8,370
Views
100
CrossRef citations to date
0
Altmetric
Original Articles

Prediction of the Fate of Organic Compounds in the Environment From Their Molecular Properties: A Review

, , , , , , , & show all
Pages 1277-1377 | Published online: 11 Mar 2015

REFERENCES

  • Abraham, M.H. (1993). Hydrogen bonding. XXVII. Solvation parameters for functionally substituted aromatic compounds and heterocyclic compounds, from gas-liquid chromatographic data. Journal of Chromatography 644, 95–139.
  • Abraham, M.H., and McGowan, J.C. (1987). The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography. Chromatographia 23, 243–246.
  • Arp, H.P. H., Breedveld, G.D., and Cornelissen, G. (2009). Estimating the in situ sediment-porewater distribution of PAHs and chlorinated aromatic hydrocarbons in anthropogenic impacted sediments. Environmental Science and Technology 43, 5576–5585.
  • Atkinson, R. (1987). A structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic compounds. International Journal of Chemical Kinetics 19, 799–828.
  • Bahnick, D.A., and Doucette, W.J. (1988). Use of molecular connectivity indices to estimate soil sorption coefficients for organic chemicals. Chemosphere 17, 1703–1715.
  • Baker, J.R., Gamberger, D., Mihelcic, J.R., and Sabljic, A. (2004). Evaluation of artificial intelligence based models for chemical biodegradability prediction. Molecules 9, 989–1004.
  • Baker, J.R., Mihelcic, J.R., Luehrs, D.C., and Hickey, J.P. (1997). Evaluation of estimation methods for organic carbon normalized sorption coefficients. Water Environment Research 69, 136–145.
  • Baker, J.R., Mihelcic, J.R., and Sabljic, A. (2001). Reliable QSAR for estimating Koc for persistent organic pollutants: correlation with molecular connectivity indices. Chemosphere 45, 213–221.
  • Bakken, G.A., and Jurs, P.C. (1999). Prediction of hydroxyl rate constants from molecular structure. Journal of Chemical Information and Computer Science 39, 1064–1075.
  • Barriuso, E., Benoit, P., and Dubus, I.G. (2008). Formation of pesticide nonextractable (bound) residues in soil: magnitude, controlling factors and reversibility. Environmental Science and Technology 42, 1845–1854.
  • Bartolotti, L.J., and Edney, E.O. (1994). Investigation of the correlation between the energy of the highest occupied molecular orbital (HOMO) and the logarithm of the OH rate constant of hydrofluorocarbons and hydrofluoroethers. International Journal of Chemical Kinetics 26, 913–920.
  • Basak, S.C. (1999). Information theoretic indices of neighborhood complexity and their application. In Topological Indices and Related Descriptors in QSAR and QSPR; Devillers, J., and Balaban, A.T., Eds.; Gordon and Breach Science Publishers: The Netherlands 1999; pp 563–593.
  • Basak, S.C., Gute, B.D., and Grunwald, G.D. (1996). A comparative study of topological and geometrical parameters in estimating normal boiling point and octanol/water partition coefficient. Journal of Chemical Information and Computer Sciences 36, 1054–1060.
  • Basak, S.C., Gute, B.D., and Grunwald, G.D. (1997). Use of topostructural, topochemical, and geometric parameters in the prediction of vapor pressure: a hierarchical QSAR approach. Journal of Chemical Information and Computer Sciences 37, 651–655.
  • Beasley, K.K., Gieg, L.M., Suflita, J.M., and Nanny, M.A. (2009). Polarizability and spin density correlate with the relative anaerobic biodegradability of alkylaromatic hydrocarbons. Environmental Science and Technology 43, 1995–2000.
  • Beigel, C., Barriuso, E., and Di Pietro, L. (1997). Time dependency of triticonazole fungicide sorption and consequences for diffusion in soil. Journal of Environmental Quality 26, 1503–1510.
  • Berger, B.M., and Wolfe, N.L. (1996). Hydrolysis and biodegradation of sulfonylurea herbicides in aqueous buffers and anaerobic water-sediment systems: assessing fate pathways using molecular descriptors. Environmental Toxicology and Chemistry 15, 1500–1507.
  • Berger, B.M., Müller, M., and Eing, A. (2001). Quantitative structure-transformation relationships of phenylurea herbicides. Pest Management Science 57, 1043–1054.
  • Berger, B.M., Müller, M., and Eing, A. (2002). Quantitative structure-transformation relationships of sulfonylurea herbicides. Pest Management Science 58, 724–735.
  • Bhhatarai, B., and Gramatica, P. (2011). Modelling physico-chemical properties of (benzo)triazoles, and screening for environmental partitioning. Water Research 45, 1463–1471.
  • Blockeel, H., Dzeroski, S., Kompare, B., Kramer, S., Pfahringer, B., and Van Laer, W. (2004). Experiments in predicting biodegradability. Applied Artificial Intelligence 18, 157–181.
  • Bodor, N., and Buchwald, P. (1997). Molecular size based approach to estimate partition properties for organic solutes. Journal of Physical Chemistry B 101, 3404–3412.
  • Bodor, N., Gabanyi, Z., and Wong, C.-K. (1989). A new method for the estimation of partition coefficient. Journal of American Chemical Society 111, 3783–3786.
  • Boethling, R.S. (1986). Application of molecular topology to quantitative structure-biodegradability relationships. Environmental Toxicology and Chemistry 5, 797–806.
  • Boethling, R.S., and Costanza, J. (2010). Domain of EPI suite biotransformation models. SAR and QSAR in Environmental Research 21, 415–443.
  • Boethling, R.S., Howard, P.H., Meylan, W., Stiteler, W., Beauman, J., and Tirado, N. (1994). Group-contribution method for predicting probability and rate of aerobic biodegradation. Environmental Science and Technology 28, 459–465.
  • Boethling, R.S., and Sabljic, A. (1989). Screening-level model for aerobic biodegradability based on a survey of expert knowledge. Environmental Science and Technology 23, 672–679.
  • Bogdanov, B., Nikolić, S., and Trinajstić, N. (1989). On the three-dimensional Wiener number. Journal of Mathematical Chemistry 3, 299–309.
  • Bordás, B., Bélai, I., and Kőmives, T. (2011). Theoretical molecular descriptors relevant to the uptake of persistent organic pollutants from soil by Zucchini. A QSAR Study. Journal of Agricultural and Food Chemistry 59, 2863–2869.
  • Braekevelt, E., Tittlemier, S.A., and Tomy, G.T. (2003). Direct measurement of octanol–water partition coefficients of some environmentally relevant brominated diphenyl ether congeners. Chemosphere 51, 563–567.
  • Brennan, R.A., Nirmalakhandan, N., and Speece, R.E. (1998). Comparison of predictive methods for Henrys law coefficients of organic chemicals. Water Research 32, 1901–1911.
  • Briggs, G.G. (1981). Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water solubilities, bioconcentration factors, and the parachor. Journal of Agricultural and Food Chemistry 29, 1050–1059.
  • Brown, T.N., and Mora-Diez, N. (2006a). Computational determination of aqueous pKa values of protonated benzimidazoles (Part 1). The Journal of Physical Chemistry B 110, 9270–9279.
  • Brown, T.N., and Mora-Diez, N. (2006b). Computational determination of aqueous pKa values of protonated benzimidazoles (Part 2). The Journal of Physical Chemistry B 110, 20546–20554.
  • Brunner, S., Hornung, E., Santl, H., Wolff, E., Piringer, O.G., Altschuh, J., and Brüggemann, R. (1990). Henry's law constant for polychlorinated biphenyls: experimental determination and structure-property relationships. Environmental Science and Technology 24, 1751–1754.
  • Brusseau, M.L. (1993). Using QSAR to evaluate phenomenological models for sorption of organic compounds by soil. Environment Toxicology and Chemistry 12, 1835–1846.
  • Burgos, W.D., and Pisutpaisal, N. (2006). Sorption of naphthoic acids and quinoline compounds to estuarine sediment. Journal of Contaminant Hydrology 84, 107–126.
  • Canonica, S., and Tratnyek, P.G. (2003). Quantitative structure-activity relationships for oxidation reactions of organic chemicals in water. Environment Toxicology and Chemistry 22, 1743–1754.
  • Cao, Q., Garib, V., Yu, Q., Connell, D.W., and Campitelli, M. (2009). Quantitative structure–property relationships (QSPR) for steroidal compounds of environmental importance. Chemosphere 76, 453–459.
  • Chaumat, E., Chamel, A., Taillandier, G., and Tissut, M. (1992). Quantitative relationships between structure and penetration of phenylurea herbicides through isolated plant cuticles. Chemosphere 24, 189–200.
  • ChemOffice. (2009). ChemOffice Ultra 12.0 molecular modelling software. Cambridge, MA: Perkin Elmer.
  • Chen, J.W., Feng, L., Liao, Y., Han, S., and Wang, L.S. (1996a). Using AM1 Hamiltonian in quantitative structure-properties relationship studies of alkyl(1-phenylsulfonyl)cycloalkane carboxylates. Chemosphere 33, 537–546.
  • Chen, J.W., Harner, T., Ding, G., Quan, X., Schramm, K.-W., and Kettrup, A. (2004). Universal predictive models on octanol-air partition coefficients at different temperatures for persistent organic pollutants. Environmental Toxicology and Chemistry 23, 2309–2317.
  • Chen, J.W., Harner, T., Schramm, K.-W., Quan, X., Xue, X.Y., and Kettrup, A. (2003b). Quantitative relationships between molecular structures, environmental temperatures and octanol/air partition coefficients of polychlorinated biphenyls. Computational Biology and Chemistry 27, 405–421.
  • Chen, J.W., Harner, T., Schramm, K.W., Quan, X., Xue, X.Y., Wu, W.Z., and Kettrup, A. (2002b). Quantitative relationships between molecular structures, environmental temperatures and octanol-air partition coefficients of PCDD/Fs. Science of the Total Environment 300, 155–166.
  • Chen, J.W., Harner, T., Yang, P., Quan, X., Chen, S., Schramm, K.-W., and Kettrup, A. (2003c). Quantitative predictive models for octanol-air partition coefficients of polybrominated diphenyl ethers at different temperatures. Chemosphere 51, 577–584.
  • Chen, J.W., Kong, L.R., Zhu, C.M., Huang, Q.G., and Wang, L.S. (1996b). Correlation between photolysis rate constants of polycyclic aromatic hydrocarbons and frontier molecular orbital energy. Chemosphere 33, 1143–1150.
  • Chen, J.W., Peijnenburg, W.J. G. M., Quan, X., and Yang, F. (2000). Quantitative structure-property relationships for direct photolysis quantum yields of selected polycyclic aromatic hydrocarbons. Science of the Total Environment 246, 11–20.
  • Chen, J.W., Peijnenburg, W.J. G. M., Quan, X., Chen, S., Martens, D., Schramm, K.-W., and Kettrup, A. (2001e). Is it possible to develop a QSPR model for direct photolysis half-lives of PAHs under irradiation of sunlight? Environmental Pollution 114, 137–143.
  • Chen, J.W., Peijnenburg, W.J. G. M., Quan, X., Zhao, Y., Xue, D., and Yang, F. (1998b). The application of quantum chemical and statistical technique in developing quantitative structure-property relationships for the photohydrolysis quantum yields of substituted aromatic halides. Chemosphere 37, 1169–1186.
  • Chen, J.W., Peijnenburg, W.J. G. M., and Wang, L. (1998a). Using PM3 Hamiltonian, factor analysis and regression analysis in developing quantitative structure-property relationships for photohydrolysis quantum yields of substituted aromatic halides. Chemosphere 36, 2833–2853.
  • Chen, J.W., Quan, X.F., Schramm, K.-W., Kettrup, A., and Yang, F. (2001c). Quantitative structure-property relationships (QSPR) on direct photolysis of PCDDs. Chemosphere 45, 151–159.
  • Chen, J.W., Quan, X., Yan, Y., Yang, F., and Peijnenburg, W.J.G.M. (2001b). Quantitative structure-property relationship studies on direct photolysis of selected aromatic hydrocarbons in atmospheric aerosol. Chemosphere 42, 263–270.
  • Chen, J.W., Quan, X., Yang, F., and Peijnenburg, W.J.G.M. (2001a). Quantitative structure-property relationships on photodegradation of PCDD/Fs in cuticular waxes of laurel cherry (Prunus laurocesarus). Science of the Total Environment 269, 163–170.
  • Chen, J.W., Quan, X., Zhao, Y.Z., Yang, F.L., Schramm, K.-W., and Kettrup, A. (2001d). Quantitative structure-property relationships for octanol-air partition coefficients of PCDD/Fs. Bulletin of Environmental Contamination and Toxicology 66, 755–761.
  • Chen, J.W., Xue, X., Schramm, K.-W., Quan, X., Yang, F., and Kettrup, A. (2003a). Quantitative structure-property relationships for octanol/air partition coefficients of polychlorinated naphthalenes, chlorobenzenes and p,p’-DDT. Computational Biology and Chemistry 27, 165–171.
  • Chen, J.W., Xue, X., Schramm, K.W., Quan, X., Yang, F., and Kettrup, A. (2002a). Quantitative structure-property relationships for octanol-air partition coefficients of polychlorinated biphenyls. Chemosphere 48, 535–544.
  • Chen, S.-D., Zeng, X.-L., Wang, Z.-Y., and Liu, H.-X. (2007). QSPR modeling of n-octanol/water partition coefficients and water solubility of PCDEs by the method of Cl substitution position. Science of the Total Environment 382, 59–69.
  • Cheu, J., Huang, Q., and Wang, L. (1996). Using AM1 Hamiltonian and factor analysis in prediction of partition properties for phenylthio, phenylsulfinyl, and phenylsulfonyl acetates. Chemosphere 33, 2565–2575.
  • Citra, M.J. (1999). Estimating the pKa of phenols, carbolxylic acids and alcohols from semi-empirical quantum chemical methods. Chemosphere 38, 191–206.
  • Clark, M. (2005). Generalized fragment-substructure based property prediction method. Journal of Chemical Information and Modeling 45, 30–38.
  • Colón, D., Weber, E.J., and Anderson, J.L. (2006). QSAR study of the reduction of nitroaromatics by Fe(II) species. Environmental Science and Technology 40, 4976–4982.
  • Colón, D., Weber, E.J., and Baughman, G.L. (2002). Sediment-associated reactions of aromatic amines. 2. QSAR development. Environmental Science and Technology 36, 2443–2450.
  • Consonni, V., and Todeschini, R. (2010). Molecular descriptors. In T. Puzyn, J. Leszczynski, and M.T.D. Cronin (Eds.), Recent advances in QSAR studies. Methods and applications (pp. 20–102). New York: Springer.
  • Consonni, V., Todeschini, R., and Pavan, M. (2002). Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors. Journal of Chemical Information and Computer Science 42, 682–692.
  • Cousins, I., and Mackay, D. (2000). Correlating the physical-chemical properties of phthalate esters using the ‘three solubility’ approach. Chemosphere 41, 1389–1399.
  • Cramer, C.J., Famini, G.R., and Lowrey, A.H. (1993). Use of calculated quantum chemical properties as surrogates for solvatochromic parameters in structure-activity relationships. Accounts of Chemical Research 26, 599–605.
  • Cronin, M.T. D., Walker, J.D., Jaworska, J.S., Comber, M.H. I., Watts, C.D., and Worth, A.P. (2003). Use of QSARs in international decision-making frameworks to predict ecologic effects and environmental fate of chemical substances. Environmental Health Perspectives 111, 1376–1390.
  • Cruciani, G., Crivori, P., Carrupt, P.-A., and Testa, B. (2000a). Molecular fields in quantitative structure-permeation relationships: the VolSurf approach. Journal of Molecular Structure (Theochem) 503, 17–30.
  • Cruciani, G., Pastor, M., and Guban, W. (2000b). VolSurf: a new tool for the pharmacokinetic optimization of lead compounds. European Journal of Pharmaceutical Sciences 11, S29–S39.
  • Cuissart, B., Touffet, F., Cremilleux, B., Bureau, R., and Rault, S. (2002). The maximum common substructure as a molecular depiction in a supervised classification context: experiments in quantitative structure/biodegradability relationships. Journal of Chemical Information and Computer Sciences 42, 1043–1052.
  • Dai, J., Jin, L., Wang, L., and Zhang, Z. (1998). Determination and estimation of water solubilities and octanol/water partition coefficients for derivatives of benzanilides. Chemosphere 37, 1419–1427.
  • Dai, J., Sun, C., Han, S., and Wang, L. (1999). QSAR for polychlorinated organic compounds (PCOCs). I. Prediction of partition properties for PCOCs using quantum chemical parameters. Bulletin of Environmental Contamination and Toxicology 62, 530–538.
  • Dai, J., Xu, M., and Wang, L. (2000). Prediction of octanol/water partitioning coefficient and sediment sorption coefficient for benzaldehydes by various molecular descriptors. Bulletin of Environmental Contamination and Toxicology 65, 190–199.
  • Dearden, J.C., and Nicholson, R.M. (1986). The prediction of biodegradability by the use of quantitative structure-activity-relationships: Correlation of biological oxygen-demand with atomic charge difference. Pesticide Science 17, 305–310.
  • Dearden, J.C., and Nicholson, R.M. (1987). QSAR study of the biodegradability of environmental pollutants. In D. Hadzi and B. Blazic (Eds.), QSAR in drug design and toxicology (Vol. 45, pp. 307–312), Amsterdam.
  • Dearden, J.C., and Schüürmann, G. (2003). Quantitative structure-property relationships for predicting Henrys’law constant from molecular structure. Environmental Toxicology and Chemistry 22, 1755–1770.
  • Delisle, R.K., and Dixon, S.L. (2004). Induction of decision trees via evolutionary programming. Journal of Chemical Information and Computer Sciences 44, 862–870.
  • Desai, S.M., Govind, R., and Tabak, H.H. (1990). Development of quantitative structure-activity-relationships for predicting biodegradation kinetics. Environmental Toxicology and Chemistry 9, 473–477.
  • Dimitriou-Christidis, P., Autenrieth, R.L., and Abraham, M.H. (2008). Quantitative structure-activity relationships for kinetic parameters of polycyclic aromatic hydrocarbon biotransformation. Environmental Toxicology and Chemistry 27, 1496–1504.
  • Ding, G., Chen, J., Qiao, X., Huang, L., Lin, J., and Chen, X. (2006). Quantitative relationships between molecular strutures, environmental temperatures and solid vapor pressures of PCDD/Fs. Chemosphere1057–1063.
  • Djohan, D., Yu, Q., and Connell, D.W. (2005). Partition isotherms of chlorobenzenes in a sediment-water system. Water, Air and Soil Pollution 161, 157–173.
  • Doucette, W.J. (2003). Quantitative structure-activity relationships for predicting soil-sediment sorption coefficients for organic chemicals. Environmental Toxicology and Chemistry 22, 1771–1788.
  • Doucette, W.J., and Andren, A.W. (1988). Estimation of octanol/water partition coefficients: evaluation of six methods for highly hydrophobic aromatic hydrocarbons. Chemosphere 17, 345–359.
  • Dowdy, D.L., and McKone, T.E. (1997). Predicting plant uptake of organic chemicals from soil or air using octanol/water and octanol/air partition ratios and a molecular connectivity index. Environmental Toxicology and Chemistry 16, 2448–2456.
  • 5 (2007). Software for the calculation of molecular descriptors, Talete s.r.l. http://www.talete.mi.it/
  • Droge, S.T. J., Yarza-Irusta, L., and Hermens, J.L. M. (2009). Modeling nonlinear sorption of alcohol ethoxylates to sediment: the influence of molecular structure and sediment properties. Environmental Science and Technology 43, 5712–5718.
  • Duirk, S.E., Desetto, L.M., and Davis, G.M. (2009). Transformation of organophosphorous pesticides in the presence of aqueous chlorine: kinetics, pathways, and structure-activity relationships. Environmental Science and Technology 43, 2335–2340.
  • Dunnivant, F.M., Elzerman, A.W., Jurs, P.C., and Hasan, M.N. (1992). Quantitative structure-property relationships for aqueous solubilities and Henry's law constants of polychlorinated biphenyls. Environmental Science and Technology 26, 1567–1573.
  • Edward, J.T. (1998). Calculation of octanol-water partition coefficients of organic solutes from their molecular volumes. Canadian Journal of Chemistry 76, 1294–1303.
  • Estrada, E., Delgado, E.J., Alderete, J.B., and Jaña, G.A. (2004). Quantum-connectivity descriptors in modeling solubility of environmentally important organic compounds. Journal of Computational Chemistry 25, 1787–1796.
  • Famini, G.R., and Wilson, L.Y. (1997). Using theoretical descriptors in quantitative structure activity relationships: application to partition properties of alkyl (1-phenylsulfonyl)cycloalkane-carboxylates. Chemosphere 35, 2417–2447.
  • Feng, L., Han, S., Wang, L., and Wang, Z. (1996). Determination and estimation of partitioning properties for phenylthio-carboxylates. Chemosphere 32, 353–360.
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J. (2009). Gaussian 09. Wallingford, CT: Gaussian, Inc.
  • Gamberger, D., Horvatic, D., Sekusak, S., and Sabljic, A. (1996). Applications of experts’ judgement to derive structure-biodegradation relationships. Environmental Science and Pollution Research International 3, 224–228.
  • Gawlik, B.M., Sotiriou, N., Feicht, E.A., Schulte-Hostede, S., and Kettrup, A. (1997). Alternatives for the determination of the soil adsorption coefficient, Koc, of non-ioninorganic compounds: A review. Chemosphere 34, 2525–2551.
  • Geating, J. (1981). Project summary, literature study of the biodegradability of chemicals in water, vol 1 and 2, U.S. Environmental Protection Agency, EPA-600/S2-172/176.
  • Gerstl, Z. (1990). Estimation of organic chemical sorption by soils. Journal of Contaminant Hydrology 6, 357–375.
  • Gerstl, Z., and Helling, C.S. (1987). Evaluation of molecular connectivity as a predictive method for the adsorption of pesticides by soils. Journal of Environmental Science and Health B 22, 55–69.
  • Ghasemi, J., Saaidpour, S., and Brown, S.D. (2007). QSPR study for estimation of acidity constants of some aromatic acids derivatives using multiple linear regression (MLR) analysis. Journal of Molecular Structure: THEOCHEM 805, 27–32.
  • Gombar, V.K., and Enslein, K. (1991). A structure-biodegradability relationship model by discrimant analysis. In J. Devillers and W. Karcher (Eds.), Applied multivariate analysis in SAR and environmental studies. Dordrecht, the Netherlands: Kluwer Academic.
  • Gombar, V.K., and Enslein, K. (1996). Assessment of n-octanol/water partition coefficient: when is the assessment reliable? Journal of Chemical Information and Computer Science 36, 1127–1134.
  • Goss, K.-U. (2006). Prediction of the temperature dependency of Henry's law constant using poly-parameter linear free energy relationships. Chemosphere 64, 1369–1374.
  • Goss, K.-U., and Schwarzenbach, R.P. (2001). Linear free energy relationships used to evaluate equilibrium partitioning of organic compounds. Environmental Science and Technology 35, 1–9.
  • Goudarzi, N., Goodarzi, M., Ugulino Araujo, M.C., and Harrop Galvao, R.K. (2009). QSPR modeling of soil sorption coefficients (KOC) of pesticides using SPA-ANN and SPA-MLR. Journal of Agricultural and Food Chemistry 57, 7153–7158.
  • Gramatica, P. (2007). Principles of QSAR models validation: internal and external. QSAR and Combinatorial Science 26, 694–701.
  • Gramatica, P., Consolaro, F., and Pozzi, S. (2001). QSAR approach to POPs screening for atmospheric persistence. Chemosphere 43, 655–664.
  • Gramatica, P., Consonni, V., and Todeschini, R. (1999a). QSAR study on the tropospheric degradation of organic compounds. Chemosphere 38, 1371–1378.
  • Gramatica, P., Corradi, M., and Consonni, V. (2000). Modelling and prediction of soil sorption coefficients of non-ionic pesticides by molecular descriptors. Chemosphere 41, 763–777.
  • Gramatica, P., and Di Guardo, A. (2002). Screening of pesticides for environmental partitioning tendency. Chemosphere 47, 947–956.
  • Gramatica, P., Navas, N., and Todeschini, R. (1999b). Classification of organic solvents and modelling of their physico-chemical properties by chemometric methods using different sets of molecular descriptors. Trends in Analytical Chemistry 18, 461–471.
  • Gramatica, P., Pilutti, P., and Papa, E. (2003). QSAR prediction of ozone tropospheric degradation. QSAR 22, 364–373.
  • Greaves, A.J., Churchley, J.H., Hutchings, M.G., Philipps, D.A. S., and Taylor, J.A. (2001). A chemometric approach to understanding the bioelimination of anionic, water-soluble dyes by a biomass using empirical and semi-empirical molecular descriptors. Water Research 35, 1225–1239.
  • Gross, K.C., and Seybold, P.G. (2000). Substituents effects on the physical properties and pKa of aniline. International Journal of Quantum Chemistry 80, 1107–1115.
  • Gross, K.C., and Seybold, P.G. (2001). Substituents effects on the physical properties and pKa of phenol. International Journal of Quantum Chemistry 85, 569–579.
  • Gross, K.C., Seybold, P.G., Peralta-Inga, Z., Murray, J.S., and Politzer, P. (2001). Comparison of quantum chemical parameters and Hammett constants in correlating pKa values of substituted anilines. Journal of Organic Chemistry 66, 6919–6925.
  • Grüber, C., and Buß, V. (1989). Quantum-mechanically calculated properties for the development of quantitative-structure activity relationships (QSAR's). pKa values of phenols and aromatic and aliphatic carboxylic acids. Chemosphere 19, 1595–1609.
  • Gupta, K., Roy, D.R., Subramanian, V., and Chattaraj, P.K. (2007). Are strong Brønsted acids necessarily strong Lewis acids? Journal of Molecular Structure 812, 13–24.
  • Gupta, S., Singh, M., and Madan, A.K. (1999). Superpendentic index: a novel topological descriptor for predicting biological activity. Journal of Chemical Information and Computer Sciences 39, 272–277.
  • Gustafson, D.I. (1989). Groundwater ubiquity score: a simple method for assessing pesticide leachability. Environmental Toxicology and Chemistry 8, 339–357.
  • Güsten, H. (1999). Predicting the abiotic degradability of organic pollutants in the troposphere. Chemosphere 38, 1361–1370.
  • Güsten, H., Horvatic, D., and Sabljic, A. (1991). Modelling n-octanol/water partition coefficients by molecular topology: polycyclic aromatic hydrocarbons and their alkyl derivatives. Chemosphere 23, 199–213.
  • Güsten, H., Klasinc, L., and Maric, D. (1984). Prediction of the abiotic degradability of organic compounds in the troposphere. Journal of Atmospheric Chemistry 2, 83–93.
  • Güsten, H., Medven, Z., Sekusak, S., and Sabljic, A. (1995). Predicting tropospheric degradation of chemicals: from estimation to computation. SAR and QSAR in Environmental Research 4, 197–209.
  • Habibi-Yangjeh, A., Pourbasheer, E., and Danandeh-Jenagharad, M. (2009). Application of principal component-genetic algorithm-artificial neural network for prediction acidity constant of various nitrogen-containing compounds in water. Monatshefte für Chemie 140, 15–27.
  • Hall, L.H., and Story, C.T. (1996). Boiling point and critical temperature of a heterogeneous data set: QSAR with atom type electrotopological state indices using artificial neural networks. Journal of Chemical Information and Computer Sciences 36, 1004–1014.
  • Hall, L.H., Mohney, B., and Kier, L.B. (1991). The electrotopological state: an atom index for QSAR. Quantitative Structure Activity Relationships 10, 43–51.
  • Han, X.-Y., Wang, Z.-Y., Zhai, Z.-C., and Wang, L.-S. (2006). Estimation of n-octanol/water partition coefficients (KOW) of all PCB congeners by ab initio and a Cl substitution position method. QSAR and Combinatorial Science 25, 333–341.
  • Hanai, T. (2003). Quantitative structure–retention relationships of phenolic compounds without Hammett's equations. Journal of Chromatography A 985, 343–349.
  • Hance, R.J. (1969). An empirical relationship between chemical structure and the sorption of some herbicides by soils. Journal of Agricultural and Food Chemistry 17, 667–668.
  • Hansch, C., and Gao, H. (1997). Comparative QSAR: radical reactions of benzene derivatives in chemistry and biology. Chemical Reviews 97, 2995–3059.
  • Hansch, C., and Leo, A. J. (1979). Substituent constants for correlation analysis in chemistry and biology. New York: Wiley.
  • Hansen, B.G., Paya-Perez, A.B., Rahman, M., and Larsen, B.R. (1999a). QSARs for KOW and Koc of PCB congeners: a critical examination of data, assumptions and statistical approaches. Chemosphere 39, 2209–2228.
  • Hansen, B.G., van Haelst, A.G., van Leeuwen, K., and van der Zandt, P. (1999b). Priority setting for existing chemicals: European Union risk ranking methods. Environmental Toxicology and Chemistry 18, 772–779.
  • Hawker, D.W., and Connell, D.W. (1988). Octanol-water partition coefficients of polychlorinated biphenyl congeners. Environmental Science and Technology 22, 382–387.
  • Hawthorne, S.B., Grabanski, C.B., Miller, D.J., and Arp, H.P. H. (2011). Improving predictability of sediment-porewater partitioning models using trends observed with PCB-contaminated field sediments. Environmental Science and Technology 45, 7365–7371.
  • He, Y., Wang, L., Han, S., Zhao, Y., Zhang, Z., and Zou, G. (1995). Determination and estimation of physicochemical properties for phenylsulfonyl acetates. Chemosphere117–125.
  • Hermens, J., Balaz, S., Damborsky, J., Karcher, W., Müller, M., Peijnenburg, W., Sabljic, A., and Sjöström, M. (1995). Assessment of QSARs for predicting fate and effects of chemicals in the environment: an international European project. SAR and QSAR in Environmental Research 3, 223–236.
  • Hiatt, M.H. (1998). Bioconcentration factors for volatile organic compounds in vegetation. Analytical Chemistry 70, 850–856.
  • Hickey, J.P., and Passino-Reader, D.R. (1991). Linear solvation energy relationships: “rules of thumb” for estimation of variable values. Environmental Science and Technology 25, 1753–1760.
  • Hollingsworth, C.A., Seybold, P.G., and Hadad, C.M. (2002). Substituents effects on the electronic structure and pKa of benzoic acid. International Journal of Quantum Chemistry 90, 1396–1403.
  • Hou, T.J., Xia, K., Zhang, W., and Xu, X.J. (2004). ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach. Journal of Chemical Information and Computer Science 44, 266–275.
  • Howard, P.H. (2000). Biodegradation. In R. Boethling and D. Mackay (Eds.), Handbook of property estimation methods for chemicals (pp. 281–310). Boca Raton: Lewis.
  • Howard, P.H. (2008). Predicting the persistence of organic compounds. In Handbook of Environmental Chemistry Vol. 2, Springer, Berlin, published online 14 March 2008.
  • Howard, P.H., Boethling, R.S., Stiteler, W.M., Meylan, W.M., and Beauman, H.A. (1991). Development of a predictive model for biodegradability based on Biodeg, the evaluated biodegradation database. Science of the Total Environment 109, 635–641.
  • Howard, P.H., Boethling, R.S., Stiteler, W.M., Meylan, W.M., Hueber, A.E., Beauman, H.A., and Larosche, M.E. (1992). Predictive model for aerobic biodegradability developed from a file of evaluated biodegradation data. Environmental Toxicology and Chemistry 6, 593–603.
  • Howard, P.H., Meylan, W., Aronson, D., Stiteler, W., Tunkel, J., Comber, M., and Parkerton, T. (2005). A new biodegradation prediction model specific to petroleum hydrocarbons. Environmental Toxicology and Chemistry 24, 1847–1860.
  • Hsieh, H.-N., and Mukherjee, S. (2003). A QSAR model for desorption of halogenated aliphatics from biosolids. Advances in Environmental Research 7, 511–520.
  • Hu, J.-Y., Morita, T., Magara, Y., and Aizawa, T. (2000). Evaluation of reactivity of pesticides with ozone in water using the energies of frontier molecular orbitals. Water Research 34, 2215–2222.
  • Hu, Q., Wang, X., and Brusseau, M.L. (1995). Quantitative structure-activity relationships for evaluating the influence of sorbate structure on sorption of organic compounds by soil. Environmental Toxicology and Chemistry 14, 1133–1140.
  • Huibers, P.D. T., and Katritzky, A.R. (1998). Correlation of the aqueous solubility of hydrocarbons and halogenated hydrocarbons with molecular structure. Journal of Chemical Information and Computer Sciences 38, 283–292.
  • Huuskonen, J.J. (2000). Estimation of aqueous solubility for a diverse set of organic compounds based on molecular topology. Journal of Chemical Information and Computer Science 40, 773–777.
  • Huuskonen, J.J. (2001a). Estimation of water solubility from atom-type electrotopological state indices. Environmental Toxicology and Chemistry 20, 491–497.
  • Huuskonen, J.J. (2001b). Prediction of biodegradation from the atom-type electrotopological state indices. Environmental Toxicology and Chemistry 20, 2152–2157.
  • Huuskonen, J.J. (2003). Prediction of soil sorption coefficient of organic pesticides from the atom-type electrotopological state indices. Environmental Toxicology and Chemistry 22, 816–820.
  • Huuskonen, J.J., Salo, M., and Taskinen, J. (1997). Neural network modeling for estimation of the aqueous solubility of structurally related drugs. Journal of Pharmaceutical Sciences 86, 450–454.
  • Huuskonen, J.J., Salo, M., and Taskinen, J. (1998). Aqueous solubility prediction of drugs based on molecular topology and neural network modeling. Journal of Chemical Information and Computer Sciences 38, 450–456.
  • Huuskonen, J.J., Villa, A.E. P., and Tetko, I.V. (1999). Prediction of partition coefficient based on atom-type electrotopological state indices. Journal of Pharmaceutical Sciences 88, 229–233.
  • HyperChem. (2007). Hyperchem 8.0. Gainesville, FL: Hypercube, Inc.
  • Jaworska, J., Boethling, R.S., and Howard, P.S. (2003). Recent development in broadly applicable structure-biodegradability relationships. Environmental Toxicology and Chemistry 22, 1710–1723.
  • Jaworska, J., Dimitrov, S., Nikolova, N., and Mekenyan, O. (2002). Probabilistic assessment of biodegradability based on metabolic pathways: Catabol system. SAR and QSAR in Environmental Research 13, 307–323.
  • Jaworska, J., Nikolova-Jeliazkova, N., and Aldenberg, T. (2005). QSAR applicability domain estimation by projection of the training set in descriptor space: a review. Atla-Alternatives to Laboratory Animals 33, 445–459.
  • Jin, L., Dai, J., Wang, L., Wei, Z., and Huang, Q. (1997). Determination and estimation of the sorption of benzaldehydes on soil. Chemosphere 35, 2707–2712.
  • Jover, J., Bosque, R., and Sales, J. (2007). Neural network based QSPR study for predicting pKa of phenols in different solvents. QSAR and Combinatorial Science 26, 385–397.
  • Jover, J., Bosque, R., and Sales, J. (2008). QSPR prediction of pKa for benzoic acids in different solvents. QSAR and Combinatorial Science 27, 563–581.
  • Kallies, B., and Mitzner, R. (1997). pKa values of amines in water from quantum mechanical calculations using a polarized dielectric continuum representation of the solvent. Journal of Physical Chemistry B 101, 2959–2967.
  • Kamlet, M.J., Doherty, R.M., Carr, P.W., Mackay, D., Abraham, M.H., and Taft, R.W. (1988). Linear solvation energy relationships. 44. Parameter estimation rules that allow accurate prediction of octanol/water partition coefficients and other solubility and toxicity properties of polychlorinated biphenyls and polycyclic aromatic hydrocarbons. Environmental Science and Technology 22, 503–509.
  • Kanazawa, J. (1989). Relationship between the soil sorption constants for pesticides and their physicochemical properties. Environmental Toxicology and Chemistry477–484.
  • Karelson, M., Lobanov, V.S., and Katritzky, A.R. (1996). Quantum-chemical descriptors in QSAR/QSPR studies. Chemical Reviews 96, 1027–1043.
  • Katayama, A., Bhula, R., Burns, G.R., Carazo, E., Felsot, A., Hamilton, D., Harris, C., Kim, Y.-H., Kleter, G., Koedel, W., Linders, J., Peijnenburg, J.G. M. W., Sabljic, A., Stephenson, R.G., Racke, D.K., Rubin, B., Tanaka, K., Unsworth, J., and Wauchope, D. (2010). Bioavailability of xenobiotics in the soil environment. Reviews of Environmental Contamination and Toxicology 203, 1–86.
  • Katritzky, A.R., Lobadov, V.S., and Karelson, M. (2005). CODESSA PRO User's Manual, University of Florida (http://www.codessa-pro.com/).
  • Katritzky, A.R., Maran, U., Lobanov, V.S., and Karelson, M. (2000). Structurally diverse quantitative structure-property relationship correlations of technologically relevant physical properties. Journal of Chemical Information and Computer Sciences 40, 1–18.
  • Katritzky, A.R., Wang, Y., Sild, S., and Tamm, T. (1998). QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients. Journal of Chemical Information and Computer Science 38, 720–725.
  • Kier, L.B. (1986). Shape indexes of orders one and three from molecular graphs. Quantitative Structure-Activity Relationship, 5, 1–7.
  • Kier, L.B., and Hall, L.H. (1999). The electrotopological state: structure modelling for QSAR and database analysis. In Topological Indices and Related Descriptors in QSAR and QSPR; Devillers, J., and Balaban, A.T., Eds.; Gordon and Breach Science Publishers: The Netherlands 1999; pp 491–562.
  • Kier, L.B., and Hall, L.H. (2000). Intermolecular accessibility: the meaning of molecular connectivity. Journal of Chemical Information and Computer Sciences 40, 792–795.
  • Kier, L.B., and Hall, L.H. (2002). The meaning of molecular connectivity: a bimolecular accessibility model. Croatica Chemica Acta 75, 371–382.
  • Kiewiet, A.T., de Beer, K.G. M., Parsons, J.R., and Govers, H.A.J. (1996). Sorption of linear alcohol ethoxylates on suspended sediments. Chemosphere 32, 675–680.
  • Kim, J.H., Gramatica, P., Kim, M.G., Kim, D., and Tratnyek, P.G. (2007). QSAR modelling of water quality indices of alkylphenol pollutants. SAR and QSAR in Environmental Research 18, 729–743.
  • Klamt, A. (1993). Estimation of gas-phase hydroxyl radical rate constants of organic compounds from molecular orbital calculations. Chemosphere 26, 1273–1289.
  • Klamt, A., Eckert, F., and Diedenhofen, M. (2002). Prediction of soil sorption coefficients with a conductor-like screening model for real solvents. Environmental Toxicology and Chemistry 21, 2562–2566.
  • Klamt, A., Eckert, F., Diedenhofen, M., and Beck, M.E. (2003). First principles calculations of aqueous pKa values for organic and inorganic acids using COSMO-RS reveal an inconsistency in the slope of the pKa scale. Journal of Physical Chemistry A 107, 9380–9386.
  • Klopman, G. (1992). A hierarchical computer automated structure evaluation program.1. Quantitative Structure-Activity Relationships 11, 176–184.
  • Klopman, G., Dimayuga, M., and Talafous, J. (1994). Meta.1. a program for the evaluation of metabolic transformation of chemicals. Journal of Chemical Information and Computer Sciences 34, 1320–1325.
  • Klopman, G., Zhang, Z.T., Balthasar, D.M., and Rosenkranz, H.S. (1995). Computer-automated predictions of aerobic biodegradation of chemicals. Environmental Toxicology and Chemistry 14, 395–403.
  • Kompare, B. (1998). Estimating environmental pollution by xenobiotic chemicals using QSAR (QSBR) models based on artificial intelligence. Water Science and Technology 37, 9–18.
  • Kühne, R., Ebert, R.-U., Kleint, F., Schmidt, G., and Schüürmann, G. (1995). Group contribution methods to estimate water solubility of organic chemicals. Chemosphere 30, 2061–2077.
  • Kühne, R., Ebert, R.-U., and Schüürmann, G. (1997). Estimation of vapour pressures for hydrocarbons and halogenated hydrocarbons from chemical structure by a neural network. Chemosphere 34, 671–686.
  • Kühne, R., Ebert, R.-U., and Schüürmann, G. (2005). Prediction of the temperature dependency of Henry's law constant from chemical structure. Environmental Science and Technology 39, 6705–6711.
  • Kušić, H., Rasulev, B., Leszczynska, D., Leszczynski, J., and Koprivanac, N. (2009). Prediction of rate constants for radical degradation of aromatic pollutants in water matrix: A QSAR study. Chemosphere 75, 1128–1134.
  • Lara, R., and Ernst, W. (1989). Interaction between polychlorinated biphenyls and marine humic substances. Determination of association coefficients. Chemosphere 19, 1655–1664.
  • Lee, A.C., and Crippen, G.M. (2009). Predicting pKa. Journal of Chemical Information and Modeling 49, 2013–2033.
  • Leo, AJ.. (1975). In Veith G.D. and Korasevich D.E. (Eds). Proceedings of Symposium on structure-activity correlations in studies of toxicity and bio-concentration with aquatic organisms (p 151). Great Lakes Research Advisory Board: Burlington, Ontario.
  • Li, L., Xie, S., Cai, H., Bai, X., and Xue, Z. (2008). Quantitative structure–property relationships for octanol-water partition coefficients of polybrominated diphenyl ethers. Chemosphere 72, 1602–1606.
  • Li, Y., and Xi, D.L. (2007). Quantitative structure-activity relationship study on the biodegradation of acid dyestuffs. Journal of Environmental Sciences 19, 800–804.
  • Liang, C., and Gallagher, D.A. (1998). QSPR prediction of vapor pressure from solely theoretically-derived descriptors. Journal of Chemical Information and Computer Sciences 38, 321–324.
  • Lindner, A.S., Whitfield, C., Chen, N., Semrau, J.D., and Adriaens, P. (2003). Quantitative structure-biodegradation relationships for ortho-substituted biphenyl compounds oxidized by methylosinus trichosporium OB3b. Environmental Toxicology and Chemistry 22, 2251–2257.
  • Liu, G., and Yu, J. (2005). QSAR analysis of soil sorption coefficients for polar organic chemicals: substituted anilines and phenols. Water Research 39, 2048–2055.
  • Liu, S., Cao, C., and Li, Z. (1998). Approach to estimation and prediction for normal boiling point (NBP) of alkanes based on a novel molecular distance-edge (MDE) vector, λ. Journal of Chemical Information and Computer Sciences 38, 387–394.
  • Liu, S., and Pedersen, L.G. (2009). Estimation of molecular acidity via electrostatic potential at the nucleus and valence natural atomic orbitals. Journal of Physical Chemistry A 113, 3648–3655.
  • Liu, S., Yin, C., Cai, S., and Li, Z. (2002). Molecular structural vector description and retention index of polycyclic aromatic hydrocarbons. Chemometrics and Intelligent Laboratory Systems 61, 3–15.
  • Ljubic, I., and Sabljic, A. (2002). Theoretical study of the mechanism and kinetics of gas-phase ozone additions to ethene, fluoroethene, and chloroethene: A multireference approach. Journal of Physical Chemistry A 106, 4745–4757.
  • Lohninger, H. (1994). Estimation of soil partition coefficients of pesticides from their chemical structure. Chemosphere 29, 1611–1626.
  • Long, X., and Niu, J. (2007). Estimation of gas-phase reaction rate constants of alkylnaphthalenes with chlorine, hydroxyl and nitrate radicals. Chemosphere 67, 2028–2034.
  • Loonen, H., Lindgren, F., Hansen, B., and Karcher, W. (1996). Biodegradability prediction. Kluwer Academic Publishers, Dordrecht, NL 1996, pp105–114.
  • Loonen, H., Lindgren, F., Hansen, B., Karcher, W., Niemela, J., Hiromatsu, K., Takatsuki, M., Peijnenburg, W., Rorije, E., and Struijs, J. (1999). Prediction of biodegradability from chemical structure: modeling of ready biodegradation test data. Environmental Toxicology and Chemistry 18, 1763–1768.
  • Louchart, X., and Voltz, M. (2007). Aging effects on the availability of herbicides to runoff transfer. Environmental Science and Technology 41, 1137–1144.
  • Lu, C. (2009). Prediction of environmental properties in water-soil-air systems for phthalates. Bulletin of Environmental Contamination and Toxicology 83, 168–173.
  • Lu, C., Wang, Y., Yin, C., Guo, W., and Hu, X. (2006). QSPR study on soil sorption coefficient for persistent organic pollutants. Chemosphere 63, 1384–1391.
  • Lu, G.-N., Dang, Z., Tao, X.-Q., Yang, C., and Yi, X.-Y. (2008). Estimation of water solubility of polycyclic aromatic hydrocarbons using quantum chemical descriptors and partial least squares. QSAR and Combinatorial Science 27, 618–626.
  • Lü, W., Chen, Y., Liu, M., Chen, X., and Hu, Z. (2007). QSPR prediction of n-octanol/water partition coefficient for polychlorinated biphenyls. Chemosphere 69, 469–478.
  • Ma, B., Chen, H., Xu, M., Hayat, T., He, Y., and Xu, J. (2010). Quantitative structureeactivity relationship (QSAR) models for polycyclic aromatic hydrocarbons (PAHs) dissipation in rhizosphere based on molecular structure and effect size. Environmental Pollution 158, 2773–2777.
  • Ma, B., Xu, M., Wang, J., Chen, H., He, Y., Wu, L., Wang, H., and Xu, J. (2011). Adsorption of polycyclic aromatic hydrocarbons (PAHs) on Rhizopus oryzae cell walls: application of cosolvent models for validating the cell wall-water partition coefficient. Bioresource Technology 102, 10542–10547.
  • Ma, Y., Gross, K.C., Hollingsworth, C.A., Seybold, P.G., and Murray, J.S. (2004). Relationships between aqueous acidities and computed surface-electrostatic potentials and local ionization energies of substituted phenols and benzoic acids. Journal of Molecular Modeling 10, 235–239.
  • MacElroy, N.R., and Jurs, P.C. (2001). Prediction of aqueous solubility of heteroatom-containing organic compounds from molecular structure. Journal of Chemical Information and Computer Science 41, 1237–1247.
  • Mackay, D., Hubbarde, J., and Webster, E. (2003). The role of QSARs and fate models in chemical hazard and risk assessment. Environmental Toxicology and Chemistry 22, 106–112.
  • Mackay, D., McCarty, L.S., and McLeod, M. (2001). On the validity of classifying chemicals for persistence, bioaccumulation, toxicity, and potential for long-range transport. Environmental Toxicology and Chemistry1491–1498.
  • MacKone, T.E., and Maddalena, R.L. (2007). Plant uptake of organic pollutants from soil: bioconcentration estimates based on models and experiments. Environmental Toxicology and Chemistry 26, 2494–2504.
  • Makino, M. (1998). Prediction of n-octanol/water partition coefficients of polychlorinated biphenyls by use of computer calculated molecular properties. Chemosphere 37, 13–26.
  • Medven, Z., Güsten, H., and Sabljic, A. (1996). Comparative QSAR study on hydroxyl radical reactivity with unsaturated hydrocarbons: PLS versus MLR. Journal of Chemometrics 10, 135–147.
  • Meng, J.-X., Wang, X.-B., Ruan, G.-L., Li, G.-Q., and Deng, Z.-X. (2005). Determination of chlorine in atmosphere by kinetic spectrophotometry. Spectrochimica Acta Part A 61, 823–827.
  • Meylan, W.M., Boethling, R., Aronson, D., Howard, P., and Tunkel, J. (2007). Chemical structure-based predictive model for methanogenic anaerobic biodegradation potential. Environmental Toxicology and Chemistry 26, 1785–1792.
  • Meylan, W.M., and Howard, P.H. (1991). Bond contribution method for estimating Henry's law constants. Environmental Toxicology and Chemistry 10, 1283–1293.
  • Meylan, W.M., and Howard, P.H. (1995). Atom/fragment contribution method for estimating octanol-water partition coefficients. Journal of Pharmaceutical Sciences 84, 83–92.
  • Meylan, W.M., and Howard, P.H. (2003). A review of quantitative structure-activity relationship methods for the prediction of atmospheric oxidation of organic chemicals. Environmental Toxicology and Chemistry 22, 1724–1732.
  • Meylan, W.M., Howard, P.H., and Boethling, R.S. (1992). Molecular topology/fragment contribution method for predicting soil sorption coefficients. Environmental Science and Technology 26, 1560–1567.
  • Mill, T. (1989). Structure-activity relationships for photooxidation processes in the environment. Environmental Toxicology and Chemistry 8, 31–43.
  • Mill, T. (1999). Predicting photoreaction rates in surface waters. Chemosphere 38, 1379–1390.
  • Mitchell, B.E., and Jurs, P.C. (1998). Prediction of aqueous solubility of organic compounds from molecular structure. Journal of Chemical Information and Computer Sciences 38, 489–496.
  • Modarresi, H., Modarress, H., and Dearden, J.C. (2007). QSPR model of Henry's law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach. Chemosphere 66, 2067–2076.
  • Mon, J., Flury, M., and Harsh, J.B. (2006). A quantitative structure–activity relationships (QSAR) analysis of triarylmethane dye tracers. Journal of Hydrology 316, 84–97.
  • Muir, D.C. G., and Howard, P.H. (2006). Are there other persistent organic pollutants? A challenge for environmental chemists. Environmental Science and Technology 40, 7157–7166.
  • Müller, M., and Klein, W. (1991). Estimating atmospheric degradation processes by SARs. Science of the Total Environment261–273.
  • Müller, M., and Klein, W. (1992). Comparative evaluation of methods predicting water solubility for organic compounds. Chemosphere 25, 769–782.
  • Müller, M., and Kördel, W. (1996). Comparison of screening methods for the estimation of adsorption coefficients on soil. Chemosphere 32, 2493–2504.
  • Nandihalli, U.B., Duke, M.V., and Duke, S.O. (1993). Prediction of RP-HPLC log P from semi-empirical molecular properties of diphenyl ether and phenopylate herbicides. Journal of Agricultural and Food Chemistry 41, 582–587.
  • Nguyen, T.H., Goss, K.-U., and Ball, W.P. (2005). Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments. Environmental Science and Technology 39, 913–924.
  • Niemi, G.J., Basak, S.C., Veith, G.D., and Grunwald, G. (1992). Prediction of octanol/water partition coefficient (KOW) with algorithmically derived variables. Environmental Toxicology and Chemistry 11, 893–900.
  • Nirmalakhandan, N.N., and Speece, R.E. (1988a). Prediction of aqueous solubility of organic chemicals based on molecular structure. Environmental Science and Technology 22, 328–338.
  • Nirmalakhandan, N.N., and Speece, R.E. (1988b). QSAR model for predicting Henry's constant. Environmental Science and Technology 22, 1349–1357.
  • Nirmalakhandan, N.N., and Speece, R.E. (1989). Prediction of aqueous solubility of organic chemicals based on molecular structure. 2. Application to NPAs, PCBs, PCDDs, etc. Environmental Science and Technology 23, 708–713.
  • Nirmalakhandan, N.N., and Speece, R.E. (1990). Response to comment on “Prediction of aqueous solubility of organic chemicals based on molecular structure. 2. Application to NPAs, PCBs, PCDDs, etc.” Environmental Science and Technology 24, 929–930.
  • Niu, J., Chen, J., Yu, G., and Schramm, K.-W. (2004). Quantitative structure-property relationships on direct photolysis of PCDD/Fs on surfaces of fly ash. SAR and QSAR in Environmental Research 15, 265–277.
  • Niu, J., Huang, L., Chen, J., Yu, G., and Schramm, K.-W. (2005). Quantitative structure-property relationships on photolysis of PCDD/Fs adsorbed to spruce (Picea abis (L.) Karst.) needle surfaces under sunlight irradiation. Chemosphere 58, 917–924.
  • Niu, J., Shen, Z., Yang, Z., Long, X., and Yu, G. (2006). Quantitative structure-property relationships on photodegradation of polybrominated diphenyl ethers. Chemosphere 64, 658–665.
  • Oberg, T. (2005). A QSAR for the hydroxyl radical reaction rate constant: validation, domain of application, and prediction. Atmospheric Environment 39, 2189–2200.
  • Okey, R.W., and Stensel, H.D. (1996). A QSAR-based biodegradability model: A QSBR. Water Research 30, 2206–2214.
  • Organization for Economic Cooperation and Development. (1992). OECD guideline for testing of chemicals. Ready biodegradability. Paris, France: OECD.
  • Organization for Economic Cooperation and Development. (1993). Application of structure-activity relationships to the estimation of properties important in exposure assessment. Environment monograph No 67. Paris, France: OECD.
  • Organization for Economic Cooperation and Development. (2009). OECD guideline for testing of chemicals. Inherent biodegradability: modified MITI test (II), 302 C. Paris, France: OECD.
  • Organization for Economic Cooperation and Development. (2013). Introduction to (quantitative) structure activity relationships. Retrieved from http://www.oecd.org/env/ehs/risk-assessment/introductiontoquantitativestructureactivityrelatio-nships.htm
  • Papa, E., Kovarich, S., and Gramatica, P. (2009). Development, validation and inspection of the applicability domain of QSPR models for physicochemical properties of polybrominated diphenyl ethers. QSAR and Combinatorial Science 8, 790–796.
  • Paris, D.F., and Wolfe, N.L. (1987). Relationships between properties of a series of anilines and their transformation by bacteria. Applied and Environmental Microbiology 53, 911–916.
  • Paris, D.F., Wolfe, N.L., Steen, W.C., and Baughman, G.L. (1983). Effect of phenol molecular-structure on bacterial transformation rate constants in pond and river samples. Applied and Environmental Microbiology 45, 1153–1155.
  • Parthasarathi, R., Padmanabhan, J., Elango, M., Chitra, K., Subramanian, V., and Chattaraj, P.K. (2006). pKa prediction using group philicity. Journal of Physical Chemistry 110, 6540–6544.
  • Paterson, S., Mackay, D., and MacFariane, C. (1994). A model of organic chemical uptake by plants from soil and the atmosphere. Environmental Science and Technology 26, 2259–2266.
  • Patil, G.S. (1994). Prediction of aqueous solubility and octanol-water partition coefficient for pesticides based on their molecular structure. Journal of Hazardous Materials 36, 35–43.
  • Pavan, M., and Worth, A.P. (2008). Review of estimation models for biodegradation. QSAR and Combinatorial Science 27, 32–40.
  • Peijnenburg, W.J. G. M. (1994). Structure-activity relationships for biodegradation: a critical review. Pure and Applied Chemistry 66, 1931–1941.
  • Peijnenburg, W.J. G. M., de Beer, K.G. M., de Haan, M.W. A., den Hollander, H.A., Stegeman, M.H. L., and Verboom, H. (1992). Development of a structure-reactivity relationship for the photohydrolysis of substituted aromatic halides. Environmental Science and Technology 26, 2116–2121.
  • Percival, C.J., Marston, G., and Wayne, R.P. (1995). Correlations between rate parameters and calculated molecular properties in the reactions of the hydroxyl radical with hydrofluorocarbons. Atmospheric Environment 29, 305–311.
  • Philipp, B., Hoff, M., Germa, F., Schink, B., Beimborn, D., and Mersch-Sundermann, V. (2007). Biochemical interpretation of quantitative structure-activity relationships (QSAR) for biodegradation of N-heterocycles: a complementary approach to predict biodegradability. Environmental Science and Technology 41, 1390–1398.
  • Phillips, K.L., Sandler, S.I., and Chiu, P.C. (2010). A method to calculate the one-electron reduction potentials for nitroaromatic compounds based on gas-phase quantum mechanics. Journal of Computational Chemistry 32, 226–239.
  • Platts, J.A., and Abraham, M.H. (2000). Partition of volatile organic compounds from air and from water into plant cuticular matrix: an LFER analysis. Environmental Science and Technology 34, 318–323.
  • Platts, J.A., Abraham, M.H., Butina, D., and Hersey, A. (2000). Estimation of molecular linear free energy relationship descriptors by a group contribution approach. 2. Prediction of partition coefficients. Journal of Chemical Information and Computer Sciences 40, 71–80.
  • Platts, J.A., Butina, D., Abraham, M.H., and Hersey, A. (1999). Estimation of molecular linear free energy relation descriptors using a group contribution approach. Journal of Chemical Information and Computer Sciences 39, 835–845.
  • Pompe, M., and Randic, M. (2007). Variable connectivity model for determination of pKa values for selected organic acids. Acta Chimica Slovenica 54, 605–610.
  • Pompe, M., and Veber, M. (2001). Prediction of rate constants for the reaction of O3 with different organic compounds. Atmospheric Environment 35, 3781–3788.
  • Poole, S.K., and Poole, C.F. (1999). Chromatographic models for the sorption of neutral organic compounds by soil from water and air. Journal of Chromatography A 845, 381–400.
  • Puzyn, T., Mostrag, A., Falandysz, J., Kholod, Y., and Leszczynski, J. (2009). Predicting water solubility of congeners: Chloronaphthalenes: A case study. Journal of Hazardous Materials 170, 1014–1022.
  • Randic, M. (1975). On characterization of molecular branching. Journal of the American Chemical Society 97, 6609–6615.
  • Randic, M. (1984). On molecular identification numbers. Journal of Chemical Information and Computer Sciences 24, 164–175.
  • Rao, P.S. C., Hornsby, A.G., and Jessup, R.E. (1985). Indices for ranking the potential for pesticide contamination of groundwater. Soil and Crop Science Society of Florida Proceedings 44, 1–8.
  • Raymond, J.W., Rogers, T.N., Shonnard, D.R., and Kline, A.A. (2001). A review of structure-based biodegradation estimation methods. Journal of Hazardous Materials B84, 189–215.
  • Reddy, K.N., and Locke, M.A. (1994a). Prediction of soil sorption (Koc) of herbicides using semiempirical molecular properties. Weed Science 42, 453–461.
  • Reddy, K.N., and Locke, M.A. (1994b). Relationships between molecular properties and logP and soil sorption (Koc) of substituted phenylureas: QSAR models. Chemosphere 28, 1929–1941.
  • Reddy, K.N., and Locke, M.A. (1996). Molecular properties as descriptors of octanol-water partition coefficients of herbicides. Water, Air and Soil Pollution 86, 389–405.
  • Renaud, F.G., Leeds-Harrison, P.B., Brown, C.D., and Van Beinum, W. (2004). Determination of time-dependent partition coefficients for several pesticides using diffusion theory. Chemosphere 57, 1525–2535.
  • Rorije, E., Loonen, H., Muller, M., Klopman, G., and Peijnenburg, W.J.G.M. (1999). Evaluation and application of models for the prediction of ready biodegradability in the MITI-I test. Chemosphere 38, 1409–1417.
  • Rorije, E., and Peijnenburg, W.J. G. M. (1996). QSARs for oxidation of phenols in the aqueous environment, suitable for risk assessment. Journal of Chemometrics 10, 79–93.
  • Roy, K., Sanyal, I., and Ghosh, G. (2007). QSPR of n-octanol/water partition coefficient of nonionic organic compounds using extended topochemical atom (ETA) indices. QSAR and Combinatorial Science 26, 629–646.
  • Rücker, C., and Kümmerer, K. (2012). Modeling and predicting aquatic aerobic biodegradation: a review from a user's perspective. Green Chemistry 14, 875–887.
  • Russom, C.L., Breton, R.L., Walker, J.D., and Bradbury, S.P. (2003). An overview of the use of quantitative structure-activity relationships for ranking and prioritizing large chemical inventories for environmental risk assessments. Environmental Toxicology and Chemistry 22, 1810–1821.
  • Sabljic, A. (1984). Predictions of the nature and strength of soil sorption of organic pollutants by molecular topology. Journal of Agricultural and Food Chemistry 32, 243–246.
  • Sabljic, A. (1987). On the prediction of soil sorption coefficients of organic pollutants from molecular structure: Application of molecular topology model. Environmental Science and Technology 21, 358–366.
  • Sabljic, A. (1989). Quantitative modelling of soil sorption for xenobiotic chemicals. Environmental Health Perspectives 83, 179–190.
  • Sabljic, A. (1991). Chemical topology and ecotoxicology. Science of the Total Environment197–220.
  • Sabljic, A. (2001). QSAR models for estimating properties of persistent organic pollutants required in evaluation of their environmental fate and risk. Chemosphere 43, 363–375.
  • Sabljic, A., and Güsten, H. (1989). Predicting Henry's law constant for polychlorinated biphenyls. Chemosphere 19, 1503–1511.
  • Sabljic, A., and Güsten, H. (1990). Predicting the night-time NO3 radical reactivity in the troposphere. Atmospheric Environment 24A, 73–78.
  • Sabljic, A., Güsten, H., Hermens, J., and Opperhuizen, A. (1993). Modeling octanol/water partition coefficients by molecular topology: chlorinated benzenes and biphenyls. Environmental Science and Technology 27, 1394–1402.
  • Sabljic, A., Güsten, H., Schönherr, J., and Riederer, M. (1990). Modeling plant uptake of airborne organic chemicals. 1. Plant cuticle/water partitioning and molecular connectivity. Environmental Science and Technology 24, 1321–1326.
  • Sabljic, A., Güsten, H., Verhaar, H., and Hermens, J. (1995). QSAR modelling of soil sorption. Improvements and systematics of log Koc vs. log KOW correlations. Chemosphere 31, 4489–4514.
  • Sabljic, A., and Horvatic, D. (1993). GRAPH III: A computer program for calculating molecular connectivity indices on microcomputers. Journal of Chemical Information and Computer Sciences 33, 292–295.
  • Sabljic, A., Lara, R., and Ernst, W. (1989). Modelling association of highly chlorinated biphenyls with marine humic substances. Chemosphere 19, 1665–1676.
  • Sabljic, A., and Peijnenburg, W. (2001). Modeling lifetime and degradability of organic compounds in air, soil, and water systems. Pure and Applied Chemistry 73, 1331–1348.
  • Sabljic, A., and Piver, W.T. (1992). Quantitative modeling of environmental fate and impact of commercial chemicals. Environmental Toxicology and Chemistry 11, 961–972.
  • Sabljic, A., and Trinajstic, N. (1981). Quantitative structure-activity relationships: the role of topological indices. Acta Pharmaceutica Jugolsavica 31, 189–214.
  • Sannigrahi, A.B. (1992). Ab-initio molecular-orbital calculations of bond index and valency. Advances in Quantitative Chemistry 23, 301–351.
  • Scherer, M.M., Balko, B.A., Gallagher, D.A., and Tratnyek, P.G. (1998). Correlation analysis of rate constants for dechlorination by zero-valent iron. Environmental Science and Technology 32, 3026–3033.
  • Schüürmann, G. (1995). Quantum chemical approach to estimate physicochemical compound properties: application to substituted benzenes. Environmental Toxicology and Chemistry 14, 2067–2076.
  • Schüürmann, G., Ebert, R.-U., and Kühne, R. (2006). Prediction of the sorption of organic compounds into soil organic matter from molecular structure. Environmental Science and Technology 40, 7005–7011.
  • Sedykh, A., and Klopman, G. (2007). Data analysis and alternative modelling of MITI-I aerobic biodegradation. SAR and QSAR in Environmental Research 18, 693–709.
  • Sekusak, S., and Sabljic, A. (1992). Soil sorption and chemical topology. Journal of Mathematical Chemistry 11, 271–280.
  • Seybold, P.G. (2008). Analysis of the pKas of aliphatic amines using quantum chemical descriptors. International Journal of Quantum Chemistry 108, 2849–2855.
  • Sharer, M., Park, J.-H., Voice, T.C., and Boyd, S.A. (2003). Aging effects on the sorption-desorption characteristics of anthropogenic organic compounds in soil. Journal of Environmental Quality 32, 1385–1392.
  • Sharma, V., Goswami, R., and Madan, A.K. (1997). Eccentric connectivity index: a novel highly discriminating topological descriptor for structure-property and structure-activity studies. Journal of Chemical Information and Computer Sciences 37, 273–282.
  • Shi, J., Zhang, X., Qu, R., Xu, Y., and Wang, Z. (2012). Synthesis and QSPR study on environment-related properties of polychlorinated diphenyl sulfides (PCDPSs). Chemosphere 88, 844–854.
  • Shiu, W.Y., Doucette, W., Gobas, F.A. P. C., Andren, A., and Mackay, D. (1988). Physical-chemical properties of chlorinated dibenzo-p-dioxins. Environmental Science and Technology 22, 651–658.
  • Soriano, E., Cerdán, S., and Ballesteros, P. (2004). Computational determination of pKa values. A comparison of different theoretical approaches and a novel procedure. Journal of Molecular Structure 684, 121–128.
  • Soscún Machado, H.J., and Hinchliffe, A. (1995). Relationships between the HOMO energies and pK, values in monocyclic and bicyclic azines. Journal of Molecular Structure. THEOCHEM 339, 255–258.
  • Staikova, M., Wania, F., and Donaldson, D.J. (2004). Molecular polarizability as a single-parameter predictor of vapour pressures and octanol-air partitioning coefficients of non-polar compounds: a priori approach and results. Atmospheric Environment 38, 213–225.
  • Stanton, D.T., and Jurs, P.C. (1990). Development and use of charged partial surface area structural descriptors in computer-assisted quantitative structure-property relationship studies. Analytical Chemistry 62, 2323–2329.
  • Sudhakaran, S., and Amy, G.L. (2013). QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification. Water Research1111–1122.
  • Sun, H., Huang, G., and Dai, S. (1996). Adsorption behaviour and QSPR studies of organotin compounds on estuarine sediment. Chemosphere 33, 831–838.
  • Sun, L., Zhou, L., Yu, Y., Lan, Y., and Li, Z. (2007). QSPR study of polychlorinated diphenyl ethers by molecular electronegativity distance vector (MEDV-4). Chemosphere 66, 1039–1051.
  • Sutter, J.M., and Jurs, P.C. (1996). Prediction of aqueous solubility for a diverse set of heteroatom-containing organic compounds using a quantitative structure-property relationship. Journal of Chemical Information and Computer Sciences 36, 100–107.
  • Tabak, H.H., Gao, C., Desai, S., and Govind, R. (1992). Development of predictive structure-biodegradation relationship models with the use of respirometrically generated biokinetic data. Water Science and Technology 26, 763–772.
  • Tabak, H.H., and Govind, R. (1993). Prediction of biodegradation kinetics using a nonlinear group contribution method. Environmental Toxicology and Chemistry 12, 251–260.
  • Tao, S., and Lu, X. (1999). Estimation of organic carbon normalized sorption coefficient (Koc) for soils by topological indices and polarity factors. Chemosphere 39, 2019–2034.
  • Tao, S., Piao, H., Dawson, R., Lu, X., and Hu, H. (1999). Estimation of organic carbon normalized sorption coefficient (Koc) for soils using the fragment constant method. Environmental Science and Technology 33, 2719–2725.
  • Tehan, B.G., Lloyd, E.J., Wong, M.G., Pitt, W.R., Gancia, E., and Manallack, D.T. (2002a). Estimation of pKa using semiempirical molecular orbital methods. Part 2: Application to amines, anilines and various nitrogen containing heterocyclic compounds. Quantitative Structure-Activity Relationships 21, 473–485.
  • Tehan, B.G., Lloyd, E.J., Wong, M.G., Pitt, W.R., Montana, J.G., Manallack, D.T., and Gancia, E. (2002b). Estimation of pKa using semiempirical molecular orbital methods. Part 1: Application to phenols and carboxylic acids. Quantitative Structure-Activity Relationships 21, 457–472.
  • Tetko, I.V., Tanchuk, V.Y., Kasheva, T.N., and Villa, A.E. P. (2001). Estimation of aqueous solubility of chemical compounds using E-state indices. Journal of Chemical Information and Computer Sciences 41, 1488–1493.
  • Thomsen, M., Rasmussen, A.G., and Carlsen, L. (1999). SAR/QSAR approaches to solubility, partitioning and sorption of phtalates. Chemosphere 38, 2613–2624.
  • Todeschini, R., and Consonni, V. (2000). Handbook of molecular descriptors. Methods and principles in medicinal chemistry. Volume 11. Weinheim, Germany: Wiley.
  • Todeschini, R., and Gramatica, P. (1997a). The WHIM theory: new 3D molecular descriptors for QSAR in environmental modeling. SAR and QSAR in Environmental Research 7, 89–115.
  • Todeschini, R., and Gramatica, P. (1997b). 3D-modelling and prediction by WHIM descriptors. Part 5. Theory development and chemical meaning of WHIM descriptors. Quantitative Structure Activity Relationships 16, 113–119.
  • Todeschini, R., Bettiol, C., Giurin, G., Gramatica, P., Miana, P., and Argese, E. (1996). Modeling and prediction by using WHIM descriptors in QSAR studies: submitochondrial particles (SMP) as toxicity biosensors of chlorophenols. Chemosphere 33, 71–79.
  • Topol, I.G., Tawa, G.J., Caldwell, R.A., Eissenstat, A., and Burt, S.K. (2000). Acidity of organic molecules in the gas phase and in aqueous solvent. Journal of Physical Chemistry A 104, 9619–9624.
  • TORVS Research Team. (1999). Parameter estimation for the treatment of reactivity applications. Erlangen, Germany: Computer-Chemie-Centrum, University of Erlangen-Nuernberg. Retrieved from http://www2.ccc.uni-erlangen.de/software/petra/
  • Tratnyek, P.G., Weber, E.J., and Schwarzenbach, R.P. (2003). Quantitative-structure activity relationships for chemical reductions of organic contaminants. Environmental Toxicology and Chemistry 22, 1733–1742.
  • Tunkel, J., Howard, P.H., Boethling, R.S., Stiteler, W., and Loonen, H. (2000). Predicting ready biodegradability in the Japanese Ministry of International Trade and Industry test. Environmental Toxicology and Chemistry 19, 2478–2485.
  • Türker Saçan, M., and Balcioğlu, I.A. (1996). Prediction of the soil sorption coefficient of organic pollutants by the characteristic root index model. Chemosphere 32, 1993–2001.
  • Türker Saçan, M., and Inel, Y. (1995). Application of the characteristic root index model to the estimation of n-octanol/water partition coefficients. Polychlorinated biphenyls. Chemosphere 30, 39–50.
  • Uddameri, V., and Kuchanur, M. (2004). Fuzzy QSAR for predicting logKoc of persistent organic pollutants. Chemosphere 54, 771–776.
  • Van Compernolle, R., McAvoy, D.C., Sherren, A., Wind, T., Cano, M.L., Belanger, S.E., Dorn, P.B., and Kerr, K.M. (2006). Predicting the sorption of fatty alcohols and alcohol ethoxylates to effluent and receiving water solids. Ecotoxicology and Environmental Safety 64, 61–74.
  • Van Noort, P.C. M., Haftka, J.J. H., and Parsons, J.R. (2010). Updated Abraham solvation parameters for polychlorinated biphenyls. Environmental Science and Technology 44, 7037–7042.
  • Von Oepen, B., Kördel, W., Klein, W., and Schüürmann, G. (1991). Predictive QSPR models for estimating soil sorption coefficients: potential and limitations based on dominating processes. Science of the Total Environment 109/110, 343–354.
  • Vrtacnik, M., and Voda, K. (2003). HQSAR and CoMFA approaches in predicting reactivity of halogenated compounds with hydroxyl radicals. Chemosphere 52, 1689–1699.
  • Walker, A., Rodriguez-Cruz, M.S., and Mitchell, M.J. (2005). Influence of ageing of residues on the availability of herbicides for leaching. Environmental Pollution 133, 43–51.
  • Walker, J.D., Carlsen, L., Hulzebos, E., and Simon-Hettich, B. (2002). Global government applications of analogues, SARs, QSARs to predict aquatic toxicity, chemical or physical properties, environmental fate parameters and health effects of organic chemicals. SAR and QSAR in Environmental Research 13, 607–616.
  • Walker, J.D., Jaworska, J., Comber, M.H. I., Schultz, T.W., and Dearden, J.C. (2003). Guidelines for developing and using quantitative structure-activity relationships. Environmental Toxicology and Chemistry 22, 1653–1665.
  • Wammer, K.H., and Peters, C.A. (2005). Polycyclic aromatic hydrocarbon biodegradation rates: a structure-based study. Environmental Science and Technology 39, 2571–2578.
  • Wang, Z.Y., Zeng, X.L., and Zhai, Z.C. (2008). Prediction of supercooled liquid vapor pressures and n-octanol/air partition coefficients for polybrominated diphenyl ethers by means of molecular descriptors from DFT method. Science of the Total Environment 389, 296–305.
  • Wania, F., and Dugani, C.B. (2003). Assessing the long-range transport potential of polybrominated diphenyl ethers: a comparison of four multimedia models. Environmental Toxicology and Chemistry 22, 1252–1261.
  • Wauchope, R.D., Yeh, S., Linders, J.B. H. J., Kloskowski, R., Tanaka, K., Rubin, B., Katayama, A., Kördel, W., Gerstl, Z., Lane, M., and Unsworth, J.B. (2002). Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability. Pest Management Science 58, 419–445.
  • Welke, B., Ettlinger, K., and Riederer, M. (1998). Sorption of volatile organic chemicals in plant surfaces. Environmental Science and Technology 32, 1099–1104.
  • Wilson, L.Y., and Famini, G.R. (1991). Using theoretical descriptors in quantitative structure-activity relationships: some toxicological indices. Journal of Medicinal Chemistry 34, 1668–1674.
  • Winget, P., Cramer, C.J., and Truhlar, D.G. (2000). Prediction of soil sorption coefficients using a universal solvation model. Environmental Science and Technology 34, 4733–4740.
  • Woodrow, J.E., Seiber, J.N., and Baker, L.W. (1997). Correlation techniques for estimating pesticide volatilization flux and downwind concentrations. Environmental Science and Technology 31, 523–529.
  • Worrall, F. (2001). A molecular topology approach to predicting pesticide pollution of groundwater. Environmental Science and Technology 35, 2282–2287.
  • Worrall, F., and Thomsen, M. (2004). Quantum vs. topological descriptors in the development of molecular models of groundwater pollution by pesticides. Chemosphere 54, 585–596.
  • Xie, Y.J., Liu, H., Liu, H.X., Zhai, Z.C., and Wang, Z.Y. (2008). Determination of solubilities and n-octanol/water partition coefficients and QSPR study for substituted phenols. Bulletin of Environmental Contamination and Toxicology 80, 319–323.
  • Xing, L., and Glen, R.C. (2002). Novel methods for the prediction of logP, pKa and logD. Journal of Chemical Information and Computer Sciences 42, 796–805.
  • Xu, F., Liang, X., Lin, B., Su, F., Schramm, K.-W., and Kettrup, A. (2002). Linear solvation energy relationships regarding sorption and retention properties of hydrophobic organic compounds in soil leaching column chromatography. Chemosphere 48, 553–562.
  • Xu, H.-Y., Zou, J.-W., Hu, G.-X., and Wei, W. (2010). QSPR/QSAR models for prediction of the physico-chemical properties and biological activity of polychlorinated diphenyl ethers (PCDEs). Chemosphere 80, 665–670.
  • Xu, H.-Y., Zou, J.-W., Yu, Q.-S., Wang, Y.-H., Zhang, J.-Y., and Jin, H.-X. (2007). QSPR/QSAR models for prediction of the physicochemical properties and biological activity of polybrominated diphenyl ethers. Chemosphere 66, 1998–2010.
  • Yan, A., and Gasteiger, J. (2003). Prediction of aqueous solubility of organic compounds based on a 3D structure representation. Journal of Chemical Information and Computer Sciences 43, 429–434.
  • Yang, G.-Y., Yu, J., Wang, Z.-Y., Zeng, X.-L., and Ju, X.-H. (2007). QSPR study on the aqueous solubility (-lgSW) and n-octanol/water partition coefficients (lgKOW) of polychlorinated dibenzo-p-dioxins (PCDDs). QSAR and Combinatorial Science 26, 352–357.
  • Yang, H., Jiang. Z., and Shi, S. (2004). Anaerobic biodegradability of aliphatic compounds and their quantitative structure biodegradability relationship. Science of the Total Environment 322, 209–219.
  • Yang, H., Jiang, Z., and Shi, S. (2006). Biodegradability of nitrogenous compounds under anaerobic conditions and its estimation. Ecotoxicology and Environmental Safety 63, 299–305.
  • Yang, P., Chen, J., Chen, S., Yuan, X., Schramm, K.-W., and Kettrup, A. (2003). QSPR models for physicochemical properties of polychlorinated diphenyl ethers. Science of the Total Environment 305, 65–76.
  • Yonezawa, Y., and Urushigawa, Y. (1979). Chemico-biological interactions in biological purification systems V. Relation between biodegradation rate constants of aliphatic alcohols by activated sludge and their partition coefficients in a 1-octanol-water system. Chemosphere 8, 139–142.
  • Yu, H., Kühne, R., Ebert, R.-U., and Schüürmann, G. (2010). Comparative analysis of QSAR models for predicting pKa of organic oxygen acids and nitrogen bases from molecular structure. Journal of Chemical Information and Modeling 50, 1949–1960.
  • Yu, H., Kühne, R., Ebert, R.-U., and Schüürmann, G. (2011). Prediction of the dissociation constant pKa of organic acids from local molecular parameters of their electronic ground state. Journal of Chemical Information and Modeling 51, 2336–2344.
  • Zeng, X.-L., Wang, H.-J., and Wang, Y. (2012). QSPR models of n-octanol/water partition coefficients and aqueous solubility of halogenated methyl-phenyl ethers by DFT method. Chemosphere 86, 619–625.
  • Zeng, X.-L., Wang, Z., Ge, Z., and Liu, H. (2007). Quantitative structure-property relationships for predicting subcooled liquid vapor pressure (PL) of 209 polychlorinated diphenyl ethers (PCDEs) by DFT and the position of Cl substitution (PCS) methods. Atmospheric Environment 41, 3590–3603.
  • Zeng, X.-L., Zhang, X.-L., and Wang, Y. (2013). QSPR modeling of n-octanol/air partition coefficients and liquid vapor pressures of polychlorinated dibenzo-p-dioxins. Chemosphere 91, 229–232.
  • Zhang, J., Kleinöder, T., and Gasteiger, J. (2006). Prediction of pKa values for aliphatic carboxylic acids and alcohols with empirical atomic charges descriptors. Journal of Chemical Information and Modeling 46, 2256–2266.
  • Zhao, H., Chen, J., Quan, X., Yang, F., and Peijnenburg, W.J.G.M. (2001). Quantitative structure-property relationship study on reductive dehalogenation of selected halogenated aliphatic hydrocarbons in sediment slurries. Chemosphere 44, 1557–1563.
  • Zhao, H., Xie, Q., Tan, F., Chen, J., Quan, X., Qu, B., Zhang, X., and Li, X. (2010). Determination and prediction of octanol-air partition coefficients of hydroxylated and methoxylated polybrominated diphenyl ethers. Chemosphere 80, 660–664.
  • Zhao, H., Zhang, Q., Chen, J., Xue, X., and Liang, X. (2005). Prediction of octanol-air partition coefficients of semivolatile organic compounds based on molecular connectivity index. Chemosphere 59, 1421–1426.
  • Zhao, Y.H., Abraham, M.H., and Zissimos, A.M. (2003). Determination of McGowan volumes for ions and correlation with van der Waals volumes. Journal of Chemical Information and Computer Sciences 43, 1848–1854.
  • Zhou, W., Zhai, Z., Wang, Z., and Wang, L. (2005). Estimation of n-octanol/water partition coefficients (KOW) of all PCB congeners by density functional theory. Journal of Molecular Structure: THEOCHEM 755, 137–145.
  • Zou, J.-W., Zhao, W.-N., Shang, Z.-C., Huang, M.-L., Guo, M., and Yu, Q.-S. (2002). A quantitative structure-property relationship analysis of logP for disubstituted benzenes. Journal of Physical Chemistry A 106, 11550–11557.