951
Views
48
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Nanoscale Zero-Valent Iron Treatment on Biological Reductive Dechlorination: A Review of Current Understanding and Research Needs

, &
Pages 1148-1175 | Published online: 25 Feb 2015

REFERENCES

  • Nanoscale Science Engineering and Technology Subcommittee; US National Science and Technology Council The National Nanotechnology Initiative: Strategic Plan. http://www.nano.gov/sites/default/files/pub_resource/nni_strategic_plan_2007.pdf?q=NNI_Strategic_Plan_2007.pdf (accessed September 25, 2013).
  • Karn, B., Kuiken, T., and Otto, M. (2009). Nanotechnology and in situ remediation: A review of the benefits and potential risks. Environ. Health Perspect., 117(12), 1813–1831.
  • Colvin, V.L. (2003). The potential environmental impact of engineered nanomaterials. Nat. Biotechnol., 21(10), 1166–1170.
  • Masciangioli, T., and Zhang, W.X. (2003). Environmental technologies at the nanoscale. Environ. Sci. Technol., 37(5), 102A–108A.
  • Grieger, K.D., Fjordboge, A., Hartmann, N.B., Eriksson, E., Bjerg, P.L., and Baun, A. (2010). Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off? J. Contam. Hydrol., 118(3–4), 165–183.
  • U.K. Department of Trade and Industry. Response to the Royal Society and Royal Academy of Engineering Report: ‘Nanoscience and nanotechnologies: Applications and uncertainties. http://webarchive.nationalarchives.gov.uk/+/http://www.dti.gov.uk/science/science-in-govt/st_policy_issues/na-notechnology/page20218.html (accessed February 11, 2010).
  • Nel, A.E., Madler, L., Velegol, D., Xia, T., Hoek, E.M., Somasundaran, P., Klaessig, F., Castranova, V., and Thompson, M. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater., 8(7), 543–557.
  • Crane, R.A., and Scott, T.B. (2012). Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. J. Hazard. Mater., 211–212, 112–125.
  • Handy, R.D., von der Kammer, F., Lead, J.R., Hassellov, M., Owen, R., and Crane, M. (2008). The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology, 17(4), 287–314.
  • Diao, M., Yao, M. (2009). Use of zero-valent iron nanoparticles in inactivating microbes. Water Res., 43(20), 5243–5251.
  • Chen, Q., Gao, M., Li, J., Shen, F., Wu, Y., Xu, Z., and Yao, M. (2012). Inactivation and magnetic separation of bacteria from liquid suspensions using electrosprayed and nonelectrosprayed nZVI particles: Observations and mechanisms. Environ. Sci. Technol., 46(4), 2360–2367.
  • Fagerlund, F., Illangasekare, T.H., Phenrat, T., Kim, H.J., and Lowry, G.V. (2012). PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone. J. Contam. Hydrol., 131(1–4), 9–28.
  • Liu, Y., and Lowry, G.V. (2006). Effect of particle age (Fe(0) content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination. Environ. Sci. Technol., 40(19), 6085–6090.
  • Liu, Y., Phenrat, T., and Lowry, G.V. (2007). Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environ. Sci. Technol., 41(22), 7881–7887.
  • Pandey, J.A. C. A. A. J. R. K. (2009). Integrative approaches for assessing the ecological sustainability of in situ bioremediation. FEMS Microbiol. Rev., 33(2), 324–375.
  • Wei, Y.T., Wu, S.C., Chou, C.M., Che, C.H., Tsai, S.M., and Lien, H.L. (2010). Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study. Water Res., 44(1), 131–140.
  • Xiu, Z.M., Jin, Z.H., Li, T.L., Mahendra, S., Lowry, G.V., and Alvarez, P.J. (2010). Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresour. Technol., 101(4), 1141–1146.
  • Office of Solid Waste and Emergency Response. Cleaning Up the Nation's Waste Sites: Markets and Yechnology Trends. http://www.epa.gov/tioclu-in.org/marketstudy
  • Ellis, D.E., and Hadley, P.W. (2009). Sustainable remediation white paper – integrating sustainable principles, practices, and metrics into remediation projects. Remediation, 19, 5–114.
  • Kalin, R.M. (2004). Engineered passive bioreactive barriers: Risk-managing the legacy of industrial soil and groundwater pollution. Curr. Opin. Microbiol., 7(3), 227–238.
  • Suthersan, S.S., and Payne, F.C. (2005). In situ remediation engineering. Boca Raton, FL: CRC Press.
  • Gillham, R.W., and Ohannesin, S.F. (1994). Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water, 32(6), 958–967.
  • Interstate Technology & Regulatory Council. (2005). Permeable reactive barriers: Lessons learned/new directions; Washington, DC: Author
  • Scherer, M.M., Richter, S., Valentine, R.L., and Alvarez, P.J. (2000). Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Crit. Rev. Microbiol., 26(4), 221–264.
  • Li, X.Q., Elliott, D.W., and Zhang, W.X. (2006). Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. Crit. Rev. Solid State Mater. Sci., 31(4), 111–122.
  • Lien, H.L., and Zhang, W.X. (2001). Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids Surf. A, 191(1–2), 97–105.
  • Wang, C.B., and Zhang, W.X. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol., 31(7), 2154–2156.
  • Lowry, G.V., and Johnson, K.M. (2004Environ. Sci. Technol., 38(19), 5208–5216.
  • Ponder, S.M., Darab, J.G., and Mallouk, T.E. (2000). Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ. Sci. Technol., 34(12), 2564–2569.
  • Zhang, W.X. (2003). Nanoscale iron particles for environmental remediation: An overview. J. Nanopart. Res., 5(3–4), 323–332.
  • Lien, H.-L., and Zhang, W.-X. (2005). Hydrodechlorination of chlorinated ethanes by nanoscale Pd/Fe bimetallic particles. J. Environ. Eng., 131(1), 4–10.
  • Tratnyek, P.G., and Johnson, R.L. (2006). Nanotechnologies for environmental cleanup. Nano Today, 1(2), 44–48.
  • O’Carroll, D., Sleep, B., Krol, M., Boparai, H., and Kocur, C. (2013). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv. Water Res., 51, 104–122.
  • Snoeyink, V.L., and Jenkins, D. (1980). Water chemistry. New York, NY: Wiley.
  • Gu, B., Phelps, T.J., Liang, L., Dickey, M.J., Roh, Y., Kinsall, B.L., Palumbo, A.V., and Jacobs, G.K. (1999). Biogeochemical dynamics in zero-valent iron columns: Implications for permeable reactive barriers. Environ. Sci. Technol., 33(13), 2170–2177.
  • Matheson, L.J., and Tratnyek, P.G. (1994). Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol., 28(12), 2045–2053.
  • Reinsch, B.C., Forsberg, B., Penn, R.L., Kim, C.S., and Lowry, G.V. (2010). Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Environ. Sci. Technol., 44(9), 3455–3461.
  • Campbell, T.J., Burris, D.R., Roberts, A.L., and Wells, J.R. (1997). Trichloroethylene and tetrachloroethylene reduction in a metallic iron-water-vapor batch system. Environ. Toxicol. Chem., 16(4), 625–630.
  • Roberts, A.L., Totten, L.A., Arnold, W.A., Burris, D.R., and Campbell, T.J. (1997). Reductive elimination of chlorinated ethylenes by zero-valent metals. Environ. Sci. Tech., 30, 2654–2659.
  • Bradley, P.M., and Chapelle, F.H. (2010). Biodegradation of chlorinated ethenes. In In Situ Remediation of Chlorinated Solvent Plumes, SERDP/ESTCP Environmental Remediation Technology, H. F. Stroo and C. H. Ward, eds. Springer: New York, (p. 39).
  • He, J., Sung, Y., Krajmalnik-Brown, R., Ritalahti, K.M., and Loffler, F.E. (2005). Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environ. Microbiol., 7(9), 1442–1450.
  • Ziv-El, M., Delgado, A.G., Yao, Y., Kang, D.W., Nelson, K.G., Halden, R.U. and Krajmalnik-Brown, R. (2011). Development and characterization of DehaloR∧2, a novel anaerobic microbial consortium performing rapid dechlorination of TCE to ethene. Appl. Microbiol. Biotechnol., 92(5), 1063–1071.
  • Griffin, B.M., Tiedje, J.M., and Loffler, F.E. (2004). Anaerobic microbial reductive dechlorination of tetrachloroethene to predominately trans-1,2-dichloroethene. Environ. Sci. Technol., 38(16), 4300–4303.
  • Miller, G.S., Milliken, C.E., Sowers, K.R., and May, H.D. (2005). Reductive dechlorination of tetrachloroethene to trans-dichloroethene and cis-dichloroethene by PCB-dechlorinating bacterium DF-1. Environ. Sci. Technol., 39(8), 2631–2635.
  • Cheng, D., Chow, W.L., and He, J. (2009). A dehalococcoides-containing co-culture that dechlorinates tetrachloroethene to trans-1, 2-dichloroethene. ISME J., 4(1), 88–97.
  • Loffler, F.E., and Edwards, E.A. (2006). Harnessing microbial activities for environmental cleanup. Curr. Opin. Biotechnol., 17(3), 274–284.
  • Liu, Y.Q., Majetich, S.A., Tilton, R.D., Sholl, D.S., and Lowry, G.V. (2005). TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ. Sci. Technol., 39(5), 1338–1345.
  • Alowitz, M.J., and Scherer, M.M. (2002). Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environ. Sci. Technol., 36(3), 299–306.
  • Gandhi, S., Oh, B.T., Schnoor, J.L., and Alvarez, P.J. J. (2002). Degradation of TCE, Cr(VI), sulfate, and nitrate mixtures by granular iron in flow-through columns under different microbial conditions. Water Res., 36(8), 1973–1982.
  • Phenrat, T., Saleh, N., Sirk, K., Tilton, R.D., and Lowry, G.V. (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ. Sci. Technol., 41(1), 284–290.
  • Schrick, B., Hydutsky, B.W., Blough, J.L., and Mallouk, T.E. (2004). Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem. Mater., 16(11), 2187–2193.
  • Henn, K.W., and Waddill, D.W. (2006). Utilization of nanoscale zero-valent iron for source remediation – a case study. Remediation, 16, 57–77.
  • Kanel, S.R., Goswami, R.R., Clement, T.P., Barnett, M.O., and Zhao, D. (2008). Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environ. Sci. Technol., 42(3), 896–900.
  • Saleh, N., Kim, H.J., Phenrat, T., Matyjaszewski, K., Tilton, R.D., and Lowry, G.V. (2008). Ionic strength and composition affect the mobility of surface-modified Fe(0) nanoparticles in water-saturated sand columns. Environ. Sci. Technol., 42(9), 3349–3355.
  • Lin, Y.H., Tseng, H.H., Wey, M.Y., and Lin, M.D. (2010). Characteristics of two types of stabilized nano zero-valent iron and transport in porous media. Sci.Total Environ., 408(10), 2260–2267.
  • Johnson, R.L., Johnson, G.O., Nurmi, J.T., and Tratnyek, P.G. (2009). Natural organic matter enhanced mobility of nano zerovalent iron. Environ. Sci. Technol., 43(14), 5455–5460.
  • Lerner, R.N., Lu, Q., Zeng, H., and Liu, Y. (2012). The effects of biofilm on the transport of stabilized zerovalent iron nanoparticles in saturated porous media. Water Res., 46(4), 975–985.
  • Quinn, J., Geiger, C., Clausen, C., Brooks, K., Coon, C., O’Hara, S., Krug, T., Major, D., Yoon, W.S., Gavaskar, A., and Holdsworth, T. (2005). Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ. Sci. Technol., 39(5), 1309–1318.
  • Sirk, K.M., Saleh, N.B., Phenrat, T., Kim, H.J., Dufour, B., Ok, J., Golas, P.L., Matyjaszewski, K., Lowry, G.V., and Tilton, R.D. (2009). Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models. Environ. Sci. Technol., 43(10), 3803–3808.
  • He, F., and Zhao, D.Y. (2005). Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ. Sci. Technol., 39(9), 3314–3320.
  • Saleh, N., Phenrat, T., Sirk, K., Dufour, B., Ok, J., Sarbu, T., Matyiaszewski, K., Tilton, R.D., and Lowry, G.V. (2005). Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Lett., 5(12), 2489–2494.
  • Phenrat, T., Saleh, N., Sirk, K., Kim, H.-J., Tilton, R., and Lowry, G. (2008). Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: Adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J. Nanopart. Res., 10(5), 795–814.
  • Saleh, N., Phenrat, T., Sirk, K., Dufour, B., Ok, J., Sarbu, T., Matyiaszewski, K., Tilton, R.D., and Lowry, G.V. (2005). Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Lett., 5(12), 2489–2494.
  • Phenrat, T., Fagerlund, F., Illangasekare, T., Lowry, G.V., and Tilton, R.D. (2011). Polymer-modified Fe0 nanoparticles target entrapped NAPL in two dimensional porous media: Effect of particle concentration, NAPL saturation, and injection strategy. Environ. Sci. Technol., 45(14), 6102–6109.
  • Yang, G.C. C., Tu, H.-C., and Hung, C.-H. (2007). Stability of nanoiron slurries and their transport in the subsurface environment. Sep. Purif. Technol., 58, 166–172.
  • Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., and Lowry, G.V. (2010). Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand. J. Contam. Hydrol., 118(3–4), 152–164.
  • Phenrat, T., Song, J.E., Cisneros, C.M., Schoenfelder, D.P., Tilton, R.D., and Lowry, G.V. (2010). Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: Development of an empirical model. Environ. Sci. Technol., 44(12), 4531–4538.
  • He, F., Zhao, D., and Paul, C. (2010). Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res., 44(7), 2360–2370.
  • Wei, Y.T., Wu, S.C., Chou, C.M., Che, C.H., Tsai, S.M., and Lien, H.L. (2010). Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study. Water Res., 44(1), 131–140.
  • Wohlfarth, G., and Diekert, G. (1997). Anaerobic dehalogenases. Curr. Opin. Biotech., 8(3), 290–295.
  • Lampron, K.J., Chiu, P.C., and Cha, D.K. (2001). Reductive dehalogenation of chlorinated ethenes with elemental iron: The role of microorganisms. Water Res., 35(13), 3077–3084.
  • Tas, N., van Eekert, M.H., de Vos, W.M., and Smidt, H. (2010). The little bacteria that can - diversity, genomics and ecophysiology of ‘Dehalococcoides’ spp. in contaminated environments. Microb. Biotechnol., 3(4), 389–402.
  • Maymo-Gatell, X., Chien, Y., Gossett, J.M., and Zinder, S.H. (1997). Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science, 276(5318), 1568–1571.
  • Duhamel, M., Mo, K., and Edwards, E.A. (2004). Characterization of a highly enriched dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Appl. Environ. Microbiol., 70(9), 5538–5545.
  • Schipp, C.J., Marco-Urrea, E., Kublik, A., Seifert, J., and Adrian, L. (2013). Organic cofactors in the metabolism of dehalococcoides mccartyi strains. Philos. Trans.R. Soc. B: Biol. Sci., 368(1616).
  • Smidt, H., and de Vos, W.M. (2004). Anaerobic microbial dehalogenation. Annu. Rev. Microbiol., 58, 43–73.
  • Ziv-El, M., Popat, S.C., Parameswaran, P., Kang, D.W., Polasko, A., Halden, R.U., Rittmann, B.E., and Krajmalnik-Brown, R. (2012). Using electron balances and molecular techniques to assess trichoroethene-induced shifts to a dechlorinating microbial community. Biotechnol. Bioeng., 109(9), 2230–2239.
  • Gibson, S.A., and Sewell, G.W. (1992). Stimulation of reductive dechlorination of tetrachloroethene in anaerobic aquifer microcosms by addition of short-chain organic acids or alcohols. Appl. Environ. Microbiol., 58(4), 1392–1393.
  • Bouwer, E.J. (1994). Bioremediation of chlorinated solvents using alternate electron acceptors. In: Handbook of Bioremediation (Norris, R.D.; Hinchee, R. E.; Brown, R.; McCarty, P.L.; Semprini, L.; Wilson, J.T.; Kampbell, D.H.; Reinhard, M.; Bouwer, E.J. Borden, R.C.; Vogel, T.M.; Thomas, J.M.; and Ward, C.H., Eds), Lewis Publishers: Boca Raton, FL, 149–175.
  • Azizian, M.F., Marshall, I.P. G., Behrens, S., Spormann, A.M., and Semprini, L. (2010). Comparison of lactate, formate, and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column. J. Contam. Hydrol., 113(1–4), 77–92.
  • Delgado, A.G., Parameswaran, P., Fajardo-Williams, D., Halden, R.U., and Krajmalnik-Brown, R. (2012). Role of bicarbonate as a pH buffer and electron sink in microbial dechlorination of chloroethenes. Microb. Cell Fact., 11(1
  • Fletcher, K.E., Costanza, J., Cruz-Garcia, C., Ramaswamy, N.S., Pennell, K.D., and Löffler, F.E. (2010). Effects of elevated temperature on dehalococcoides dechlorination performance and DNA and RNA biomarker abundance. Environ. Sci. Technol., 45(2), 712–718.
  • Chan, W.W. M., Grostern, A., Löffler, F.E., and Edwards, E.A. (2011). Quantifying the effects of 1,1,1-trichloroethane and 1,1-dichloroethane on chlorinated ethene reductive dehalogenases. Environ. Sci. Technol., 45(22), 9693–9702.
  • Fernandez-Sanchez, J.M., Sawvel, E.J., and Alvarez, P.J. (2004). Effect of Fe(0) quantity on the efficiency of integrated microbial-Fe(0) treatment processes. Chemosphere, 54(7), 823–829.
  • Atlas, R.M., and Philp, J.C. (2005). Bioremediation of contaminated soils and aquifers. In R.M. Atlas and J.C. Philp (Eds.), Bioremediation applied microbial solutions for real-world environmental cleanup (p. 179). Washington, DC: ASM Press.
  • Gu, B., Watson, D.B., Wu, L., Phillips, D.H., White, D.C., and Zhou, J. (2001). Microbiological characteristics in a zero-valent iron reactive barrier. Environ. Monit. Assess., 77, 293–309.
  • Gregory, K.B., Mason, M.G., Picken, H.D., Weathers, L.J., and Parkin, G.F. (2000). Bioaugmentation of Fe(0) for the remediation of chlorinated aliphatic hydrocarbons. Environ. Eng. Sci., 17(3), 169–181.
  • Weathers, L.J., Parkin, G.F., and Alvarez, P.J. (1997). Utilization of cathodic hydrogen as electron donor for chloroform cometabolism by a mixed, methanogenic culture. Environ. Sci. Technol., 31(3), 880–885.
  • Shin, K.H., and Cha, D.K. (2008). Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere, 72(2), 257–262.
  • Son, A., Lee, J., Chiu, P.C., Kim, B.J., and Cha, D.K. (2006). Microbial reduction of perchlorate with zero-valent iron. Water Res., 40(10), 2027–2032.
  • Yu, X.Y., Amrhein, C., Deshusses, M.A., and Matsumoto, M.R. (2006). Perchlorate reduction by autotrophic bacteria in the presence of zero-valent iron. Environ. Sci. Technol., 40(4), 1328–1334.
  • Burghardt, D., Simon, E., Knoller, K., and Kassahun, A. (2007). Immobilization of uranium and arsenic by injectible iron and hydrogen stimulated autotrophic sulphate reduction. J. Contam. Hydrol., 94(3–4), 305–314.
  • Xiu, Z.M., Jin, Z.H., Li, T.L., Mahendra, S., Lowry, G.V., and Alvarez, P.J. (2010). Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresour. Technol., 101(4), 1141–1146.
  • Lee, C., Kim, J.Y., Lee, W.I., Nelson, K.L., Yoon, J., and Sedlak, D.L. (2008). Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ. Sci. Technol., 42(13), 4927–4933.
  • Auffan, M., Achouak, W., Rose, J., Roncato, M.A., Chaneac, C., Waite, D.T., Masion, A., Woicik, J.C., Wiesner, M.R., and Bottero, J.Y. (2008). Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ. Sci. Technol., 42(17), 6730–6735.
  • Li, Z.Q., Greden, K., Alvarez, P.J. J., Gregory, K.B., and Lowry, G.V. (2010). Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ. Sci. Technol., 44(9), 3462–3467.
  • Kim, J.Y., Park, H.J., Lee, C., Nelson, K.L., Sedlak, D.L., and Yoon, J. (2010). Inactivation of Escherichia coli by nanoparticulate zerovalent iron and ferrous ion. Appl. Environ. Microbiol., 76(22), 7668–7670.
  • Sintubin, L., De Gusseme, B., Van der Meeren, P., Pycke, B.F., Verstraete, W., and Boon, N. (2011). The antibacterial activity of biogenic silver and its mode of action. Appl. Microbiol. Biotechnol, 91(1).
  • Gavaskar, A., Tatar, L., and Condit, W. (2005). Cost and performance report nanoscale zero-valent iron technologies for source remediation. Port Hueneme, CA: Naval Facilities Engineering Service Center.
  • McCarty, P.L., Chu, M.Y., and Kitanidis, P.K. (2007). Electron donor and pH relationships for biologically enhanced dissolution of chlorinated solvent DNAPL in groundwater. Eur. J. Soil Biol., 43(5–6), 276–282.
  • Barnes, R.J., Riba, O., Gardner, M.N., Singer, A.C., Jackman, S.A., and Thompson, I.P. (2010). Inhibition of biological TCE and sulphate reduction in the presence of iron nanoparticles. Chemosphere, 80(5), 554–562.
  • Kirschling, T.L., Gregory, K.B., Minkley, E.G. , Jr., Lowry, G.V., and Tilton, R.D. (2010). Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ. Sci. Technol., 44(9), 3474–3480.
  • Xiu, Z.M., Gregory, K.B., Lowry, G.V., and Alvarez, P.J. (2010). Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp. Environ. Sci. Technol., 44(19), 7647–7651.
  • Kim, H.J., Phenrat, T., Tilton, R.D., and Lowry, G.V. (2009). Fe-0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environ. Sci. Technol., 43(10), 3824–3830.
  • World Health Organization. (2002). Environmental Health Criteria 226 – Palladium; Geneva, IL: Author.
  • Chidambaram, D., Hennebel, T., Taghavi, S., Mast, J., Boon, N., Verstraete, W., van der Lelie, D., and Fitts, J.P. (2010). Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate. Environ. Sci. Technol., 44(19), 7635–7640.
  • De Windt, W., Boon, N., Van den Bulcke, J., Rubberecht, L., Prata, F., Mast, J., Hennebel, T., and Verstraete, W. (2006). Biological control of the size and reactivity of catalytic Pd0 produced by Shewanella oneidensis. Antonie Van Leeuwenhoek, 90(4), 377–389.
  • Dubilier, N. (2007). The searchlight and the bucket of microbial ecology. Environ. Microbiol., 9(1), 2–3.
  • Kuypers, M.M. M., and Jorgensen, B.B. (2007). The future of single-cell environmental microbiology. Environ. Microbiol., 9(1), 6–7.
  • Saleh-Lakha, S., Shannon, K.E., Goyer, C., and Trevors, J.T. (2011). Challenges in quantifying microbial gene expression in soil using quantitative reverse transcription real-time PCR. J. Microbiol. Methods, 85(3), 239–243.
  • Mettel, C., Kim, Y., Shrestha, P.M., and Liesack, W. (2010). Extraction of mRNA from soil. Appl. Environ. Microbiol., 76(17), 5995–6000.
  • Towe, S., Wallisch, S., Bannert, A., Fischer, D., Hai, B., Haesler, F., Kleineidam, K., and Schloter, M. (2011). Improved protocol for the simultaneous extraction and column-based separation of DNA and RNA from different soils. J. Microbiol. Methods, 84(3), 406–412.
  • Yergeau, E., Lawrence, J.R., Waiser, M.J., Korber, D.R., and Greer, C.W. (2010). Metatranscriptomic analysis of the response of river biofilms to pharmaceutical products, using anonymous DNA microarrays. Appl. Environ. Microbiol., 76(16), 5432–5439.
  • Lee, P.K., Johnson, D.R., Holmes, V.F., He, J., and Alvarez-Cohen, L. (2006). Reductive dehalogenase gene expression as a biomarker for physiological activity of Dehalococcoides spp. Appl. Environ. Microbiol., 72(9), 6161–6168.
  • Amann, R., and Fuchs, B.M. (2008). Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat. Rev. Microbiol., 6(5), 339–348.
  • Fazi, S., Aulenta, F., Majone, M., and Rossetti, S. (2008). Improved quantification of Dehalococcoides species by fluorescence in situ hybridization and catalyzed reporter deposition. Syst. Appl. Microbiol., 31(1), 62–67.
  • Lee, N., Nielsen, P.H., Andreasen, K.H., Juretschko, S., Nielsen, J.L., Schleifer, K.H., and Wagner, M. (1999). Combination of fluorescent in situ hybridization and microautoradiography-a new tool for structure–function analyses in microbial ecology. Appl. Environ. Microbiol., 65(3), 1289–1297.
  • Wang, Y., Hammes, F., De Roy, K., Verstraete, W., and Boon, N. (2010). Past, present and future applications of flow cytometry in aquatic microbiology. Trends Biotechnol., 28(8), 416–424.
  • Bouvier, T., and Del Giorgio, P.A. (2003). Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): A quantitative review of published reports. FEMS Microbiol. Ecol., 44(1), 3–15.
  • Cullen, L.G., Tilston, E.L., Mitchell, G.R., Collins, C.D., and Shaw, L.J. (2011). Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: Particle reactivity interferes with assay conditions and interpretation of genuine microbial effects. Chemosphere, 82(11), 1675–1682.
  • Krajmalnik-Brown, R., Sung, Y., Ritalahti, K.M., Saunders, F.M., and Loffler, F.E. (2007). Environmental distribution of the trichloroethene reductive dehalogenase gene (tceA) suggests lateral gene transfer among Dehalococcoides. FEMS Microbiol. Ecol., 59(1), 206–214.
  • Scheutz, C., Durant, N.D., Dennis, P., Hansen, M.H., Jorgensen, T., Jakobsen, R., Cox, E.E., and Bjerg, P.L. (2008). Concurrent ethene generation and growth of Dehalococcoides containing vinyl chloride reductive dehalogenase genes during an enhanced reductive dechlorination field demonstration. Environ. Sci. Technol., 42(24), 9302–9309.
  • Baldwin, B.R., Nakatsu, C.H., and Nies, L. (2008). Enumeration of aromatic oxygenase genes to evaluate monitored natural attenuation at gasoline-contaminated sites. Water Res., 42(3), 723–731.
  • Paszczynski, A.J., Paidisetti, R., Johnson, A.K., Crawford, R.L., Colwell, F.S., Green, T., Delwiche, M., Lee, H., Newby, D., Brodie, E.L., and Conrad, M. (2011). Proteomic and targeted qPCR analyses of subsurface microbial communities for presence of methane monooxygenase. Biodegradation, 22(6), 1045–1059.
  • Reed, D.W., Smith, J.M., Francis, C.A., and Fujita, Y. (2010). Responses of ammonia-oxidizing bacterial and archaeal populations to organic nitrogen amendments in low-nutrient groundwater. Appl. Environ. Microbiol., 76(8), 2517–2523.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.