4,596
Views
253
CrossRef citations to date
0
Altmetric
Original Articles

Biosurfactant Producing Microbes and their Potential Applications: A Review

, &
Pages 1522-1554 | Published online: 29 Apr 2015

REFERENCES

  • Abraham, W.R., Meyer, H., and Yakimov, M. (1998). Novel glycine containing glucolipids from the alkane using bacterium Alcanivorax borkumensis. Biochim. Biophys. Acta, 1393(1), 57–62.
  • Abu-Ruwaida, A.S., Banat, I.M., Haditirto, S., and Khamis, A. (1991a). Nutritional requirements and growth characteristics of a biosurfactant producing Rhodococcus bacterium. World J. Microbiol. Biotechnol., 7, 53–61.
  • Abu-Ruwaida, A.S., Banat, I.M., Haditirto, S., Salem, A., and Kadri, M. (1991b). Isolation of biosurfactant-producing bacteria product characterization and evaluation. Acta Biotechnol., 11, 315–324.
  • Akit, J., Cooper, D.J., Mannien, K.I., and Zajic, J.K. (1981). Investigation of potential biosurfactant production among phytopathogenic corynebacteria and related soil microbes. Curr. Microbiol., 6, 145–150.
  • Amaral, P.F. F., Silva, J.M., Lehocky, M., Barros-Timmons, A.M. V., Coelho, M.A. Z., Marrucho, I.M., and Coutinho, J.A. P. (2006). Production and characterization of a bioemulsiftier from Yarrowia lipolytica. Process Biochem., 41, 1894–1898.
  • Amezcua-Vega, C., Poggi-Varaldo, H.M., Esparza-Garcia, F., Ríos-Leal, E., and Rodríguez-Vázquez, R. (2007). Effect of culture conditions on fatty acid composition of a biosurfactant produced by Candida ingens and changes of surface tension of culture media. Bioresour. Technol., 98, 237–240.
  • Anandaraj, B., and Thivakaran, P. (2010). Isolation and production of biosurfactant producing organism from oil spilled soil. Biosci. Technol., 1(3), 120–126.
  • Arguelles-Arias, A., Ongena, M., Halimi, B., Lara, Y., Brans, A., Joris, B., and Fickers, P. (2009). Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb. Cell Fact., 8, 63.
  • Arima, K., Kakinuma, A., and Tamura, G. (1968). Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun., 31, 488–494.
  • Asci, Y., Nurbas, M., and Acikel, Y.S. (2010). Investigation of sorption/desorption equilibria of heavy metals ions on/from quartz using rhamnolipid biosurfactant. J. Environ. Manage., 91, 724–731.
  • Bai, G.Y., Brusseau, M.L., and Miller, R.M. (1997). Biosurfactant enhanced removal of residual hydrocarbon from soil. J. Contam. Hydrol., 25, 157–170.
  • Ban, T., and Sato, T. (1993). Aqueous microbial biosurfactant solution exhibiting ultra-low tension at oil-water interfaces. Microbial enhancement of oil recovery—Recent advances (Proceedings of the 1992 international conference on microbial enhanced oil recovery) E.T. Premuzic and A. Woodhead (Eds.). Dev. Pet. Sci., 39, 115–125.
  • Banat, F., Al-Asheh, S., and Al-Makhadmeh, L. (2003). Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters. Proc. Biochem. 39, 193–202.
  • Banat, I.M. (1993). The isolation of a thermophilic biosurfactant producing Bacillus sp. Biotechnol. Lett., 15, 591–594.
  • Banat, I.M. (1995a). Biosurfactants characterization and use in pollution removal: State of the art. A review. Acta Biotechnol., 15, 251–267.
  • Banat, I.M. (1995b). Biosurfactants production and use in microbial enhanced oil recovery and pollution remediation: A review. Bioresour. Technol., 51, 1–12.
  • Banat, I.M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M.G., Fracchia, L., Smyth, T.J., and Marchant, R. (2010). Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol., 87, 427–444.
  • Barkay, T., Navon-Venezia, S., Ron, E., and Rosenberg, E. (1999). Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the emulsifier alasan. Appl. Environ. Microbiol., 65, 2697–2702.
  • Batista, S.B., Mounteer, A.H., Amorim, F.R., and Totola, M.R. (2006). Isolation and characterization of biosurfactant/bioemulsifier-producing bacteria from petroleum contaminated sites. Bioresour. Technol., 97, 868–875.
  • Begley, M., Cotter, P.D., Hill, C., and Ross, R.P. (2009). Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for Lan M proteins. Appl. Environ. Microbiol., 75, 5451–5460.
  • Belsky, I., Gutnick, D.L., and Rosenberg, E. (1979). Emulsifier of arthrobacter RAG-1: Determination of emulsifier-bound fatty acids. FEBS Lett., 10, 175–178.
  • Bento, F.M., Camargo, F.A.O., Okeke, B.C., and Frankenberger, W.T. (2005). Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour. Technol., 96, 1049–1055.
  • Bernheimer, A.W., and Avigad, L.S. (1970). Nature and properties of a cytolytic agent produced by Bacillus subtilis. J. Gen. Microbiol., 61, 361–369.
  • Besson, F., and Michel, G. (1992). Biosynthesis of iturin and surfactin by Bacillus subtilis. Evidence for amino acid activating enzymes. Biotechnol. Lett., 14, 1013–1018.
  • Bodour, A.A., Drees, K.P., and Maier, R.M. (2003). Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Appl. Environ. Microbiol., 69, 3280–3287.
  • Bognolo, G. (1999). Biosurfactants as emulsifying agents for hydrocarbons. Colloids Surf. A Physicochem. Eng. Aspects, 152, 41–52.
  • Borzeix, C., and Frederique, K. (2003). Use of sophorolipids comprising diacetyl lactones as agent for stimulating skin fibroblast metabolism. US Patent, 659, 62–65.
  • Burgos-Diaz, C., Pons, R., Espuny, M.J., Aranda, F.J., Teruel, J.A., Manresa, A., Ortiz, A., and Marques, A.M. (2011). Sphingobacterium detergens sp. nov., a surfactant-producing bacterium isolated from soil. J. Colloid Interface Sci., 361, 195.
  • Busscher, H.J., Vander Kuij-Booij, M., and Vander Mei, H.C. (1996). Biosurfactants from thermophilic dairy Streptococci and their potential role in the fouling control of heat exchanger plates. J. Ind. Microbiol. Biotechnol., 16(1), 15–21.
  • Busscher, H.J., Van Hoogmoed, C.G., Geertsema-Doornbusch, G.I., Van der Kuij-Booij, M., and Van der Mei, H.C. (1997). Streptococcus thermophilus and its biosurfactants inhibit adhesion by Candida spp. on silicone rubber. Appl. Environ. Microbiol., 63, 3810–3817.
  • Calvo, C., Martinez-Checa, F., Mota, A., Bejar, V., and Quesada, E. (1998). Effect of cations, pH and sulfate content on the viscosity and emulsifying activity of the Halomonas eurihalina exopolysaccharide. J. Ind. Microbiol. Biotechnol., 20, 205–209.
  • Cameron, D.R., Cooper, D.G., and Neufeld, R.J. (1988). The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier. Appl. Environ. Microbiol., 54(6), 1420–1425.
  • Carrillo, P.G., Mardaraz, C., Pitta-Alvarez, S.I., and Giulietti, A.M. (1996). Isolation and selection of biosurfactant-producing bacteria. World J. Microbiol. Biotechol., 12, 82–84.
  • Casas, J.A., and Garcia-Ochoa, F. (1999). Sophorolipid production by Candida bombicola medium composition and culture methods. J. Biosci. Bioeng., 88, 488–494.
  • Cavalero, D.A., and Cooper, D.G. (2003). The effect of medium composition on the structure and physical state of sophorolipids produced by Candida bombicola ATCC 22214. J. Biotechnol., 103, 31–41.
  • Cha, D.K. (2000). The effect of biosurfactants on the fate and transport of nonpolar organic contaminants in porous media. Environ. Eng., 20, 1–17.
  • Choi, W.J., Choi, H.-G., and Lee, W.-H. (1996). Effects of ethanol and phosphate on emulsan production by Acinetobacter calcoaceticus RAG-1. J. Biotechnol., 45(3), 217–225.
  • Christofi, N., and Ivshina, I.B. (2002). Microbial surfactants and their use in field studies of soil remediation: A review. J. Appl. Microbiol., 93, 915–929.
  • Cirigliano, M., and Carman, G. (1984). Isolation of a bioemulsifier from Candida lipodytica. Appl. Environ. Microbiol., 48, 747–750.
  • Cirigliano, M.C., and Carman, G.M. (1985). Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl. Environ. Microbiol., 50(4), 846–850.
  • Clint, J. (1992). Surfactants aggregations. New York, NY: Chapman and Hills.
  • Coelho, P.A., Queiroz-Machado, J., and Sunkel, C.E. (2003). Condensin-dependent localisation of topoisomerase II to an axial chromosomal structure is required for sister chromatid resolution during mitosis. J. Cell Sci., 116(23), 4763–4776.
  • Cooper, D.G., and Paddock, D.A. (1983). Torulopsis petrophilum and surface activity. Appl. Environ. Microbiol., 46, 1426–1429.
  • Cooper, D.G., and Paddock, D.A. (1984). Production of a biosurfactant from Torulopsis bombicola. Appl. Environ. Microbiol., 47, 173–176.
  • Cooper, D.G., and Zajic, J.E. (1980). Surface compounds from microorganisms. Adv. Appl. Microbiol., 26, 229–256.
  • Darvishi, P., Ayatollahi, S., Mowla, D., and Niazi, A. (2011). Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Colloid Surf. B, 84, 292–300.
  • Das, K., and Mukherjee, A.K. (2007). Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from petroleum oil contaminated soil from North-East India. Bioresour. Technol., 98, 1339–1345.
  • Das, P., Mukherjee, S., and Sen, R. (2008a). Antimicrobial potentials of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J. Appl. Microbiol., 104, 1675–1684.
  • Das, P., Mukherjee, S., and Sen, R. (2008b). Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere, 72, 1229–1234.
  • Das, P., Mukherjee, S., and Sen, R. (2009). Antiadhesive action of a marine microbial surfactant. Colloids Surf. B Biointerfaces, 71, 183–186.
  • Desai, A.J., Patel, K.M., and Desai, J.D. (1988). Emulsifier production by Pseudomonas fluorescens during the growth on hydrocarbons. Curr. Sci., 57(9), 500–501.
  • Desai, J.D., and Banat, I.M. (1997). Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol., 61, 47–64.
  • Drouin, C.M., and Cooper, D.G. (1992). Biosurfactant and aqueous two phase fermentation. Biotechnol. Bioeng., 40, 86–90.
  • Eliseev, S.A., Vildanova-Martsishin, R.I., Shulga, A.N., Shabo, Z.V., and Turovsky, A.A. (1991). Oil-washing bioemulsifier produced by Bacillus species potential application of bio-emulsier in oil removal for sand decontamination. Mikrobiol Zh., 53, 61–66.
  • El-Sheshtawy, H.S., El-Tabei, A.S., Kobisy, A.S., and Doheim, M.M. (2013). Application of biosurfactant produced by Bacillus lichneformis and chemical surfactant in biodegradation of crude oil: Part I. Biosci. Biotechnol. Res. Asia, 10(2), 515–526.
  • Felse, P.A., Shah, V., Chan, J., Rao, K.J., and Gross, R.A. (2007). Sophorolipid biosynthesis by Candida bombicola from industrial fatty acid residues. Enzyme Microbial. Technol., 40(2), 316–323.
  • Fenical, W. (1993). Chemical studies of marine bacteria: Developing a new resource. Chem. Rev., 93, 1673–1683.
  • Fernandes, P.A.V., Arruda, I.R., Santos, A.F.B., Arajo, A.A., Maior, A.M.S., and Ximenes, E.A. (2007). Antimicrobial activity of surfactants produced by Bacillus subtilis R14 against multidrug-resistant bacteria. Braz. J. Microbiol., 38, 704–709.
  • Fiebig, R., Schulze, D., Chung, J.C., and Lee, S.T. (1997). Biodegradation of polychlorinated biphenyls (PCBs) in the presence of a bioemulsifier produced on sunflower oil. Biodegradation, 8, 67–75.
  • Fiechter, A. (1992). Biosurfactants: Moving towards industrial application. Trends Biotechnol., 10, 208–217.
  • Fiechter, A., and Kaeppeli, O. (1976). The mode of interaction between the substrate and the cell surface of the hydrocarbon utilizing yeast Candida tropicalis. Biotechnol. Bioeng., 18, 967–974.
  • Frazetti, A., Caredda, P., Ruggeri, C., Colla, P.L., Tamburini, E., Papacchinis, M., and Bestetti, G. (2009). Potential applications of surface active compounds by Gordonia sp. Strain BS29 in soil remediation technologies. Chemosphere, 75, 801–807.
  • Gan, B.S., Kim, J., Reid, G., Cadieux, P., and Howard, J.C. (2002). Lactobacillus fermentum RC-14 inhibits Staphylococcus aureus infection of surgical implants in rats. J. Infect. Dis., 185, 1369–1372.
  • Gao, Y.Z., Li, Q.L., Ling, W.T., and Zhu, X.Z. (2011). Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene. J. Hazard. Mater., 185, 703–709.
  • Gautam, K.K., and Tyagi, V.K. (2005). Microbial surfactants: A review. J. Oleo Sci., 55, 155–166.
  • Georgiou, G., Lin, S., and Sharma, M.M. (1992). Surface active compounds from microorgani-sms. Biotechnology, 10, 60–65.
  • Gilewicz, M., Nimatuzahroh, T., Nadalig, H., Budzinski, H., Doumenq, P., Michotey, V., and Bertrand, J.C. (1997). Isolation and characterization of a marine bacterium capable of utilizing 2 methylphenanthrene. Appl. Microbiol. Biotechnol., 48, 528–533.
  • Gobbert, U., Lang, S., and Wagner, F. (1984). Sophorose lipids formation by resting cells of Torulopsis bombicola. Biotechnol. Lett., 6, 225–230.
  • Gudina, E.J., Teixeira, J.A., and Rodrigues, L.R. (2010). Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids Surf. B Biointerfacesm, 76, 298–304.
  • Guerra-Santos, L., Kappeli, O., and Fiechter, A. (1986). Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl. Microbiol. Biotechnol., 24, 443–448.
  • Gutiérrez, T., Mulloy, B., Bavington, C., Black, K., and Green, D.H. (2007a). Partial purification a chemical characterization of a glycoprotein (putative hydrocolloid) emulsifier produced by a marine bacterium antarctobacter. Appl. Microbiol. Biotechnol., 76, 1017–1026.
  • Gutiérrez, T., Mulloy, B., Black, K., and Green, D.H. (2007b). Glycoprotein emulsifiers from two marine Halomonas species: Chemical and physical characterization. J. Appl. Microbiol., 103, 1716–1727.
  • Gutnick, D.L., and Shabtai, Y. (1987). Exopolysaccharide bioemulsifiers. In N. Kosaric, W.L. Cairns, and N.C.C. Gray (Eds.), Biosurfactants and biotechnology (pp. 211–246). New York, NY: Marcel Dekker.
  • Haferburg, D., Hommel, R., Claus, R., and Kleber, H.P. (1986). Extracellular microbial lipids as biosurfactants. Adv. Biochem. Eng. Biotechnol., 33, 53–93.
  • Hisatsuka, K., Nakahara, T., Sano, N., and Yamada, K. (1971). Formation of rhamnolipid by Pseiudomlonas aeruiginosa and its function in hydrocarbon fermentation. Agric. Biol. Chem., 35, 686–692.
  • Holler, U., Konig, G.M., and Wright, A. (1999). Three new metabolites from marine derived fungi of the genera Coniothyrium and Microsphaeropsis. J. Nat. Prod., 62, 114–118.
  • Hommel, R.K., Weber, L., Weiss, A., Himmelreich, U., Rike, O., and Kleber, H.P. (1994). Production of sophorose lipid by Candida (Torulopsis) apicola grown on glucose. J. Biotechnol., 33, 147–155.
  • Horowitz, S., Gilbert, J.N., and Griffin, W.M. (1990). Isolation and characterization of a surfactant produced by Bacillus licheniformis 86. J. Ind. Microbiol. Biot., 6(4), 243–248.
  • Husain, D.R., Goutx, M., Acquaviva, M., Gilewicz, M., and Bertrand, J.C. (1997). The effect of temperature on eicosane substrate uptake modes by a marine bacterium Pseudomonas nautica strain 617: Relationship with the biochemical content of cells and supernatants. World J. Microbiol. Biotechnol., 13, 587–590.
  • Inakollu, S., Hung, H., and Shreve, G.S. (2004). Biosurfactant enhancement of microbial degradation of various strructural classes of hydrocarbon in mixed waste systems. Environ. Eng. Sci., 21, 463–469.
  • Ito, S., and Inoue, S. (1982). Sophorolipids from Torulopsis bombicola: Possible relation to alkane uptake. Appl. Environ. Microbiol., 43, 1278–1283.
  • Itoh, S., and Suzuki, T. (1974). Fructose lipids of arthrobacter, corynebacteria, nocardia and mycobacteria grown on fructose. Agric. Biol. Chem., 38, 1443–1449.
  • Jadhav, M., Kalme, S., Tamboli, D., and Govindwar, S. (2011). Rhamnolipid from Pseudomonas desmolyticum NCIM-2112 and its role in the degradation of Brown 3REL. J. Basic Microbiol., 51, 1–12.
  • Jarvis, F.G., and Johnson, M.J. (1949). A glyco-lipid produced by Pseudomonas aeruginosa. Am. Chem. Soc., 71, 4124–4126.
  • Jenneman, G.E., McInerney, M.J., Knapp, R.M., Clark, J.B., Feero, J.M., Revus, D.E., and Menzie, D.E. (1983). A halotolerant, biosurfactants-producing Bacillus species potentially useful for enhanced oil recovery. Dev. Ind. Microbiol., 24, 485–492.
  • Jenson, P.R., and Fenical, W. (1994). Strategies for the discovery of secondary metabolites from marine bacteria, ecological perspectives. Annu. Rev. Microbiol., 48, 559–584.
  • Juni, E. (1978). Genetics and physiology of Acinetobacter. Annu. Rev. Microbiol., 32, 349–371.
  • Kakugawa, K., Tamai, M., Imamura, K., Miyamoto, K., and Miyoshi, S. (2002). Isolation of yeast Kurtzmanomyces sp. I-11, novel producer of mannosylerythriotol lipid. Biosci. Biotechnol. Biochem., 66, 188–191.
  • Kang, S.W., Kim, Y.B., Shin, J.D., and Kim, E.K. (2010). Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid. Appl. Biochem. Biotechnol., 160, 780–790.
  • Kaplan, D., Christiaen, D., and Arad, S.M. (1987). Chelating properties of extracellular polysaccharides from Chlorella spp. Appl. Environ. Microbiol., 53, 2953–2956.
  • Kappeli, O., and Finnerty, W.R. (1979). Partition of alkane by an extracellular vesicle derived from hexadecane grown Acinetobacter. J. Bacteriol., 140, 707–712.
  • Kebbouche-Gana, S., Gana, M.L., Khemili, S., Fazouane-Naimi, F., Bouanane, N.A., Penninckx, M., and Hacene, H. (2009). Isolation and characterization of halophilic archaea able to produce biosurfactants. J. Ind. Microbiol. Biotechnol., 36, 727–738.
  • Khire, J.M., and Khan, M.T. (1994). Microbially enhanced oil recovery (MEOR), importance and mechanism of MEO. Enzyme Microbiol. Technol., 16, 170–172.
  • Kitamoto, D., Fuzishiro, T., Yanagishita, H., Nakane, T., and Nakahara, T. (1992). Production of mannosylerythriol lipids as biosurfactants by resting cells of Candida antarctica. Biotechnol. Lett., 14, 305–310.
  • Kitamoto, D., Haneishi, K., Nakahara, T., and Tabuchi, T. (1990). Production of mannosylerythritol lipids by Candida antarctica from vegetable-oils. Agric. Biol. Chem., 54, 37–40.
  • Kitamoto, D., Isoda, H., and Nakahara, T. (2002). Functions and potential applications of glycolipid biosurfactant from energy saving materials to gene delivery carriers. J. Biosci. Bioeng., 94(3), 187–201.
  • Kitamoto, D., Yanaglshita, H., Shinbo, T., Nakane, T., Kamisava, C., and Nakahara, T. (1993). Surface-active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J. Biotechnol., 29, 91–96.
  • Kosaric, N. (2001). Biosurfactants and their application for soil bioremediation. Food Technol. Biotechnol., 39, 295–304.
  • Kosaric, N., Cairns, W.L., and Gray, N.C.C. (1987). Biosurfactants and biotechnology. New York, NY: Marcel Dekker.
  • Krauss, E.M., and Chan, S.I. (1983). Complexation and phase transfer of nucleotides by gramicidine S. Biochemistry, 22, 4280–4285.
  • Kretschmer, A., Bock, H., and Wagner, F. (1982). Chemical and physical characterization of interfacial- active lipids from Rhodococcus erythropolis grown on n-alkanes. Appl. Environ. Microbiol., 44, 864–870.
  • Kuyukina, M.S., Ivshina, I.B., Makarov, S.O., Litvinienko, L.V., Cunningham, C.J., and Philip, J.C. (2005). Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ. Int., 31(2), 155–161.
  • Lai, C.C., Huang, Y.C., Wei, Y.H., and Chang, J.S. (2009). Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J. Hazard. Mater., 167, 609–614.
  • Lang, S., and Wagner, F. (1993). Biosurfactants. N. Korasic (Ed.). Surfactants Sci. Ser., 48, 251–268.
  • Lang, S., and Wagner, G. (1987). Structure and properties of biosurfactants. In N. Kosaric, W.L. Cairns, and N.C.C. Gray (Eds.), Biosurfactants and biotechnology (pp. 21–47). New York, NY: Marcel Dekker.
  • Lesik, O.Y., Elyseev, S.A., Polulyakh, O.V., and Karpenko, E.V. (1991). Production of a surface-active complex by the culture of carotene-synthesizing yeast Phaffia rhodozyma and its emulsifying properties. Microbiol. J., 53, 36–40.
  • Lesik, O.Y., Karpenko, E.V., Elysseev, S.A., and Turovsky, A.A. (1989). The surface-active and emulsifying properties of Candida lipolytica Y-917 grown on n-hexadecane. Microbiol. J., 51, 56–59.
  • Levy, N., Baror, Y., and Magdassi, S. (1990). Flocculation of bentonite particles by a cyanobacterial bioflocculant. Colloids Surf., 48, 337–349.
  • Limade, C.J.B., Ribeiro, E.J., Sérvulo, E.F.C., Resende, M.M., and Cardoso, V.L. (2009). Biosurfactant production by Pseudomonas aeruginosa grown in residual soybean oil. Appl. Biochem. Biotechnol., 152, 156–168.
  • Lin, S.C., Carswell, S.K., and Sharma, M.M. (1994). Continuous production of the lipopeptide biosurfactant of Bacillus licheniformis JF-2. Appl. Microbiol. Biotechnol., 41, 281–285.
  • Lin, W., Brauers, G., Ebel, R., Wray, V., Sudarsono, A., and Proksch, P. (2003). Novel chromone derivatives from the fungus Aspergillus versicolor isolated from the marine sponge Xestospongia exigua. J. Nat. Prod., 66, 57–61.
  • Liu, J., Zou, A., and Mu, B. (2010). Surfactin effects on the physiochemical property of PC liposome. Colloids Surf. A Physicochem. Eng. Aspects., 361, 90-95.
  • Lukondeh, T., Ashbolt, N.J., and Rogers, P.L. (2003). Evaluation of Kluyveromyces marxianus FII 510700 grown on a lactose-based medium as a source of a natural bioemulsifier. J. Ind. Microbiol. Biotechnol., 30(12), 715–720.
  • MacCormack, W.P., and Fraile, E.R. (1997). Characteristion of a hydrocarbon degrading psychrotrophic Antarctic bacterium. Antarct. Sci., 9, 150–155.
  • MaCdonald, C.R., Cooper, D.G., and Zajic, J.E. (1981). Surface active lipids from Nocardia erythropolis grown on hydrocarbon. Appl. Environ. Microbiol., 41, 117–123.
  • Makkar, R.S., and Cameotra, S.S. (1997). Utilization of molasses for biosurfactant production by two Bacillus strains at thermophilic conditions. J. Am. Oil Chem. Soc., 74, 887–889.
  • Makkar, R.S., and Cameotra, S.S. (1998). Production of biosurfactant at mesophilic and thermophilic conditions by a strain of Bacillus subtilis. J. Ind. Microbiol. Biotechnol., 20, 48–52.
  • Maneera, S., and Dikit, P. (2007). Characterization of cell-associated bioemulsifier from Myroides sp. SM1, a marine bacterium. Songklanakarin J. Sci. Technol., 29, 769–779.
  • Maneerat, S. (2005). Production of biosurfactants using substrates from renewable-resources. J. Sci. Technol., 27, 675–683.
  • Maneerat, S., Bamba, T., Harada, K., Kobayashi, A., Yamada, H., and Kawai, F. (2006). A novel crude oil emulsifier secreted in the culture supernatant of a marine bacterium, Myroides sp. strain SM1. Appl. Microbiol. Biotechnol., 70, 254–259.
  • Maneerat, S., Nitoda, T., Kanzaki, H., and Kawai, F. (2004). Bile acids is new products of a marine bacterium, Myroides sp. strain SM1. Appl. Microbiol. Biotechnol., 67, 683–699.
  • Maneerat, S., and Phetrong, K. (2007). Isolation of biosurfactant-producing marine bacteria and characteristics of selected biosurfactant. Songklanakarin J. Sci. Technol., 29, 781–791.
  • McInerney, M.J., Javaheri, M., and Nagle, D.P. (1990). Properties of the biosurfactant produced by Bacillus liqueniformis strain JF-2. I. J. Microbiol. Biotechnol., 5, 95–102.
  • McNeill, G.P., and Yamane, T.J. (1991). Enzymatic synthesis of surfactants. Am. Oil Chem. Soc., 68, 6–10.
  • Mireles, J.P., Toguchi, A., and Harshey, R.M. (2001). Salmonella enteric serovar typhimurium swarming mutants with altered biofilmforming abilities: Surfactin inhibits biofilm formation. J. Bacteriol., 183, 5848–5854.
  • Morikawa, M., Daido, H., Takao, T., Murata, S., Shimonishi, Y., and Imanaka, T. (1993). A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J. Bacteriol., 175(20), 6459–6466.
  • Morikawa, M., Ito, M., and Imanaka, T. (1992). Isolation of a new surfactin producer Bacillus pumilus A-1, and cloning and nucleotide sequence of the regulator gene, psf-1. J. Ferment. Bioeng., 74, 255–261.
  • Morita, T., Konishi, M., Fukuoka, T., Imura, T., and Kitamoto, D. (2006). Discovery of Pseudozyma rugulosa NBRC 10877 as a novel producer of the glycolipid biosurfactants, mannosylerythritol lipids, based on rDNA sequence. Appl. Microbiol. Biotechnol., 73, 305–313.
  • Morita, T., Konishi, M., Fukuoka, T., Imura, T., and Kitamoto, D. (2007). Physiological differences in the formation of the glycolipid biosurfactants, mannosylerythritol lipids, between Pseudozyma antarctica and Pseudozyma aphidis. Appl. Microbiol. Biotechnol. 74(2), 307–15.
  • Mukherjee, S., Das, P., and Sen, R. (2006). Towards commercial production of microbial surfactants. Trends Biotechnol., 24, 509–515.
  • Mulligan, C.N., and Gibbs, B.F. (2004). Types, production and applications of biosurfactants. Proc. Indian Nat. Sci. Acad., 1, 31–55.
  • Mulligan, C.N., Yong, R.N., and Gibbs, B.F. (2001). Remediation technologies for metalcontaminated soils and groundwater: an evaluation. Eng. Geol., 60(1–4), 193–207.
  • Mulqueen, P. (2003). Recent advances in agrochemical formulations. Adv. Colloid Interface Sci., 106, 83–107.
  • Muthusamy, K., Gopalakrishnan, S., Ravi, T.K., and Sivachidambaram, P. (2008). Biosurfactants: Properties, commercial production and application. Curr. Sci., 94, 736–747.
  • Navon-Venezia, S., Zosim, Z., Gottlieb, A., Legmann, R., Carmeli, S., Ron, E.Z., and Rosenberg, E. (1995). Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl. Environ. Microbiol., 61, 3240–3244.
  • Nerurkar, A.S., Hingurao, K.S., and Suthar, H.G. (2009). Bioemulsfiers from marine microorganisms. J. Sci. Ind. Res., 68, 273–277.
  • Neu, T.R., Härtner, T., and Poralla, K. (1990). Surface active properties of viscosin: A peptidolipid antibiotic. Appl. Microbiol. Biotechnol., 32, 518–520.
  • Neu, T.R., Dengler, T., Jann, B., and Poralla, K. (1992). Structural studies of an emulsion-stabilizing exopolysaccharide produced by an adhesive, hydrophobic Rhodococcus strain. J. Gen. Microbiol., 138, 2531–2537.
  • Nielsen, T.H., Christophersen, C., Anthoni, V., and Sorensen, J. (1999). Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR 54. J. Appl. Microbiol., 87, 80–90.
  • Nishio, E., Ichiki, Y., Tamura, H., Morita, S., Watanabe, K., and Yoshikawa, H. (2002). Isolation of bacterial strains that produce the endocrine disruptor, octylphenol diethoxylates, in paddy fields. Biosci. Biotechnol. Biochem., 66, 1792–1798.
  • Obayori, O.S., Ilori, M.O., Adebusoye, S.A., Oyetibo, G.O., Omotayo, A.E., and Amund, O.O. (2009). Degradation of hydrocarbons and biosurfactant production by Pseudomonas sp. strain LP1. World J. Microbiol. Biotechnol., 25, 1615–1623.
  • Olivera, N.L., Commendatore, M.G., Delgado, O., and Esteves, J.L. (2003). Microbial characterization and hydrocarbon biodegradation potential of natural bilge waste microxora. J. Ind. Microbiol. Biotechnol., 30, 542–548.
  • Oloke, J.K., and Glick, B.R. (2005). Production of Bioemulsifier by an unusual isolate of salmonlred melanin containing Rhodotorula glutinis. Afr. J. Biotechnol., 4(2), 164–171.
  • Passeri, S., Schmidt, M., Haffner, T., Wray, V., Lang, S., and Wagner, F. (1992). Marine biosurfactants IV production, characterization and biosynthesis of an anionic glucose lipid from the marine bacterial strain MM1. Appl. Microbiol. Biotechnol., 37, 281–286.
  • Patil, J.R., and Chopade, B.A. (2003). Bioemulsifier production by Acinetobacter strains isolated from healthy human skin. US Patent No. US 2004/0138429 A1.
  • Pei, X., Zhan, X., and Zhou, Z. (2009). Effect of biosurfactant on the sorption of phenantherene onto original and H2O2-treated soils. J. Environ. Sci., 21, 1378–1385.
  • Peng, F., Liu, Z., Wang, L., and Shao, Z. (2007). An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J. Appl. Microbiol., 102, 1603–1611.
  • Pepi, M., Cesaro, A., Liut, G., and Baldi, F. (2005). An Antarctic psychrotrophic bacterium Halomonas sp. ANT-3b, growing on n-hexadecane, produces a new emulsifying glycolipid. FEMS Microbiol. Ecol., 53, 157–166.
  • Perfumo, A., Banat, I.M., Canganella, F., and Marchant, R. (2006). Rhamnolipid production by anovel thermotolerant hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. J. Appl. Microbiol., 75, 132–138.
  • Poremba, K., Gunkel, W., Lang, S., and Wagner, F. (1991a). Toxicity testing of synthetic and biogenic surfactants on marine microorganisms. Environ. Toxicol. Water Qual., 6, 157–163.
  • Poremba, K., Gunkel, W., Lang, S., and Wagner, F. (1991b). Marine biosurfactants. III. Toxicity testing with marine microorganisms and comparison with synthetic detergents. Z. Naturforsch., 46c, 210–216.
  • Rahman, K.S.M., Rahman, T.J., Lakshmanaperumalsamy, P., Marchant, R., and Banat, I.M. (2003). The potential of bacterial isolates for emulsification with range of hydrocarbons. Acta Biotechnol., 4, 335–345.
  • Rau, U., Nguyen, L.A., Roeper, H., Koch, H., and Lang, S. (2005). Fed-batch bioreactor production of mannosylerythritol lipids secreted by Pseudozyma aphidis. Appl. Microbiol. Biotechnol., 68, 607–613.
  • Reisfeld, A., Rosenberg, E., and Gutnick, D. (1972). Microbial degradation of crude oil: Factors affecting the dispersion in sea water by mixed and pure cultures. Appl. Microbiol., 24(3), 363–368.
  • Rivardo, F., Turner, R.J., Allegrone, G., Ceri, H., and Martinotti, M.G. (2009). Anti-adhesion activity of two biosurfactants produced by Bacillus spp. Prevents biofilm formation of human bacterial pathogens. Appl. Microbiol. Biotechnol., 86, 541–553.
  • Robert, M., Mercade, M.E., Bosch, M.P., Parra, J.L., Espuny, M.J., Manresa, M.A., and Guinea, J. (1989). Effect of carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1. Biotechnol. Lett., 11, 871–874.
  • Rodrigues, L., Mei, H.C.V., Teixeira, J., and Oliveira, R. (2004). Influence of biosurfactants from probiotic bacteria on formation of biofilms on voice prostheses. Appl. Environ. Microbiol., 70, 4408–4410.
  • Rodrigues, L., Vander Mei, H., Banat, I.M., Teixeira, J., and Oliveira, R. (2006a). Inhibition of microbial adhesion to silicone rubber treated with biosurfactant from Streptococcus thermophilus A. FEMS Immunol. Med. Microbiol., 46, 107–112.
  • Rodrigues, L.R., Teixeira, J.A., van der Meib, H.C., Oliveira, R. (2006b). Isolation and partial characterization of a biosurfactant produced by Streptococcus thermophilus A. Colloid Surface B, 53, 105–112.
  • Romanenko, L.A., Kalinovskaya, N.I., and Mikhailov, V.V. (2001). Taxonomic composition and biological activity of microorganisms associated with a marine ascidian Halocynthia aurantium. Russ. J. Mar. Biol., 27, 291–295.
  • Rosenberg, E., and Kaplan, N. (1987). Surface active properties of Acinetobacter exopolysaccharides. In M. Inouye (Ed.), Bacterial outer membranes as model systems (pp. 311–342). New York, NY: Wiley.
  • Rosenberg, E., and Ron, E.Z. (1989). Surface active polymers from the genus Acinetobacter. In D.L. Kalpan (Ed.), Biopolymers from renewal resources (pp. 281–291). New York, NY: Spinger-Verlag.
  • Rosenberg, E., Rubinovitz, C., Gottlieb, A., Rosenhak, S., and Ron, E.Z. (1988a). Production of biodispersan by Acinetobacter calcoaceticus A2. Appl. Environ. Microbiol., 54, 317–322.
  • Rosenberg, E., Rubinovitz, C., Ron, R., and Legmann, E.Z. (1988b). Purification and chemical properties of Acinetobacter calcoaceticus A2 biodispersan. Appl. Environ. Microbiol., 54, 323–326.
  • Rosenberg, E., Schwartz, Z., Tenenbaum, A., Rubinovitz, C., Legmann, R., and Ron, E.Z. (1989). Microbial polymer that changes the surface properties of limestone: Effect of biodispersan in grinding limestone and making paper. J. Dispersion Sci. Technol., 10, 241–250.
  • Rosenberg, E., Zuckerberg, A., Rubinovitz, C., and Gutnick, D.L. (1979). Emulsifier of arthrobacter RAG-1: Isolation and emulsifying properties. Appl. Environ. Microbiol., 37, 402–408.
  • Rostas, M., and Blassmann, K. (2009). Insects had it first: Surfactants as a defense against predators. Proc. R. Soc. B, 276, 633–638.
  • Sandrin, C., Peypoux, F., and Michel, G. (1990). Coproduction of surfactin and iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus subtilis. Biotechnol. Appl. Biochem., 12, 370–375.
  • Sarubbo, L.A., Farias, C.B.B., and Campos-Takaki, G.M. (2007). Co-utilization of canola oil and glucose on the production of a surfactant by Candida lipolytica. Curr. Microbiol., 54, 68–73.
  • Satpute, S.K., Bhawsar, B.D., Dhakephalkar, P.K., and Chopade, B.A. (2008). Assessment of different screening methods for selecting biosurfactant producing marine bacteria. Indian J. Mar. Sci., 37, 243–250.
  • Sekhon, K.K., Khanna, S., and Cameotra, S.S. (2012). Biosurfactant production and potential correlation with esterase activity. J. Pet. Environ. Biotechnol., 3, 133.
  • Schulz, D., Passeri, A., Schmidt, M., Lang, S., Wagner, F., Wray, V., and Gunkel, W. (1991). Marine biosurfactants, I. Screening for biosurfactants among crude oil degrading marine microorganisms from the North Sea. Z. Naturforsch, 46c, 197–203.
  • Sheppard, J.D., Jumarie, C., Cooper, D.G., and Laprade, R. (1991). Ionic channels induced by surfactin in planar lipid bilayer membranes. Biochem. Biophys. Acta, 1064, 13–23.
  • Shepherd, R., Rockey, J., Sutherland, I.W., and Roller, S. (1995). Novel bioemulsifiers from microorganisms for use in foods. J. Biotechnol., 40, 207–217.
  • Shulga, A.N., Karpenko, E.V., Eliseev, S.A., Turovsky, A.A., and Koronelli, T.V. (1990). Extracellular lipids and surface-active properties of the bacterium Rhodococcus erythropolis depending on the source of carbon nutrition. Mikrobiologya, 59, 443–447.
  • Singer, M.E., and Finnerty, W.R. (1990). Phisiology of biosurfactant synthesis by Rhodococcus species H13A. Can. J. Microbiol., 36, 741–745.
  • Singh, A., Hamme, J.D., and Ward, O.P. (2007). Surfactants in microbiology and biotechnology. Part 2. Appl. Aspects Biotechnol. Adv., 25, 99–121.
  • Singh, M., and Desai, J.D. (1989). Hydrocarbon emulsification by Candida tropicalis and Debaryomyces polymorphus. Indian J. Exp. Biol., 27(3), 224–226.
  • Sutyak, K.E., Wirawan, R.E., Aroutcheva, A.A., and Chiindas, M.L. (2008). Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product derived Bacillus amyliquefaceiens. J. Appl. Microbiol., 104, 1067–1074.
  • Suzuki, T., Hayashi, K., Fujikawa, K., and Tsukamoto, K. (1965). Elucidation of the structure of polymyxin B1. J. Biol. Chem., 57, 226.
  • Suzuki, T., Tanaka, H., and Itoh, S. (1974). Sucrose lipids of Arthrobacter, Corynebacterium and Nocardia grown in sucrose. Agric. Boil. Chem., 38, 557–563.
  • Teichmann, B., Linne, U., Hewald, S., Marahiel, M.A., and Bolker, M. (2007). A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Mol. Microbiol., 66, 525–533.
  • Thimon, L., Peypoux, F., Wallach, J., and Michel, G. (1995). Effect of the lipopeptide antibiotic iturinA, on morphology and membrane ultrastructure of yeast cell. FEMS School Lett., 128, 101–106.
  • Trindade, J.R., Freire, M.G., Amaral, P.F.F., Coelho, M.A.Z., Coutinho, J.A.P., and Marrucho, I.M. (2008). Aging mechanisms of oil-in-water emulsions based on a bioemulsifier produced by Yarrowia lipolytica. Colloids Surf. A Physicochem. Eng. Aspects, 324(1–3), 149–154.
  • Tulloch, A.P., Hill, A., and Spencer, J.F.T. (1968). Structure and reactions of lactonic and acidic sophorosides of 17-hydroxyoctadecanoic acid. Can. J. Chem., 46, 3337–3351.
  • Ueno, Y., Hirashima, N., Inoh, Y., Furuno, T., and Nakanishi, M. (2007). Characterization of biosurfactant-containing liposomes and their efficiency for gene transfection. Biol. Pharm. Bull., 30, 169–172.
  • Vanittanakom, N., Loeffler, W., Koch, U., and Jung, G. (1986). Fengycin—A novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J. Antibiot., 39(7), 888–901.
  • Venkateswaran, K., and Harayama, S. (1995). Sequential enrichment of microbial populations exhibiting enhanced biodegradation of crude oil. Can. J. Microbiol., 41, 767–775.
  • Villeneuve, P. (2007). Lipases in lipophilization reactions. Biotechnol. Adv., 25, 515–536.
  • Wasko, M.P., and Bratt, R.P. (1990). Properties of a biosurfactant produced by the fuel contaminant Ochorbactrum anthrrpii. Int. Biodeterior, 27, 265–273.
  • Weber, L., Doge, C., and Haufe, G. (1992). Oxygenation of hexadecane in the biosynthesis of cyclic glycolipids in Torulopsis apicola. Biocatalysis, 5, 262–272.
  • Yakimov, M., Amro, M., and Bock, M. (1997). The potential of Bacillus licheniformis strains for in situ enhanced oil recovery. J. Pet. Sci. Eng., 18, 147–160.
  • Yakimov, M.M., Timmis, K.N., Wray, V., and Fredickson, H.L. (1995). Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl. Environ. Microbiol., 61, 1706–1713.
  • Youssef, N., Simpson, D.R., Duncan, K.E., McInerney, M.G., Folmsbee, M., Fincher, M., and Knapp, R.M. (2007). In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Appl. Environ. Microbiol., 73, 1239–1247.
  • Zajic, J.E., Gignard, H., and Gerson, D.F. (1977). Properties and biodegradation of a bioemulsifier from Corynebacterium hydrocarboclastus. Biotechnol. Bioeng., 19, 1303–1320.
  • Zhang, Y., Li, H., Sun, J., Gao, J., Liu, W., Li, B., Guo, Y., and Chen, J. (2010). Dc-chol/dope cationic liposomes: A comparative study of the influence factors on plasmid pDNA and Si RNA gene delivery. Int. J. Pharm., 390, 198–207.
  • Zhao, X. (1999). Mannosylerythritol lipid is a potent inducer of apoptosis and differentiation of mouse melanoma cells in culture. Cancer Res., 59, 482–486.
  • Zinjarde, S., and Pant, A. (2002). Emulsifier from tropical marine yeast, Yarrowia lipolytica NCIM 3589. J. Basic Microbiol., 42, 67–73.
  • Zinjarde, S.S., Chinnathambi, S., Lachke, A.H., and Pant, A. (1997). Isolation of an emulsifier from Yarrowia lipolytica NCIM 3589 using a modified mini isoeletric focusing unit. Lett. Appl. Microbiol., 24, 117–121.
  • Zosim, Z., Guntick, D.L., and Rosenberg, E. (1982). Properties of hydrocarbon in water emulsion. Biotechnol. Bioeng., 24, 281–292.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.