami-Jones, E. (2008). The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17, 315–325.
  • Boxall, A.B. A., Chaudhry, Q., Sinclair, C., Jones, A., Aitken, R., Jefferson, B., and Watts, C. (2007). Current and future predicted environmental exposure to engineered nanoparticles. Report by the Central Science Laboratory (CSL) York for the Department of the Environment and Rural Affairs (DEFRA), UK. Retrieved from http://www.defra.gov.uk/science/Project_Data/DocumentLibrary/CB01098/CB01098_6270_FRP.pdf
  • Revell, P.A. (2006). The biological effects of nanoparticles. Nanotechnol. Perceptions 2, 283–298.
  • Kooter, I.M., Pennings, J.L. A., Opperhuizen, A., and Cassee, F.R. (2005). Gene expression pattern in spontaneouosly hypertensive rats exposed to urban particulate matter (EHC-93). Inhalation Toxicol. 17, 53–65.
  • Nel, A., Xia, T., Mädler, L., and Li, N. (2006). Toxic potential of materials at the nanolevel. Science 311, 622–627.
  • Oberdörster, G., Oberdörster, E., Oberdörster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113, 823–839.
  • Yang, L., and Watts, D.J. (2005). Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol. Lett. 158, 122–132.
  • Moore, M.N. (2006). Do nanoparticles present ecotoxicologiocal risks for the health of the aquatic environment? Environ. Int. 32, 967–976.
  • Zhu, Y., Zhao, Q., Li, Y., Cai, X., and Li, W. (2006). The interaction and toxicity of multi-walled carbon nanotubes with Stylonychia mytilus. J. Nanosci. Nanotechnol. 6, 1357–1364.
  • Buffle, J. (2006). The key role of environmental colloids/nanoparticles for the sustainability of life. Environ. Chem. 3, 155–158.
  • Kreyling, W.G., Semmler, M., and Moller, W. (2004). Dosimetry and toxicology of ultrafine particles. J. Aerosol Med. 17, 140–152.
  • Portmann, M. (2009). Human respiratory health effects of inhaled mineral dust: Term paper in biogeochemistry and pollutant dynamics. Master studies in Environmental Sciences; ETH Zürich.
  • NRC. (2007). Earth materials and health: Research priorities for earth science and public health (p. 176). Washington, DC: National Research Council, National Academy of Sciences.
  • Oze, C., and Solt, K.L. (2010). Biodurability of chrysotile and tremolite asbestos in simulated lung and gastric fluids. Am. Mineral. 95, 825–831.
  • Ernst, W.G. (2012). Overview of naturally occurring Earth materials and human health concerns. J. Asian Earth Sci. 59, 108–126.
  • Cook, A.G., Weinstein, P., and Centeno, J.A. (2005). Biological Trace Element Research 103, Health effects of natural dusts. Biol. Trace Elem. Res. 103, 1–15.
  • Fubini, B., and Fenoglio, I. (2007). Toxic potential of mineral dusts. Elements 3, 407–414.
  • Plumlee, G.S., and Ziegler, T.L. (2006). The medical geochemistry of dusts, soils, and other earth materials. Denver, CO: US Geological Survey.
  • Kellogg, C.A., and Griffin, D.W. (2006). Aerobiology and the global transport of desert dust. Trends Ecol. Evol. 21, 638–644.
  • Smith, J.L., and Lee, K. (2003). Soil as a source of dust and implications for human health. Adv. Agron. 80, 1–32.
  • Derbyshire, E. (2007). Natural minerogenic dust and human health. Ambio. 36, 73–77.
  • Clausnitzer, H., and Singer, M.J. (1999). Mineralogy of agricultural source soil and respirable dust in California. Environ. Qual. 28, 1619–1629.
  • Nemmar, A., Hoet, P.H., Vanquickenborne, B., Dinsdale, D., Thomeer, M., Hoylaerts, M.F., Vanbilloen, H., Mortelmans, L., and Nemery, B. (2002). Passage of inhaled particles into the blood circulation in humans. Circulation 105(4), 411–414.
  • Furuyama, A., Kanno, S., Kobayashi, T., and Hirano, S. (2009). Extrapulmonary translocation of intratracheally instilled fine and ultrafine particles via direct and alveolar macrophage-associated routes. Arch. Toxicol. 83(5), 429–437.
  • Elder, A., and Oberdörster, G. (2006). Translocation and effects of ultrafine particles outside of the lung. Clin. Occup. Environ. Med. 5(4), 785–796.
  • Radomski, A., Jurasz, P., Alonso-Escalano, D., Drews, J., Morandi, M., Malinski, T., and Radomski, M.W. (2005). Nanoparticle-induced platelet aggregation and vascular thrombosis. Br. J. Pharmacol. 146, 882–893.
  • Xia, T., Li, N., and Nel, A.E. (2009). Potential health impact of nanoparticles. Annu. Rev. Pub. Health 29, 137–150.
  • Donaldson, K., Brown, D., Clouter, A., Duffin, R., MacNee, W., and Renwick, L. (2002). The pulmonary toxicology of ultrafine particles. J. Aerosol Med. 15, 213.
  • Xia, T., Kovochich, M., Brant, J., Hotze, M., Sempf, J., Oberley, T., Sioutas, C., Yeh, J.I., Wiesner, M.R., and Nel, A.E. (2006). Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6, 1794–1807.
  • Skinner, H.C. W. (2007). The Earth, source of health and hazards: An introduction to medical geology. Annu. Rev. Earth Planet. Sci. 35, 177–213.
  • Weinstein, P., and Cook, A. (2005). Volcanic emissions and health. In O. Selinus, B.J. Alloway, J.A. Centeno, R.B. Finkelman, R. Fuge, U. Lindh, and P. Smedley (Eds.), Essentials of medical geology (pp. 203–226). London: Elsevier Academic Press.
  • Buseck, P.R., and Posfai, M. (1999). Airborne minerals and related aerosol particles: Effects on climate and the environment. Proc. Natl. Acad. Sci. 96, 3372–3379.
  • Steinnes, E. (2003). Biogeochemical cycling of iodine and selenium and potential geomedical relevance. In H.C. W. Skinner and A.R. Berger (Eds.), Geology and health: Closing the gap (pp. 57–60). New York, NY: Oxford University Press.
  • Singh, S., Shi, T., Duffin, R., Albrecht, C., van Berlo, D., Höhr, D., Fubini, B., Martra, G., Fenoglio, I., Borm, P.J. A., and Schins, R.P. F. (2007). Endocytosis, oxidative stress and IL-8 expression in the human lung epithelial cells upon treatment with fine and ultrafine TiO2: Role of the specific surface methylation of the particles. Toxicol. Appl. Pharmacol. 222, 141–151.
  • Gustafsson, O., Kruså, M., Zencak, Z., Sheesley, R.J., Granat, L., Engström, E., Praveen, P.S., Rao, P.S. P., Leck, C., and Rodhe, H. (2009). Brown clouds over South Asia: Biomass or fossil fuel combustion? Science 323(5913), 495–498.
  • Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J.T., Washington, W.M., Fu, Q., Sikka, D.R., and Wild, M. (2005). Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycles. Proc. Natl. Acad. Sci. USA 102, 5326–5333.
  • Engling, G., and Gelencser, A. (2010). Atmospheric brown clouds: From local air pollution to climate change. Elements 6(4), 223–228.
  • Prinn, R.G., Huang, J., Weiss, R.F., Cunnold, D.M., Fraser, P.J., Simmonds, P.G., McCulloch, A., Harth, C., Salameh, P., O’Doherty, D., Wang, R.H. J., Porter, L., and Miller, B.R. (2001). Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades. Science 292, 1882–1888.
  • Manning, M.R., Lowe, D.C., Moss, R.C., Bodeker, G.E., and Allan, W. (2005). Short-term variations in the oxidizing power of the atmosphere. Nature 436, 1001–1004.
  • Wilson, S.R., Solomon, K.R., and Tang, X. (2007). Changes in tropospheric composition and air quality due to stratospheric ozone depletion and climate change. Photochem. Photobiol. Sci. 6, 301.
  • Rohrer, F., and Berresheim, H. (2006). Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation. Nature 442, 184–187.
  • Tromp, T.K., Shia, R.L., Allen, M., Eiler, J.M., and Yung, Y.L. (2003). Potential environmental impact of a hydrogen economy on the stratosphere. Science 300, 1740–1742.
  • Kim, W., Doh, S.J., and Yu, Y. (2012). Asian dust storm as conveyance media of anthropogenic pollutants. Atmos. Environ. 49, 41–50.
  • Crane, M., Handy, R.D., Garrod, J., and Owen, R. (2008). Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology 17, 421–437.
  • Sadik, W. (2011). Environmental nanotechnology. J. Environ. Monit. 13, 1131.
  • Bernhardt, E.S., Colman, B.P., Hochella, M.FJr. J., Cardinale, B.J., Nisbet, R.M., Richardson, C.J., and Yin, L. (2010). An ecological perspective on nanomaterial impacts in the environment. J. Environ. Qual. 39, 1954–1965.
  • Galbraith, J.K. (2002). A perfect crime: Global inequality. J. Am. Acad. Arts Sci. 1, 11–25.
  • Ernst, W.G. (2009). Sustainable energy and mineral resource extraction and consumption—can a viable biosphere be preserved? In J.P. Richards (Ed.), Mining, society and a sustainable world (pp. 12–150). New York, NY: Springer Verlag.
  • Starke, L. (2011). State of the world, 2011 (237 p). New York, NY: Worldwatch Institute. W. W. Norton & Co.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.